Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (1): 142-158.doi: 10.3864/j.issn.0578-1752.2024.01.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Environmental Residues of Organosiloxane-Based Adjuvants and Its Environmental Risks for Use as Agrochemical Adjuvants

WANG XiaoBin(), YAN Xiang, LI XiuYing(), TU Cheng   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2023-01-10 Accepted:2023-02-27 Online:2024-01-01 Published:2024-01-10
  • Contact: LI XiuYing

Abstract:

Organosiloxane-based adjuvant (or organosilicon adjuvant), one of the silicone-fluide products, is polysiloxane, predominantly composed of covalently bonded silicon and oxygen atoms. Organosiloxane-based adjuvants are widely used as additives for daily chemicals and textile products, but also as agrochemical adjuvants in agriculture due to their super spreading and penetrating abilities. At present, China’s production and sales of silicone products have reached above 2 million tons, accounting for more than 50% of the world’s total amount. China has become the world’s largest producer, consumer and net exporter of raw materials of silicone, and the production capacity of polysiloxane has reached more than 60% of the world’s total. As organosiloxane residues detected in environment (especially in water, sludge/soil and other environmental samples, aquatic food chain, as well as human tissues), their impacts on agricultural ecological environment are increasingly exposed due to the widely application of organosiloxane-based adjuvants, while the environmental risks from silicone-based agrochemical adjuvants, including ecotoxicity and environmental safety risks, have also attracted great concern. In recent years, volatile cyclomethylcyclosiloxanes (such as D4 (octamethylcyclotetrasiloxane), D5 (decamethylcyclopentasiloxane) and D6 (dodecylcyclohexasiloxane)) have been recognized as emerging organic pollutants, or listed as priority controlled chemicals by EU and other countries, because of their environmental persistence, bioaccumulation and potential toxicity. Based on the relevant scientific research literatures published since 1991 on the environmental residues of organosiloxane-based adjuvants and the ecological environmental safety risks in the use of organosiloxane-based adjuvant (including organosiloxane-based agrochemical adjuvants), this paper reviewed and analyzed the environmental residues of organosiloxane-based adjuvants, and their impacts directly or indirectly on agricultural ecological environmental safety. This review mainly focused on the following two aspects: (1) the organosiloxane residues in environment and their impacts on the agricultural ecological environment safety, including organosiloxane residues and fates in the process of wastewater treatment, aquatic food chain pollution risks from organosiloxane residues in water, soil ecological pollution risks from organosiloxane residues in sludge, and human health risks from organosiloxane residues in food; (2) the current situation and environmental safety risks for the use of organosiloxane-based agrochemical adjuvants, including organosiloxane residues and ecotoxicity risks from siloxane-based agrochemical adjuvants, and the management for the use of organosiloxane-based agrochemical adjuvants. This paper also discussed the management status and problems associated with siloxane-based products. For organosiloxane as agrochemical adjuvants, organosiloxane-based adjuvants were largely assumed to be “biologically inert”, and usually no risk assessment (such as ecotoxicity test and environmental monitoring) was required. Also, the adjuvant inert ingredients were generally protected as “trade-secrets” or confidential business information, and the inert ingredients were rarely identified on product labels. At present, there are no regulatory requirements for the use of organosilicone-based adjuvants in fertilizer products as agrochemical adjuvants (such as foliar fertilizer additives) in China, posing potential environmental safety risks. This paper discussed that over-addition with organosiloxane-based agrochemical adjuvants might increase their residues in soil-crop-water systems, and their ecotoxicity risks, as well as potential threats to food safety and human health. It is suggested that relevant management and research units need to pay more attention to environmental monitoring for organosiloxane residues and fates in the application process of organosiloxane-based adjuvants, and especially strengthen the research on the impacts of organosiloxane residues from organosiloxane-based agrochemical adjuvants on water, soil, animal and plant growth, as well as human health.

Key words: organosiloxanes (silicones), agrochemical adjuvants, foliar fertilizer additives, environmental safety risks

Table 1

Cyclosiloxane (D4, D5 and D6) residues, and removal efficiency (RE) in wastewater treatment plants (WWTP) inlet/outlet and sludge samples in some regions of China"

污水处理厂
WWTP
环硅氧烷
cVMS
进水口
Inlet (μg·L-1)
出水口
Outlet (μg·L-1)
污泥
Sludge (μg·kg-1)
去除率
RE (%)
参考文献
Reference
北京
Beijing
D4 2.42-2.89 0.53-0.55 680-700 87 [76]
D5 3.04-3.29 0.78-1.00 1200-1300 80
D6 2.20-2.56 0.96 910-1000 75
黑龙江哈尔滨
Harbin, Heilongjiang
D4 0.017-0.103 0.010-0.059 500-700 85.7 [83]
D5 0.230-0.586 0.013-0.546 4600-10900 84.6
D6 0.143-3.990 0.002-0.848 1500-1800 95.7
辽宁大连
Dalian, Liaoning
D4 0.225-0.436 0.05-0.181 423-2260 59-87 [84]
D5 0.301-0.439 0.106-0.185 733-4170 52-76
D6 0.256-0.354 0.045-0.150 1210-4730 46-87
辽宁大连
Dalian, Liaoning
D4 0.3 0.14 580 53.3 [6]
D5 0.8 0.24 440 70.0
D6 1.06 0.23 1600 78.3
辽宁大连
Dalian, Liaoning
D4 0.369 0.097 929 73.7 [85]
D5 0.387 0.156 1667 59.7
D6 0.297 0.09 2190 69.7
辽宁大连
Dalian, Liaoning
D4 0.282 0.144 48.9 [86]
D5 0.647 0.274 57.6
D6 0.458 0.163 64.3
辽宁大连
Dalian, Liaoning
D4 0.441-0.611 0.237-0.258 42.1-57.7 [87]
D5 1.226-2.827 0.191-0.374 82.8-86.8
D6 0.399-0.678 0.174-0.217 45.5-74.4

Table 2

Cyclosiloxane (D4, D5 and D6) residues in water samples from some regions of China"

