Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (6): 1049-1065.doi: 10.3864/j.issn.0578-1752.2024.06.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland

DANG JianYou1(), JIANG WenChao1,2, SUN Rui1,2, SHANG BaoHua1, PEI XueXia1()   

  1. 1 Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, Shanxi
    2 College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2023-10-07 Accepted:2023-11-18 Online:2024-03-16 Published:2024-03-25
  • Contact: PEI XueXia

Abstract:

【Objective】 Aiming to solve the problems of low precipitation and uneven distribution of precipitation during the growth period, significant inter-annual variability, large proportion of precipitation during fallow period, and low water use efficiency (WUE) of precipitation, the objective of this study is to investigate the impact of deep ploughing time during fallow period in different precipitation years on soil water storage and wheat yield, and to provide a theoretical basis for revealing the yield depending precipitation years in southern Shanxi.【Method】 The field experiment was laid out following a randomized complete block design from 2010 to 2021, with three deep ploughing times set on August 10th (P1), August 20th (P2), and August 30th (P3) to investigate the effects of ploughing time, precipitation, and its distribution on wheat yield, soil water storage characteristics during fallow periods, water consumption during growth periods, and their correlations.【Result】 (1) The precipitation year type exhibited a strong correlation with the average yield of dryland wheat, which ranged from 2 400.0-6 298.0 kg·hm-2, with the coefficient 29.8%. The average yields for wet years (2012, 2014 and 2015), normal years (2011 and 2013), and dry years (2010, 2016, 2019, 2020 and 2021) were 5 524.6, 3 048.2, and 4 088.7 kg·hm-2, respectively. The impact of precipitation year type on yield followed a descending order: annual precipitation, precipitation in the fallow period, and precipitation in the growth period. Both precipitation in the fallow period and the growth period primarily affected yield through their effect on spike number and kernels per spike. Additionally, an increase in both annual precipitation and March to April’s precipitation led to a significant increase in yield. The effect of deep ploughing time on wheat yield in dryland was closely related to the precipitation distribution in fallow period, which showed that P1 yield was higher with more precipitation in July-August, and P2 or P3 yield was higher with more precipitation in September. (2) Precipitation, its distribution, and ploughing time had an impact on soil storage and consumption characteristics before sowing and after harvest. Precipitation during the fallow period mainly affected the soil water storage capacity in the lower layer (100-200 cm) before sowing and after harvest. The water storage capacity of the upper layer (0-100 cm) and the lower layer was similar or slightly low before sowing under the water-rich type in the fallow period. The water storage capacity of the lower layer was 6.17% and 24.66% lower than that of the upper soil under normal water and low water in the fallow period, respectively. More precipitation in July led to greater water storage in the lower soil, while more precipitation in August and September resulted in greater water storage in the upper soil. During growth periods, precipitation primarily impacted water storage capacity of the upper soil at harvest time, especially precipitation occurring in May. The average soil water storage capacity in the upper layer was the highest in P2 before sowing and at harvest time, and the water storage capacity of subsoil and the average water storage capacity of 0-200 cm soil was the highest in P2 or P3 at harvest time. (3) The effects of ploughing time and precipitation on water consumption and WUE were relatively small. The water consumption of dryland wheat during the growing period was affected by the annual precipitation, especially the precipitation in March.【Conclusion】 Precipitation and its distribution during the fallow period affect the soil water storage capacity of 0-200 cm before sowing of dryland wheat, and affect the yield of dryland wheat through spike number, kernels per spike together with the precipitation in March and April. There is a significant positive correlation between WUE and yield. In dryland wheat fields in south Shanxi Province, when there is more precipitation in July-August, deep ploughing is done on August 10th, and when there is less precipitation, deep ploughing is properly delayed from 10 to 20 d, which can effectively maintain soil water content during fallow period and achieve high yield.

Key words: dryland wheat, ploughing time, precipitation and its distribution, yield, water use efficiency (WUE)

Fig. 1

Monthly precipitation during test years"

Fig. 2

Monthly precipitation distribution during test years"

Table 1

Precipitation and precipitation type of annual, fallow period and growth period during test years"

年度
Year
全年<BOLD>A</BOLD>nnual 休闲期Fallow period 生育期Growth period 休闲期降水量占比Proportion of precipitation in fallow period (%)
降水量
Precipitation
(mm)
降水年型
Precipitation year type
降水量
Precipitation
(mm)
降水型
Precipitation type
降水量
Precipitation
(mm)
降水型
Precipitation type
2010 374.3 枯水年Dry year 230.6 枯水型Dry type 143.7 平水型Normal type 61.61
2011 451.9 平水年Normal year 349.9 平水型Normal type 102.0 枯水型Dry type 77.43
2012 525.0 丰水年Wet year 327.2 平水型Normal type 197.8 丰水型Wet type 62.32
2013 481.5 平水年Normal year 352.5 平水型Normal type 129.0 枯水型Dry type 73.21
2014 597.1 丰水年Wet year 398.0 丰水型Wet type 199.1 丰水型Wet type 66.66
2015 537.5 丰水年Wet year 417.9 丰水型Wet type 119.6 枯水型Dry type 77.75
2016 352.7 枯水年Dry year 141.9 枯水型Dry type 210.8 丰水型Wet type 40.23
2019 401.2 枯水年Dry year 316.7 平水型Normal type 84.5 枯水型Dry type 78.94
2020 433.5 枯水年Dry year 298.6 枯水型Dry type 134.9 平水型Normal type 68.88
2021 431.0 枯水年Dry year 336.5 平水型Normal type 94.5 枯水型Dry type 78.07

Table 2

Test implementation plan"

年度
Year
翻耕时间Ploughing time (y-m-d) 播期
Sowing date (y-m-d)
收获期
Harvest date (y-m-d)
小麦品种
Wheat variety
P1 P2 P3
2010 2009-08-08 2009-08-20 2009-09-01 2009-09-28 2010-06-08 晋麦79号Jinmai79
2011 2010-08-10 2010-08-20 2010-08-30 2010-09-27 2011-06-07 晋麦79号Jinmai79
2012 2011-08-09 2011-08-20 2011-08-30 2011-09-27 2012-06-06 晋麦79号Jinmai79
2013 2012-08-09 2012-08-21 2012-09-01 2012-09-28 2013-05-28 晋麦92号Jinmai92
2014 2013-08-10 2013-08-20 2013-08-30 2013-09-28 2014-06-05 晋麦92号Jinmai92
2015 2014-08-10 2014-08-20 2014-08-30 2014-09-28 2015-06-05 晋麦92号Jinmai92
2016 2015-08-10 2015-08-20 2015-08-30 2015-10-02 2016-05-30 晋麦92号Jinmai92
2019 2018-08-09 2018-08-21 2018-08-31 2018-09-28 2019-06-02 晋麦92号Jinmai92
2020 2019-08-10 2019-08-20 2019-08-30 2019-09-27 2020-06-02 晋麦92号Jinmai92
2021 2020-08-09 2020-08-21 2020-08-30 2020-10-05 2021-06-04 晋麦92号Jinmai92

Fig. 3

Yield of different ploughing time treatments during test years Lowercase letters indicate significant differences between deep ploughing times, while uppercase letters indicate significant differences between annual average value of deep ploughing time treatments (P<0.05). The same as below"

Table 3

Correlation analysis between yield and precipitation"

产量
Yield
1月
Jan.
2月
Feb.
3月
Mar.
4月
Apr.
5月
May
6月
Jun.
7月
Jul.
8月
Aug.
9月
Sep.
10月
Oct.
11月
Nov.
12月
Dec.
休闲期
Fallow period
生育期
Growth period
年度Annual
P1 0.182 0.355 0.521 0.572 -0.211 0.177 0.489 -0.216 0.273 -0.124 -0.144 -0.375 0.502 0.106 0.586
P2 0.141 0.269 0.481 0.636* -0.192 0.105 0.503 -0.259 0.308 -0.059 -0.118 -0.359 0.483 0.158 0.597
P3 -0.064 0.393 0.678* 0.374 -0.292 0.106 0.432 -0.051 0.101 0.037 0.015 -0.373 0.462 0.095 0.538
年均值Average 0.082 0.351 0.580 0.534 -0.240 0.132 0.485 -0.174 0.227 -0.047 -0.081 -0.379 0.494 0.121 0.587