地点
Sampling site
水环境
Water body
D4
(ng·L-1)
D5
(ng·L-1)
D6
(ng·L-1)
参考文献
Reference
辽宁大连Dalian, Liaoning 河水River 20.9-126.9 11.7-54.6 [53]
水库Reservoir 9.4-69.9 8.1-41.9
辽宁大连湾Dalian Bay, Liaoning 海水Seawater BDL-55.8 0.830-40.3 0.77-56.6 [54]
湖南洞庭湖Dongting lake, Hunan 湖水Lake 43.3-78.6 65.3-339.2 36.6-320.2 [90]
黑龙江大庆油田Daqing oilfield, Heilongjiang 地表水Surface water <LOQ-36.5 <LOQ-62.7 <LOQ-150 [91]

Table 3

Lipid concentration of cyclosiloxane (D4, D5 and D6) in aquatic samples from some areas of China"

地点
Sampling site
水生物种类数(样本数)
Numbers of aquatic species
(Numbers of samples)
D4
(ng·g-1 lw)
D5
(ng·g-1 lw)
D6
(ng·g-1 lw)
参考文献
Reference
辽宁大连湾海域 Dalian Bay, Liaoning 13 (305) 83.1-519 74.1-856 124-534 [72,98]
辽宁盘锦双台子河口 Shuangtaizi estuary, Panjin, Liaoning 12 (148) 83.2-749 24.5-236 33.2-612 [99]
安徽合肥巢湖 Chaohu Lake, Hefei, Anhui 15 (40) 4.65-85.5 11.5-120 26.7-250 [100]
[1]
ALAEE M, WANG D G, GOUIN T. Cyclic volatile methyl siloxanes in the environment. Chemosphere, 2013, 93(5): 709-710.

doi: 10.1016/j.chemosphere.2012.10.040 pmid: 23177008
[2]
WANG D G, NORWOOD W, ALAEE M, BYER J D, BRIMBLE S. Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere, 2013, 93(5): 711-725.

doi: 10.1016/j.chemosphere.2012.10.041
[3]
DAVID F, MORETTI P, TAGLIAFERRI V, TROVALUSCI F. FIMEC test to evaluate the water uptake of coated and uncoated CFRP composites. Materials (Basel, Switzerland), 2020, 13(5): 1154.
[4]
周川琪, 袁涛. 挥发性甲基硅氧烷的环境分布与行为归趋研究进展. 环境化学, 2014, 33(3): 386-396.
ZHOU C Q, YUAN T. The environmental occurrences and behaviors of volatile methylsiloxanes: A review. Environmental Chemistry, 2014, 33(3): 386-396. (in Chinese)
[5]
KIERKEGAARD A, MCLACHLAN M S. Determination of linear and cyclic volatile methylsiloxanes in air at a regional background site in Sweden. Atmospheric Environment, 2013, 80: 322-329.

doi: 10.1016/j.atmosenv.2013.08.001
[6]
申凯. 有机硅氧烷在市政废水处理厂的归趋研究[D]. 大连: 大连海事大学, 2014.
SHEN K. Fate of volatile methylsiloxanes in a wastewater treatment plant[D]. Dalian: Dalian Maritime University, 2014. (in Chinese)
[7]
HORII Y, KANNAN K. Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products. Archives of Environmental Contamination and Toxicology, 2008, 55(4): 701-710.

doi: 10.1007/s00244-008-9172-z pmid: 18443842
[8]
冯耀平, 黄亚茹, 葛赞, 周大鹏. 有机硅表面活性剂研究进展. 中国洗涤用品工业, 2011(1): 69-71, 76.
FENG Y P, HUANG Y R, GE Z, ZHOU D P. Research progress of organosilicon surfactants. China Cleaning Industry, 2011(1): 69-71, 76. (in Chinese)
[9]
DE ARESPACOCHAGA N, VALDERRAMA C, RAICH-MONTIU J, CREST M, MEHTA S, CORTINA J L. Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas-A review. Renewable and Sustainable Energy Reviews, 2015, 52: 366-381.

doi: 10.1016/j.rser.2015.07.106
[10]
HUNTER M J, HYDE J F, WARRICK E L, FLETCHER H J. Organo-silicon polymers. the cyclic dimethyl siloxanes. Journal of the American Chemical Society, 1946, 68(4): 667-672.

doi: 10.1021/ja01208a042
[11]
CHANDRA G. Introduction//CHANDRA G. ed. Organosilicon Materials: The Handbook of Environmental Chemistry. Springer, New York. 1997.
[12]
MOJSIEWICZ-PIEŃKOWSKA K, KRENCZKOWSKA D. Evolution of consciousness of exposure to siloxanes-Review of publications. Chemosphere, 2018, 191: 204-217.

doi: 10.1016/j.chemosphere.2017.10.045
[13]
赵立群. 我国有机硅产业链发展态势分析. 化学工业, 2019, 37(1): 10-20.
ZHAO L Q. Analysis on the development trend of China silicone industry chain. Chemical Industry, 2019, 37(1): 10-20. (in Chinese)
[14]
郭智臣. 八甲基环四硅氧烷(D4)被移出控制化学品名单. 化学推进剂与高分子材料, 2018, 16(2): 87.
GUO Z C. Octamethylcyclotetrasiloxane (D4) was removed from the list of controlled chemicals. Chemical Propellants & Polymeric Materials, 2018, 16(2): 87. (in Chinese)
[15]
胡娟, 李文强, 张爱霞, 陈莉, 曾向宏. 2021年国内有机硅进展. 有机硅材料, 2022, 36(3): 74-99.
HU J, LI W Q, ZHANG A X, CHEN L, ZENG X H. Progress of silicone industry in China in 2021. Silicone Material, 2022, 36(3): 74-99. (in Chinese)
[16]
韩晶, 许勇, 潘晨, 茹歌, 朱永波, 郑荣. 洗护发化妆品中二甲基硅氧烷环体的测定. 香料香精化妆品, 2021(2): 68-71, 74.
HAN J, XU Y, PAN C, RU G, ZHU Y B, ZHENG R. Determination of dimethylsiloxane cyclic mixture in hair care cosmetics. Flavour Fragrance Cosmetics, 2021(2): 68-71, 74. (in Chinese)
[17]
RICHARDSON S D, KIMURA S Y. Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 2016, 88(1): 546-582.