Fig. 4

Spike number of different ploughing times during test years"

Fig. 5

Kernels per spike of different ploughing times during test years"

Fig. 6

1000-grain weight of different ploughing times during test years"

Table 4

Correlation analysis between precipitation and spike number, kernels per spike and 1000-grain weight"

处理
Treatment
1月Jan. 2月Feb. 3月Mar. 4月Apr. 5月May 6月Jun. 7月
Jul.
8月Aug. 9月Sep. 10月Oct. 11月Nov. 12月Dec. 休闲期
Fallow period
生育期
Growth period
年度
Annual
成穗数Spike number
P1 0.612 0.444 0.340 0.084 -0.071 0.492 0.052 0.125 0.400 -0.388 -0.395 -0.423 0.552 -0.181 0.468
P2 0.583 0.356 0.407 0.056 -0.029 0.492 -0.065 0.026 0.307 -0.173 -0.172 -0.487 0.303 0.004 0.318
P3 0.448 0.360 0.474 -0.038 -0.224 0.515 -0.060 0.012 0.164 -0.183 -0.012 -0.353 0.217 -0.075 0.182
年均值
Average
0.558 0.397 0.425 0.030 -0.120 0.516 -0.028 0.053 0.290 -0.251 -0.186 -0.429 0.358 -0.086 0.322
穗粒数Kernels per spike P1 -0.324 0.332 0.565 0.454 -0.290 -0.297 0.629 0.137 0.143 -0.084 -0.174 -0.224 0.712* -0.045 0.716*
P2 -0.245 0.431 0.520 0.747* -0.055 -0.186 0.688* -0.192 0.044 0.109 -0.143 -0.477 0.458 0.294 0.656*
P3 -0.408 0.387 0.487 0.487 -0.150 -0.271 0.560 0.088 0.020 0.188 -0.142 -0.428 0.535 0.132 0.638*
年均值
Average
-0.344 0.399 0.540 0.587 -0.169 -0.261 0.647* 0.008 0.067 0.086 -0.156 -0.398 0.582 0.138 0.691*
千粒重1000-grain weight P1 0.092 0.017 0.137 0.289 0.062 0.195 0.575 -0.451 -0.093 -0.337 -0.009 0.518 0.147 0.059 0.189
P2 0.018 0.049 0.211 0.252 -0.030 0.054 0.630 -0.295 -0.070 -0.443 -0.069 0.543 0.300 -0.064 0.275
P3 -0.035 0.283 0.501 0.199 -0.043 0.064 0.649* -0.083 -0.091 -0.333 -0.116 0.241 0.486 -0.041 0.483
年均值
Average
0.031 0.106 0.274 0.262 -0.004 0.114 0.635* -0.306 -0.086 -0.385 -0.059 0.464 0.304 -0.013 0.309

Table 5

Effect of ploughing time on soil water storage, water consumption and WUE"

年度Annual 处理
Treatment
播前蓄水量
Water storage before sowing (mm)
收获期蓄水量
Water storage after harvest (mm)
耗水量
<BOLD>W</BOLD>ater consumption (mm)
WUE
(kg·hm-2·mm-1)
上层
Upper layer
下层
Lower layer
0-200 cm 上层
Upper layer
下层
Lower layer
0-200 cm
2010 P1 185.93 127.42 313.36a 77.67 102.08 179.75a 277.31a 9.180a
P2 189.88 133.70 323.57a 78.11 102.40 180.51a 286.77a 8.413a
P3 179.46 133.76 313.22a 74.21 100.29 174.50a 282.41a 8.372a
2011 P1 197.00 166.88 363.88b 97.70 116.91 214.60a 251.28b 15.382a
P2 216.87 194.08 410.96a 96.04 116.24 212.28a 300.68a 12.700b
P3 198.98 180.72 379.70b 95.85 126.80 222.65a 259.05b 13.144ab
2012 P1 235.08 180.25 415.33b 103.04 116.71 219.75b 393.39a 13.498a
P2 233.52 208.77 442.29ab 108.60 127.61 236.21a 403.88a 12.535a
P3 239.46 221.62 461.08a 110.37 127.52 237.89a 420.99a 13.368a
2013 P1 200.50 205.06 405.56a 137.63 123.30 260.93b 273.64a 8.897a
P2 223.92 189.70 413.62a 159.22 133.04 292.26a 250.36a 9.694a
P3 217.89 202.25 420.15a 152.54 143.50 296.05a 253.10a 9.239a
2014 P1 208.84 232.12 440.96a 97.63 145.51 243.14a 396.92a 16.243a
P2 205.74 226.89 432.63a 104.80 140.53 245.33a 386.40a 16.192a
P3 208.06 241.71 449.77a 101.91 149.25 251.15a 397.72a 15.565a
2015 P1 244.20 209.70 453.91a 99.23 148.95 248.18c 325.32a 15.398b
P2 232.27 233.14 465.41a 110.19 162.79 272.97b 312.03a 16.211b
P3 234.14 230.44 464.58a 124.02 173.78 297.80a 286.38b 16.616a
2016 P1 140.73 118.75 259.48a 111.66 135.20 246.86ab 223.42a 15.630a
P2 142.59 121.19 263.79a 111.43 131.31 242.74b 231.85a 15.903a
P3 140.01 116.42 256.43a 118.88 142.49 261.37a 205.86a 16.686a
2019 P1 220.63 211.29 431.92a 88.21 118.33 206.53a 309.89a 17.531c
P2 219.19 167.10 386.29b 88.31 118.56 206.88a 263.92b 20.040b
P3 184.58 152.86 337.44c 77.55 110.23 187.78b 234.15b 21.300a
2020 P1 172.76 121.16 293.92a 78.75 105.90 184.65a 244.18a 19.234a
P2 170.49 121.71 292.20a 79.49 107.40 186.89a 240.21a 18.025a
P3 160.64 122.76 283.40a 74.25 106.42 180.67a 237.63a 15.452b
2021 P1 196.37 225.11 421.48a 78.43 98.12 176.55a 339.43a 14.037b
P2 193.33 229.28 422.61a 89.84 95.84 185.68a 331.43a 12.843b
P3 194.10 240.91 435.01a 87.24 99.36 186.59a 342.92a 17.395a
年度均值Annual average 2010 185.09 131.63 316.71d 76.66 101.59 178.25f 282.16cd 8.655e
2011 204.28 180.56 384.85c 96.53 119.98 216.51cd 270.34cde 13.742d
2012 236.02 203.55 439.57ab 107.34 123.95 231.28bc 406.09a 13.134d
2013 214.10 199.00 413.11bc 149.80 133.28 283.08a 259.03de 9.277e
2014 207.55 233.57 441.12ab 101.45 145.10 246.54b 393.68a 16.000bc
2015 236.87 224.43 461.30 a 111.15 161.84 272.98a 307.91c 16.075bc
2016 141.11 118.79 259.90e 113.99 136.33 250.33b 220.37f 16.073bc
2019 208.13 177.08 385.22c 84.69 115.71 200.39de 269.33cde 19.624a
2020 167.96 121.88 289.84de 77.50 106.57 184.07ef 240.67ef 17.570b
2021 194.60 231.77 426.37b 85.17 97.77 182.94ef 337.93b 14.758cd
耕作均值Ploughing average P1 200.20 179.77 379.98a 97.00 121.10 218.09c 303.48a 14.503a
P2 202.78 182.56 385.34a 102.60 123.57 226.17b 300.75a 14.256a
P3 195.73 184.35 380.08a 101.68 127.96 229.65a 292.02b 14.714a
F值
F value
年度Annual (A) 113.25** 104.36** 87.49** 83.35**
耕作时间Ploughing time (P) 1.29ns 25.26** 7.19** 2.39ns
年度×耕作时间
A×P
5.40** 10.11** 4.81** 4.36**