doi: 10.1021/acs.analchem.5b04493 pmid: 26616267
[18]
BALDUCCI C, PERILLI M, ROMAGNOLI P, CECINATO A. New developments on emerging organic pollutants in the atmosphere. Environmental Science and Pollution Research International, 2012, 19(6): 1875-1884.

doi: 10.1007/s11356-012-0815-2 pmid: 22767285
[19]
ECHA European Chemicals Agency. 10 new substances added to the Candidate List. 2018. https://echa.europa.eu/-/ten-new-substances-added-to-the-candidate-list.
[20]
Commission regulation (EU) 2018/35 of 10 January 2018 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Octamethylcyclotetrasiloxane (‘D4’) and Decamethylcyclopentasiloxane (‘D5’). Official Journal of the European Union, 2018-01-10.
[21]
王少丽, 朱国仁, 张友军. 农用有机硅喷雾助剂在害虫化学防治中的应用. 长江蔬菜, 2010(18): 112-115.
WANG S L, ZHU G R, ZHANG Y J. Application of organic silicon surfactant in chemical control of agricultural pest. Journal of Changjiang Vegetables, 2010(18): 112-115. (in Chinese)
[22]
张康华, 曹小华, 陶春元. 利用地方资源优势开发农用有机硅产品. 湖北农业科学, 2010, 49(7): 1790-1792.
ZHANG K H, CAO X H, TAO C Y. Developing of agrochemical organosilicon additives by taking advantages of local silicon resources. Hubei Agricultural Sciences, 2010, 49(7): 1790-1792. (in Chinese)
[23]
PENNER D. Activator Adjuvants1. Weed Technology, 2000, 14(4): 785-791.

doi: 10.1614/0890-037X(2000)014[0785:AA]2.0.CO;2
[24]
HILL R M. Silicone surfactants-New developments. Current Opinion in Colloid & Interface Science, 2002, 7(5/6): 255-261.

doi: 10.1016/S1359-0294(02)00068-7
[25]
STEVENS P J G. Organosilicone surfactants as adjuvants for agrochemicals. Pesticide Science, 1993, 38(2/3): 103-122.

doi: 10.1002/ps.v38:2/3
[26]
KNOCHE M. Organosilicone surfactant performance in agricultural spray application: A review. Weed Research, 1994, 34(3): 221-239.

doi: 10.1111/wre.1994.34.issue-3
[27]
汪多仁. 改性硅油的开发与应用进展. 上海毛麻科技, 2012(3): 21-26.
WANG D R. Development and use of modified silicone oil. Shanghai Wool & Jute Journal, 2012(3): 21-26. (in Chinese)
[28]
黄文润. 特殊结构的有机硅表面活性剂. 有机硅材料, 2005, 19(2): 38-41, 43.
HUANG W R. Silicone surfactant with special structure. Silicone Material, 2005, 19(2): 38-41, 43. (in Chinese)
[29]
LI B X, LIU Y, ZHANG P, LI X X, PANG X Y, ZHAO Y H, LI H, LIU F, LIN J, MU W. Selection of organosilicone surfactants for tank-mixed pesticides considering the balance between synergistic effects on pests and environmental risks. Chemosphere, 2019, 217: 591-598.

doi: 10.1016/j.chemosphere.2018.11.061
[30]
COWLES R S, COWLES E A, MCDERMOTT A M, RAMOUTAR D. “inert” formulation ingredients with activity: Toxicity of trisiloxane surfactant solutions to two spotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology, 2000, 93(2): 180-188.

doi: 10.1603/0022-0493-93.2.180
[31]
STARK J D. How closely do acute lethal concentration estimates predict effects of toxicants on populations? Integrated Environmental Assessment and Management, 2005, 1(2): 109-113.

pmid: 16639892
[32]
吴声敢, 吴长兴, 陈丽萍, 苍涛, 俞瑞鲜, 赵学平. 4种有机硅表面活性剂对斑马鱼的急性毒性与安全评价. 浙江农业学报, 2009, 21(4): 395-398.
WU S G, WU C X, CHEN L P, CANG T, YU R X, ZHAO X P. Acute toxicity and safety evaluation of four organosilicon surfactants to zebrafish. Acta Agriculturae Zhejiangensis, 2009, 21(4): 395-398. (in Chinese)
[33]
CIARLO T J, MULLIN C A, FRAZIER J L, SCHMEHL D R. Learning impairment in honey bees caused by agricultural spray adjuvants. PLoS ONE, 2012, 7(7): e40848.
[34]
VELICOGNA J, RITCHIE E, PRINCZ J, LESSARD M E, SCROGGINS R. Ecotoxicity of siloxane D5 in soil. Chemosphere, 2012, 87(1): 77-83.

doi: 10.1016/j.chemosphere.2011.11.064 pmid: 22197313
[35]
CHEN J, MULLIN C A. Quantitative determination of trisiloxane surfactants in beehive environments based on liquid chromatography coupled to mass spectrometry. Environmental Science & Technology, 2013, 47(16): 9317-9323.

doi: 10.1021/es4010619
[36]
李秀环, 苗建强, 李华, 慕卫, 刘峰. 有机硅助剂Breakthru S240对大型溞的毒性研究. 中国环境科学, 2013, 33(7): 1328-1334.
LI X H, MIAO J Q, LI H, MU W, LIU F. Toxicity of organic silicon adjuvant Breakthru S240 to Daphnia magna. China Environmental Science, 2013, 33(7): 1328-1334. (in Chinese)
[37]
MULLIN C A, CHEN J, FINE J D, FRAZIER M T, FRAZIER J L. The formulation makes the honey bee poison. Pesticide Biochemistry and Physiology, 2015, 120: 27-35.

doi: 10.1016/j.pestbp.2014.12.026 pmid: 25987217
[38]
MULLIN C A, FINE J D, REYNOLDS R D, FRAZIER M T. Toxicological risks of agrochemical spray adjuvants: Organosilicone surfactants may not be safe. Frontiers in Public Health, 2016, 4: 92.

doi: 10.3389/fpubh.2016.00092 pmid: 27242985
[39]
李根容, 余文琴, 肖昭竞, 龚迎昆, 陆嘉莉, 王剑松. 高危农药助剂的危害及残留检测研究现状. 农药, 2019, 58(1): 11-15.
LI G R, YU W Q, XIAO Z J, GONG Y K, LU J L, WANG J S. Research status of toxicity and residual detection of high-risk pesticide adjuvants. Agrochemicals, 2019, 58(1): 11-15. (in Chinese)
[40]
WANG X M, LEE S C, SHENG G Y, CHAN L Y, FU J M, LI X D, MIN Y S, CHAN C Y. Cyclic organosilicon compounds in ambient air in Guangzhou, Macau and Nanhai, Pearl River Delta. Applied Geochemistry, 2001, 16(11/12): 1447-1454.

doi: 10.1016/S0883-2927(01)00044-0
[41]
MCLACHLAN M S, KIERKEGAARD A, HANSEN K M, VAN EGMOND R, CHRISTENSEN J H, SKJØTH C A. Concentrations and fate of decamethylcyclopentasiloxane (D5) in the atmosphere. Environmental Science & Technology, 2010, 44(14): 5365-5370.

doi: 10.1021/es100411w
[42]
CHENG Y, SHOEIB M, AHRENS L, HARNER T, MA J M. Wastewater treatment plants and landfills emit volatile methyl siloxanes (VMSs) to the atmosphere: Investigations using a new passive air sampler. Environmental Pollution, 2011, 159(10): 2380-2386.

doi: 10.1016/j.envpol.2011.07.002 pmid: 21784566
[43]
GENUALDI S, HARNER T, CHENG Y, MACLEOD M, HANSEN K M, VAN EGMOND R, SHOEIB M, LEE S C. Global distribution of linear and cyclic volatile methyl siloxanes in air. Environmental Science & Technology, 2011, 45(8): 3349-3354.
[44]
BUSER A M, KIERKEGAARD A, BOGDAL C, MACLEOD M, SCHERINGER M, HUNGERBÜHLER K. Concentrations in ambient air and emissions of cyclic volatile methylsiloxanes in Zurich, Switzerland. Environmental Science & Technology, 2013, 47(13): 7045-7051.
[45]
KROGSETH I S, KIERKEGAARD A, MCLACHLAN M S, BREIVIK K, HANSEN K M, SCHLABACH M. Occurrence and seasonality of cyclic volatile methyl siloxanes in Arctic air. Environmental Science & Technology, 2013, 47(1): 502-509.
[46]
PIERI F, KATSOYIANNIS A, MARTELLINI T, HUGHES D, JONES K C, CINCINELLI A. Occurrence of linear and cyclic volatile methyl siloxanes in indoor air samples (UK and Italy) and their isotopic characterization. Environment International, 2013, 59: 363-371.

doi: 10.1016/j.envint.2013.06.006 pmid: 23892293
[47]
XU S H, WANIA F. Chemical fate, latitudinal distribution and long-range transport of cyclic volatile methylsiloxanes in the global environment: A modeling assessment. Chemosphere, 2013, 93(5): 835-843.

doi: 10.1016/j.chemosphere.2012.10.056 pmid: 23177006
[48]
YUCUIS R A, STANIER C O, HORNBUCKLE K C. Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation. Chemosphere, 2013, 92(8): 905-910.

doi: 10.1016/j.chemosphere.2013.02.051 pmid: 23541357
[49]
GALLEGO E, PERALES J F, ROCA F J, GUARDINO X, GADEA E. Volatile methyl siloxanes (VMS) concentrations in outdoor air of several Catalan urban areas. Atmospheric Environment, 2017, 155: 108-118.

doi: 10.1016/j.atmosenv.2017.02.013
[50]
XU S H, WARNER N, BOHLIN-NIZZETTO P, DURHAM J, MCNETT D. Long-range transport potential and atmospheric persistence of cyclic volatile methylsiloxanes based on global measurements. Chemosphere, 2019, 228: 460-468.

doi: S0045-6535(19)30784-2 pmid: 31051348
[51]
SPARHAM C, VAN EGMOND R, O’CONNOR S, HASTIE C, WHELAN M, KANDA R, FRANKLIN O. Determination of decamethylcyclopentasiloxane in river water and final effluent by headspace gas chromatography/mass spectrometry. Journal of Chromatography A, 2008, 1212(1/2): 124-129.

doi: 10.1016/j.chroma.2008.10.014
[52]
COMPANIONI-DAMAS E Y, SANTOS F J, GALCERAN M T. Analysis of linear and cyclic methylsiloxanes in water by headspace- solid phase microextraction and gas chromatography-mass spectrometry. Talanta, 2012, 89: 63-69.

doi: 10.1016/j.talanta.2011.11.058
[53]
黄垚. 大连市地表水中环状硅氧烷的分析与测定[D]. 大连: 大连理工大学, 2013.
HUANG Y. The analysis of volatile cyclic siloxane in Dalian water[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
[54]
HONG W J, JIA H L, LIU C, ZHANG Z F, SUN Y Q, LI Y F. Distribution, source, fate and bioaccumulation of methyl siloxanes in marine environment. Environmental Pollution, 2014, 191: 175-181.

doi: 10.1016/j.envpol.2014.04.033
[55]
HORII Y, MINOMO K, OHTSUKA N, MOTEGI M, NOJIRI K, KANNAN K. Distribution characteristics of volatile methylsiloxanes in Tokyo Bay watershed in Japan: Analysis of surface waters by purge and trap method. Science of the Total Environment, 2017, 586: 56-65.

doi: 10.1016/j.scitotenv.2017.02.014
[56]
GUO J Y, ZHOU Y, ZHANG B Y, ZHANG J B. Distribution and evaluation of the fate of cyclic volatile methyl siloxanes in the largest lake of southwest China. Science of the Total Environment, 2019, 657: 87-95.

doi: 10.1016/j.scitotenv.2018.11.454
[57]
ZHANG Z F, QI H, REN N Q, LI Y F, GAO D W, KANNAN K. Survey of cyclic and linear siloxanes in sediment from the Songhua River and in sewage sludge from wastewater treatment plants, northeastern China. Archives of Environmental Contamination and Toxicology, 2011, 60(2): 204-211.

doi: 10.1007/s00244-010-9619-x pmid: 21072629
[58]
COMPANIONI-DAMAS E Y, SANTOS F J, GALCERAN M T. Analysis of linear and cyclic methylsiloxanes in sewage sludges and urban soils by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry. Journal of Chromatography A, 2012, 1268: 150-156.