Table 6

Correlation analysis between precipitation during fallow period and soil water storage before sowing"

0—100 cm土壤Soil 100—200 cm土壤Soil 0—200 cm土壤Soil
6月
Jun.
7月
Jul.
8月Aug. 9月
Sep.
休闲期
Fallow period
6月
Jun.
7月
Jul.
8月
Aug.
9月
Sep.
休闲期
Fallow period
6月
Jun.
7月
Jul.
8月
Aug.
9月
Sep.
休闲期
Fallow period
P1 -0.310 0.319 0.290 0.543 0.803** -0.114 0.634* 0.297 -0.025 0.784** -0.210 0.548 0.319 0.223 0.857**
P2 -0.476 0.344 0.444 0.388 0.797** -0.319 0.454 0.529 0.097 0.831** -0.410 0.441 0.533 0.229 0.879**
P3 -0.487 0.317 0.446 0.424 0.798** -0.274 0.475 0.469 0.072 0.798** -0.372 0.433 0.481 0.217 0.833**
年均值Average -0.437 0.335 0.405 0.465 0.822** -0.237 0.540 0.451 0.042 0.832** -0.341 0.484 0.457 0.228 0.877**

Table 7

Correlation analysis between precipitation and soil water storage after harvest"

土层
Soil layer
(cm)
处理
Treatment
1月Jan. 2月Feb. 3月Mar. 4月Apr. 5月May 6月Jun. 7月
Jul.
8月Aug. 9月Sep. 10月
Oct.
11月Nov. 12月Dec. 休闲期
Fallow period
生育期
Growth period
年度
Annual
0-100 P1 -0.295 -0.531 -0.048 -0.092 0.571 -0.435 0.145 0.040 0.048 0.235 0.111 0.558 0.066 0.298 0.247
P2 -0.266 -0.416 -0.003 -0.166 0.582 -0.342 0.173 0.136 0.063 0.126 0.014 0.578 0.210 0.204 0.341
P3 -0.268 -0.460 0.046 -0.114 0.539 -0.390 0.060 0.163 0.180 0.282 0.076 0.380 0.195 0.284 0.372
均值
Average
-0.279 -0.471 0.003 -0.128 0.571 -0.392 0.124 0.122 0.104 0.218 0.065 0.505 0.167 0.264 0.332
100-200 P1 -0.148 -0.220 0.041 0.601 0.303 -0.291 0.399 -0.257 0.337 0.286 -0.079 -0.062 0.293 0.410 0.550
P2 -0.053 -0.380 0.073 0.481 0.273 -0.328 0.257 -0.136 0.558 0.192 -0.055 0.041 0.397 0.329 0.610
P3 -0.127 -0.299 0.065 0.363 0.392 -0.366 0.225 -0.010 0.423 0.270 -0.103 -0.026 0.371 0.346 0.593
均值
Average
-0.111 -0.307 0.062 0.476 0.334 -0.338 0.289 -0.122 0.449 0.253 -0.082 -0.015 0.363 0.364 0.596
0-200 P1 -0.258 -0.438 -0.006 0.284 0.509 -0.422 0.310 -0.121 0.218 0.300 0.021 0.296 0.204 0.407 0.455
P2 -0.191 -0.452 0.036 0.148 0.498 -0.380 0.239 0.013 0.328 0.177 -0.020 0.376 0.335 0.296 0.526
P3 -0.212 -0.406 0.059 0.128 0.497 -0.403 0.150 0.083 0.318 0.294 -0.012 0.192 0.299 0.334 0.511
均值
Average
-0.220 -0.435 0.035 0.178 0.507 -0.405 0.225 0.005 0.298 0.260 -0.006 0.284 0.289 0.346 0.507

Table 8

Correlation analysis between precipitation and water consumption during growth period, WUE"