doi: 10.1016/j.chroma.2012.10.043
[59]
BLETSOU A A, ASIMAKOPOULOS A G, STASINAKIS A S, THOMAIDIS N S, KANNAN K. Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece. Environmental Science & Technology, 2013, 47(4): 1824-1832.

doi: 10.1021/es304369b
[60]
LEE S, MOON H B, SONG G J, RA K, LEE W C, KANNAN K. A nationwide survey and emission estimates of cyclic and linear siloxanes through sludge from wastewater treatment plants in Korea. Science of the Total Environment, 2014, 497/498: 106-112.

doi: 10.1016/j.scitotenv.2014.07.083
[61]
LIU N N, SHI Y L, LI W H, XU L, CAI Y Q. Concentrations and distribution of synthetic musks and siloxanes in sewage sludge of wastewater treatment plants in China. Science of the Total Environment, 2014, 476/477: 65-72.

doi: 10.1016/j.scitotenv.2013.12.124
[62]
WANG D G, STEER H, TAIT T, WILLIAMS Z, PACEPAVICIUS G, YOUNG T, NG T, SMYTH S A, KINSMAN L, ALAEE M. Concentrations of cyclic volatile methylsiloxanes in biosolid amended soil, influent, effluent, receiving water, and sediment of wastewater treatment plants in Canada. Chemosphere, 2013, 93(5): 766-773.

doi: 10.1016/j.chemosphere.2012.10.047
[63]
WANG D G, AGGARWAL M, TAIT T, BRIMBLE S, PACEPAVICIUS G, KINSMAN L, THEOCHARIDES M, SMYTH S A, ALAEE M. Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant. Water Research, 2015, 72: 209-217.

doi: 10.1016/j.watres.2014.10.007
[64]
SÁNCHEZ-BRUNETE C, MIGUEL E, ALBERO B, TADEO J L. Determination of cyclic and linear siloxanes in soil samples by ultrasonic-assisted extraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 2010, 1217(45): 7024-7030.

doi: 10.1016/j.chroma.2010.09.031
[65]
SANCHÍS J, CABRERIZO A, GALBÁN-MALAGÓN C, BARCELÓ D, FARRÉ M, DACHS J. Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill. Environmental Science & Technology, 2015, 49(7): 4415-4424.

doi: 10.1021/es503697t
[66]
SHI Y L, XU S H, XU L, CAI Y Q. Distribution, elimination, and rearrangement of cyclic volatile methylsiloxanes in oil-contaminated soil of the Shengli oilfield, China. Environmental Science & Technology, 2015, 49(19): 11527-11535.

doi: 10.1021/acs.est.5b03197
[67]
WARNER N A, EVENSET A, CHRISTENSEN G, GABRIELSEN G W, BORGÅ K, LEKNES H. Volatile siloxanes in the European Arctic: Assessment of sources and spatial distribution. Environmental Science & Technology, 2010, 44(19): 7705-7710.

doi: 10.1021/es101617k
[68]
WARNER N A, NØST T H, ANDRADE H, CHRISTENSEN G. Allometric relationships to liver tissue concentrations of cyclic volatile methyl siloxanes in Atlantic cod. Environmental Pollution, 2014, 190: 109-114.

doi: 10.1016/j.envpol.2014.03.031 pmid: 24747104
[69]
BORGÅ K, FJELD E, KIERKEGAARD A, MCLACHLAN M S. Food web accumulation of cyclic siloxanes in Lake Mjøsa, Norway. Environmental Science & Technology, 2012, 46(11): 6347-6354.

doi: 10.1021/es300875d
[70]
KIERKEGAARD A, BIGNERT A, MCLACHLAN M S. Cyclic volatile methylsiloxanes in fish from the Baltic Sea. Chemosphere, 2013, 93(5): 774-778.

doi: 10.1016/j.chemosphere.2012.10.048 pmid: 23177719
[71]
MCGOLDRICK D J, CHAN C, DROUILLARD K G, KEIR M J, CLARK M G, BACKUS S M. Concentrations and trophic magnification of cyclic siloxanes in aquatic biota from the Western Basin of Lake Erie, Canada. Environmental Pollution, 2014, 186: 141-148.

doi: 10.1016/j.envpol.2013.12.003 pmid: 24374064
[72]
JIA H L, ZHANG Z F, WANG C Q, HONG W J, SUN Y Q, LI Y F. Trophic transfer of methyl siloxanes in the marine food web from coastal area of Northern China. Environmental Science & Technology, 2015, 49(5): 2833-2840.

doi: 10.1021/es505445e
[73]
SANCHÍS J, LLORCA M, PICÓ Y, FARRÉ M, BARCELÓ D. Volatile dimethylsiloxanes in market seafood and freshwater fish from the Xúquer River, Spain. Science of the Total Environment, 2016, 545/546: 236-243.

doi: 10.1016/j.scitotenv.2015.12.032
[74]
ZHI L Q, XU L, HE X D, ZHANG C H, CAI Y Q. Distribution of methylsiloxanes in benthic mollusks from the Chinese Bohai Sea. Journal of Environmental Sciences, 2019, 76: 199-207.

doi: S1001-0742(18)30656-9 pmid: 30528010
[75]
RADERMACHER G, RÜDEL H, WESCH C, BÖHNHARDT A, KOSCHORRECK J. Retrospective analysis of cyclic volatile methylsiloxanes in archived German fish samples covering a period of two decades. Science of the Total Environment, 2020, 706: 136011.

doi: 10.1016/j.scitotenv.2019.136011
[76]
XU L, SHI Y L, CAI Y Q. Occurrence and fate of volatile siloxanes in a municipal Wastewater Treatment Plant of Beijing, China. Water Research, 2013, 47(2): 715-724.

doi: 10.1016/j.watres.2012.10.046 pmid: 23182664
[77]
TRAN T M, HOANG A Q, LE S T, MINH T B, KANNAN K. A review of contamination status, emission sources, and human exposure to volatile methyl siloxanes (VMSs) in indoor environments. Science of the Total Environment, 2019, 691: 584-594.

doi: 10.1016/j.scitotenv.2019.07.168
[78]
WANG R, MOODY R P, KONIECKI D, ZHU J P. Low molecular weight cyclic volatile methylsiloxanes in cosmetic products sold in Canada: Implication for dermal exposure. Environment International, 2009, 35(6): 900-904.

doi: 10.1016/j.envint.2009.03.009 pmid: 19361861
[79]
DUDZINA T, VON GOETZ N, BOGDAL C, BIESTERBOS J W H, HUNGERBÜHLER K. Concentrations of cyclic volatile methylsiloxanes in European cosmetics and personal care products: Prerequisite for human and environmental exposure assessment. Environment International, 2014, 62: 86-94.

doi: 10.1016/j.envint.2013.10.002 pmid: 24184663
[80]
TRAN T M, TU M B, VU N D. Cyclic siloxanes in indoor environments from hair salons in Hanoi, Vietnam: Emission sources, spatial distribution, and implications for human exposure. Chemosphere, 2018, 212: 330-336.

doi: S0045-6535(18)31576-5 pmid: 30145424
[81]
GOUIN T, VAN EGMOND R, SPARHAM C, HASTIE C, CHOWDHURY N. Simulated use and wash-off release of decamethylcyclopentasiloxane used in anti-perspirants. Chemosphere, 2013, 93(5): 726-734.

doi: 10.1016/j.chemosphere.2012.10.042 pmid: 23177715
[82]
MONTEMAYOR B P, PRICE B B, VAN EGMOND R A. Accounting for intended use application in characterizing the contributions of cyclopentasiloxane (D5) to aquatic loadings following personal care product use: Antiperspirants, skin care products and hair care products. Chemosphere, 2013, 93(5): 735-740.

doi: 10.1016/j.chemosphere.2012.10.043 pmid: 23186890
[83]
LI B, LI W L, SUN S J, QI H, MA W L, LIU L Y, ZHANG Z F, ZHU N Z, LI Y F. The occurrence and fate of siloxanes in wastewater treatment plant in Harbin, China. Environmental Science and Pollution Research International, 2016, 23(13): 13200-13209.

doi: 10.1007/s11356-016-6481-z pmid: 27023806
[84]
WANG D G, DU J, PEI W, LIU Y J, GUO M X. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors. Science of the Total Environment, 2015, 512/513: 472-479.

doi: 10.1016/j.scitotenv.2015.01.081
[85]
吴倩. 挥发性硅氧烷在恒水位序批式活性污泥法市政废水处理厂的归趋及生态风险评估[D]. 大连: 大连海事大学, 2015.
WU Q. Fate and ecological risk assessment of volatile methylsiloxanes in a wastewater treatment plant using the process of constant waterlevel sequencing batch reactors[D]. Dalian: Dalian Maritime University, 2015. (in Chinese)
[86]
吴婧娴, 栾晓新, 李清波, 宫福强, 陈轩, 张猛, 包姣灵. 市政污水中环形挥发性甲基硅氧烷浓度水平与去除效率. 环境化学, 2016, 35(9): 1833-1841.
WU J X, LUAN X X, LI Q B, GONG F Q, CHEN X, ZHANG M, BAO J L. Occurrence and removal efficiency of cyclic volatile methylsiloxanes in municipal wastewater. Environmental Chemistry, 2016, 35(9): 1833-1841. (in Chinese)
[87]
兰永超, 李娇敏, 钱程, 宫福强, 耿红, 刘忠一, 吴婧娴, 李清波. 污水处理厂进出水中环状挥发性甲基硅氧烷(cVMS) 浓度季节性变化. 环境化学, 2019, 38(5): 1171-1179.
LAN Y C, LI J M, QIAN C, GONG F Q, GENG H, LIU Z Y, WU J X, LI Q B. Seasonal variation of cVMS concentrations in the influents and effluents of wastewater treatment plants. Environmental Chemistry, 2019, 38(5): 1171-1179. (in Chinese)
[88]
CAPELA D, RATOLA N, ALVES A, HOMEM V. Volatile methylsiloxanes through wastewater treatment plants-A review of levels and implications. Environment International, 2017, 102: 9-29.

doi: 10.1016/j.envint.2017.03.005
[89]
PRICE O R, WILLIAMS R J, ZHANG Z, VAN EGMOND R. Modelling concentrations of decamethylcyclopentasiloxane in two UK rivers using LF2000-WQX. Environmental Pollution, 2010, 158(2): 356-360.

doi: 10.1016/j.envpol.2009.09.013 pmid: 19796857
[90]
申茂才. 洞庭湖环境介质中环状挥发性甲基硅氧烷的分布特征及归趋研究[D]. 长沙: 湖南大学, 2018.
SHEN M C. The occurrence, distribution and fate of cyclic volatile methylsiloxanes in the environment matrices from Dongting Lake[D]. Changsha: Hunan University, 2018. (in Chinese)
[91]
ZHI L Q, XU L, HE X D, ZHANG C H, CAI Y Q. Occurrence and profiles of methylsiloxanes and their hydrolysis product in aqueous matrices from the Daqing oilfield in China. Science of the Total Environment, 2018, 631/632: 879-886.

doi: 10.1016/j.scitotenv.2018.03.098
[92]
DESIDERI P G, LEPRI L, CHECCHINI L. Organic compounds in seawater and pack ice in Terra Nova Bay (Antarctica). Annali di Chimica (Rome), 1991, 81(7/8): 395-416.
[93]
HANSSEN L, WARNER N A, BRAATHEN T, ODLAND J Ø, LUND E, NIEBOER E, SANDANGER T M. Plasma concentrations of cyclic volatile methylsiloxanes (cVMS) in pregnant and postmenopausal Norwegian women and self-reported use of personal care products (PCPs). Environment International, 2013, 51: 82-87.

doi: 10.1016/j.envint.2012.10.008 pmid: 23201819
[94]
WHELAN M J, SANDERS D, VAN EGMOND R. Effect of Aldrich humic acid on water-atmosphere transfer of decamethylcyclopentasiloxane. Chemosphere, 2009, 74(8): 1111-1116.

doi: 10.1016/j.chemosphere.2008.10.037 pmid: 19042003
[95]
ECHC (Environment Canada, Health Canada). Screening Assessment for the challenge decamethylcyclopentasiloxane (D5) CAS-RN 541-02-6, 2008;available at http://www.ec.gc.ca/ese-ees/13CC261E-5FB0-4D33-8000-EA6C6440758A/batch2_541-02-6_en.pdf.
[96]
张松林, 吴丽华. 环甲基硅氧烷的环境分布、行为与效应研究进展. 生态毒理学报, 2016, 11(3): 72-85.
ZHANG S L, WU L H. The research progress of environmental distribution, behavior and effects of cyclic methylsiloxanes. Asian Journal of Ecotoxicology, 2016, 11(3): 72-85. (in Chinese)
[97]
MCGOLDRICK D J, LETCHER R J, BARRESI E, KEIR M J, SMALL J, CLARK M G, SVERKO E, BACKUS S M. Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada. Environmental Pollution, 2014, 193: 254-261.

doi: S0269-7491(14)00256-5 pmid: 25063913
[98]
王超群. 甲基硅氧烷在海洋生物中的生物放大效应研究[D]. 大连: 大连海事大学, 2015.
WANG C Q. Study on biomagnification of methyl siloxanes in marine biota[D]. Dalian: Dalian Maritime University, 2015. (in Chinese)
[99]
刘海秋. 甲基硅氧烷对水生生物富集效应的研究[D]. 大连: 大连海事大学, 2017.
LIU H Q. Bioaccumulation effect of methyl siloxanes in aquatic organisims[D]. Dalian: Dalian Maritime University, 2017. (in Chinese)
[100]
苏帅. 合肥市环境介质和水生生物中甲基硅氧烷污染特征研究[D]. 北京: 华北电力大学(北京), 2019.
SU S. Contaminations of methylsiloxane in the environmental media and aquatic organisms in Hefei[D]. Beijing: North China Electric Power University, 2019. (in Chinese)
[101]
KELESSIDIS A, STASINAKIS A S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Management, 2012, 32(6): 1186-1195.

doi: 10.1016/j.wasman.2012.01.012 pmid: 22336390
[102]
RATOLA N, RAMOS S, HOMEM V, SILVA J A, JIMÉNEZ- GUERRERO P, AMIGO J M, SANTOS L, ALVES A. Using air, soil and vegetation to assess the environmental behaviour of siloxanes. Environmental Science and Pollution Research International, 2016, 23(4): 3273-3284.

doi: 10.1007/s11356-015-5574-4 pmid: 26490903
[103]
封棣, 张喜荣, 戚冬雷. 甲基硅氧烷对人体暴露途径的研究进展. 环境化学, 2018, 37(5): 1022-1036.
FENG D, ZHANG X R, QI D L. Human exposure pathways of methylsiloxanes: A review of recent studies. Environmental Chemistry, 2018, 37(5): 1022-1036. (in Chinese)
[104]
汪雨, 祖文川, 李冰宁, 武彦文, 陈舜琮. 氧化亚氮-乙炔火焰-连续光源原子吸收光谱法测定植物油中的聚二甲基硅氧烷. 食品科学, 2015, 36(2): 198-200.

doi: 10.7506/spkx1002-6630-201502038
WANG Y, ZU W C, LI B N, WU Y W, CHEN S C. Determination of polydimethylsiloxane in vegetable oils using continuum source atomic absorption spectrometer with nitrous oxide-acetylene flame. Food Science, 2015, 36(2): 198-200. (in Chinese)

doi: 10.7506/spkx1002-6630-201502038
[105]
吴惠勤, 林晓珊, 朱志鑫, 马叶芬, 黄晓兰, 黄芳, 邓欣, 罗辉泰. 食品中聚二甲基硅氧烷检测方法研究. 分析测试学报, 2010, 29(12): 1143-1146.
WU H Q, LIN X S, ZHU Z X, MA Y F, HUANG X L, HUANG F, DENG X, LUO H T. Study on method for determination of polydimethylsiloxane in food. Journal of Instrumental Analysis, 2010, 29(12): 1143-1146. (in Chinese)
[106]
BERGMAN Å, HEINDEL J J, JOBLING S, KIDD K, ZOELLER R T. State of the Science of Endocrine Disrupting Chemicals 2012. Geneva: WHO Press, 2013. https://www.unep.org/resources/publication/state-science-endocrine-disputing-chemicals-ipcp-2012.
[107]
尹丹娜, 郑成, 张利萍. 农用有机硅表面活性剂的研究进展. 广州化工, 2009, 37(5): 44-47.
YIN D N, ZHENG C, ZHANG L P. Research progress on agricultural organosilicone surfactant. Guangzhou Chemical Industry, 2009, 37(5): 44-47. (in Chinese)
[108]
CHEN J, MULLIN C A. Characterization of trisiloxane surfactants from agrochemical adjuvants and pollinator-related matrices using liquid chromatography coupled to mass spectrometry. Journal of Agricultural and Food Chemistry, 2015, 63(21): 5120-5125.

doi: 10.1021/jf505634x pmid: 25654266
[109]
陈杰, 何亮. 有机硅表面活性剂在农药中的应用. 吉林化工学院学报, 2012, 29(9): 29-31.
CHEN J, HE L. Application of organosilicon surfactant in pesticide. Journal of Jilin Institute of Chemical Technology, 2012, 29(9): 29-31. (in Chinese)
[110]
GOODWIN R M, MCBRYDIE H M. Effect of surfactants on honey bees survival. New Zealand Plant Protection, 2000, 53: 230-234.

doi: 10.30843/nzpp.2000.53
[111]
WOOD B W, TEDDERS W L, TAYLOR J. Control of pecan aphids with an organosilicone surfactant. HortScience, 1997, 32(6): 1074-1076.

doi: 10.21273/HORTSCI.32.6.1074
[112]
VAN DEN BERG J, VILJOEN D. Effect of the organo-trisiloxane surfactant, Break-Thru S240, on the depth of penetration of insecticides into maize whorls and chemical control of stem borers. South African Journal of Plant and Soil, 2007, 24(3): 172-175.

doi: 10.1080/02571862.2007.10634802
[113]
ROTROFF D M, MARTIN M T, DIX D J, FILER D L, HOUCK K A, KNUDSEN T B, SIPES N S, REIF D M, XIA M H, HUANG R L, JUDSON R S. Predictive endocrine testing in the 21st century using in vitro assays of estrogen receptor signaling responses. Environmental Science & Technology, 2014, 48(15): 8706-8716.

doi: 10.1021/es502676e
[114]
SURYANARAYANAN S. Pesticides and pollinators: A context- sensitive policy approach. Current Opinion in Insect Science, 2015, 10: 149-155.

doi: 10.1016/j.cois.2015.05.009
[115]
GREEN J. Adjuvant outlook for pesticides. Pesticide Outlook, 2000, 11(5): 196-199.

doi: 10.1039/b008021g
[116]
COX C, SURGAN M. Unidentified inert ingredients in pesticides: Implications for human and environmental health. Environmental Health Perspectives, 2006, 114(12): 1803-1806.

pmid: 17185266
[117]
CHEN J, FINE J D, MULLIN C A. Are organosilicon surfactants safe for bees or humans? Science of the Total Environment, 2018, 612: 415-421.
[118]
GODDARD D E, GRUBER J V. Principles of polymer science and technology in cosmetics and personal care. Cosmetic Science and Technology Series, V. 22. Marcel Dekker, Inc.; 1999. https://www.taylorfrancis.com/books/mono/10.1201/9780203907948/principles-polymer-science-technology-cosmetics-personal-care-desmond-goddard-james-gruber.
[119]
王秀兰. 三大有机硅中间体在加拿大受限. 中国化工报, 2008-08- 29(05).
WANG X L. Three major organosilicon intermediates are restricted in Canada. China Chemical Industry News, 2008-08-29(05). (in Chinese)
[120]
EC/HC Environment Canada/Health Canada Screening assessment reports for the batch 2 challenge chemicals. 2009. http://www.chemicalsubstanceschimiques.gc.ca/challenge-defi/batch-lot_2_e.html.
[121]
国家市场监督管理总局和国家标准化管理委员会. 纺织染整助剂产品中八甲基环四硅氧烷 (D4)、十甲基环五硅氧烷 (D5) 和十二甲基环六硅氧烷 (D6) 的测定: GB/T 40323—2021. 北京: 中国标准出版社, 2021.
State Administration for Market Regulation and Standardization Administration of the People’s Republic of China. Determination of Octamethylcyclotetrasiloxane (D4),Decamethylcyclopentasiloxane (D5) and Dodecamethylcyclohexasiloxane (D6) in Textile Dyeing and Finishing Auxiliaries: GB/T 40323—2021. Beijing: China Standard Press, 2021. (in Chinese)
[122]
国家市场监督管理总局和国家标准化管理委员会. 化妆品中八甲基环四硅氧烷(D4)和十甲基环五硅氧烷(D5)的测定气相色谱法: GB/T 40955—2021. 北京: 中国标准出版社, 2021.
State Administration for Market Regulation and Standardization Administration of the People’s Republic of China. Determination of Octamethylcyclotetrasiloxane(D4) and Decamethylcyclopentasiloxane (D5) in Cosmetics—Gas Chromatography: GB/T 40955—2021. Beijing: China Standard Press, 2021. (in Chinese)
[123]
ECHA European Chemicals Agency. Annex XV Restriction Report Proposal for a Restriction:Octamethylcyclotetrasiloxane D4 and Decamethylcyclopentasiloxane D5. 2015.
[124]
韩宁, 赵海浪, 吴东晓, 张文良. 浅谈纺织品中几种受关注物质. 中国纤检, 2020(1): 71-73.
HAN N, ZHAO H L, WU D X, ZHANG W L. Overview of several substances of interest in textiles. China Fiber Inspection, 2020(1): 71-73. (in Chinese)
[125]
于岩, 章若红, 钟毅, 杜英英, 毛志平, 徐红. 用气相色谱-质谱法测定纺织柔软剂中的环硅氧烷. 纺织学报, 2020, 41(8): 69-73, 80.
YU Y, ZHANG R H, ZHONG Y, DU Y Y, MAO Z P, XU H. Determination of cyclicsilicates in textile softeners by gas chromatography-mass spectrometry. Journal of Textile Research, 2020, 41(8): 69-73, 80. (in Chinese)
[126]
章杰. 2019年禁限用纺织化学品的最新市场动态(待续). 印染助剂, 2019, 36(8): 1-5, 51.
ZHANG J. Latest market trends of textile chemicals prohibited and restricted in 2019 (to be continued). Textile Auxiliaries, 2019, 36(8): 1-5, 51. (in Chinese)
[127]
OEKO-TEX. OEKO-TEX® new regulations 2019. 01-02-2019. https://www.oeko-tex.com/en/news/press-releases/press-detail/oeko-tex-new-regulations-2019.
[128]
Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. OJ L 295, 12.11.2011.
[129]
Codex Alimentarius Commission CAC. Codex General Standard for Food Additives (GSFA). Codex Stan 192-1995, Adopted in 1995. Revision 1997, 1999, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, pp188-189. (http://www.codexalimentarius.net/download/standards/4/ CXS_192e.pdf).
[130]
FAIN J H, GAD S. Silicones. Encyclopedia of Toxicology. Amsterdam: Elsevier, 2014: 270-272.
[131]
EFSA PANEL ON FOOD ADDITIVES AND FLAVOURINGS FAF, YOUNES M, AQUILINA G, CASTLE L, ENGEL K H, FOWLER P, FRUTOS FERNANDEZ M J, FÜRST P, GÜRTLER R, GUNDERT-REMY U, HUSØY T, MANCO M, MENNES W, PASSAMONTI S, SHAH R, WAALKENS-BERENDSEN D H, WÖLFLE D, WRIGHT M, BOON P, TOBBACK P, GIAROLA A, RINCON A M, TARD A, MOLDEUS P. Re-evaluation of dimethyl polysiloxane (E 900) as a food additive. EFSA Journal, 2020, 18(5): e06107.
[132]
中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准-食品添加剂使用卫生标准: GB 2760—2014. 北京: 中国标准出版社, 2014.
National Health and Family Planning Commission of the People’s Republic of China. National Food Safety Standard Hygienic Standards for Uses of Food Additives: GB 2760—2014. Beijing: China Standard Press, 2014. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!