处理
Treatment
1月Jan. 2月Feb. 3月Mar. 4月Apr. 5月May 6月Jun. 7月Jul. 8月Aug. 9月Sep. 10月Oct. 11月Nov. 12月Dec. 休闲期Fallow period 生育期Growth period 年度Annual
生育期耗水量
Water consumption during growth period
P1 -0.250 0.215 0.809** 0.445 -0.138 -0.214 0.602 -0.021 0.170 -0.005 0.073 -0.126 0.595 0.205 0.743*
P2 -0.346 0.253 0.929** 0.374 -0.089 -0.425 0.499 0.153 0.082 0.167 0.119 -0.374 0.522 0.301 0.724*
P3 -0.287 0.268 0.944** 0.330 0.021 -0.301 0.486 0.091 0.052 0.148 0.146 -0.306 0.475 0.353 0.706*
年均值
Average
-0.300 0.252 0.917** 0.389 -0.064 -0.319 0.538 0.076 0.101 0.108 0.117 -0.276 0.539 0.297 0.739*
WUE P1 0.546 0.262 -0.034 0.325 -0.166 0.480 0.018 -0.268 0.249 -0.151 -0.234 -0.432 0.091 -0.041 0.070
P2 0.494 0.078 -0.170 0.426 -0.223 0.501 0.111 -0.446 0.329 -0.193 -0.172 -0.147 0.091 -0.064 0.057
P3 0.215 0.169 -0.039 0.221 -0.483 0.429 0.068 -0.235 0.133 -0.075 -0.043 -0.172 0.086 -0.202 -0.030
年均值
Average
0.430 0.174 -0.085 0.337 -0.312 0.491 0.070 -0.331 0.245 -0.145 -0.152 -0.254 0.093 -0.111 0.031

Table 9

Correlation analysis between yield and soil water storage, water consumption during growth period and WUE"

处理
Treatment
播前蓄水量
Soil water storage before sowing
收获期蓄水量
Soil water storage after harvest
生育期耗水量
<BOLD>W</BOLD>ater consumption during growth period
WUE
0-100 cm 100-200 cm 0-200 cm 0-100 cm 100-200 cm 0-200 cm
P1 0.483 0.522 0.548 -0.371 0.332 -0.009 0.705* 0.699*
P2 0.254 0.483 0.422 -0.238 0.377 0.050 0.577 0.720*
P3 0.359 0.649* 0.561 -0.176 0.083 -0.053 0.674* 0.639*
年均值Average 0.370 0.577 0.524 -0.271 0.250 -0.015 0.675* 0.691*

Table 10

Average soil water content (%) of 0-200 cm soil before sowing"

土层
Soil layer (cm)
年度Annual
2010 2011 2012 2013 2014 2015 2016 2019 2020 2021
20 14.02 12.56 13.77 13.14 15.31 15.88 10.66 18.35 14.19 9.87
40 13.86 15.42 18.02 17.12 15.74 16.66 13.01 17.68 14.47 12.24
60 15.67 16.98 19.06 17.41 15.98 18.02 12.78 16.17 14.59 14.95
80 15.27 17.27 19.94 17.62 16.54 20.08 10.84 14.68 12.63 16.70
100 13.49 17.57 21.40 18.34 17.51 21.90 7.83 14.42 9.72 17.71
120 12.63 17.23 21.59 18.81 19.02 20.82 7.17 15.25 9.88 19.11
140 10.71 16.94 20.60 16.84 19.87 20.20 7.92 14.95 9.77 19.61
160 9.74 14.24 15.55 16.36 17.95 18.70 9.25 13.71 9.50 18.36
180 9.79 11.39 10.97 13.42 17.88 16.11 10.31 12.83 9.34 17.51
200 8.54 10.73 10.80 12.31 16.52 11.84 11.75 12.43 9.12 15.95

Table 11

Average soil water content (%) of 0-200 cm soil after harvest"

土层
Soil layer (cm)
年度Annual
2010 2011 2012 2013 2014 2015 2016 2019 2020 2021
20 5.99 4.38 8.08 19.07 4.22 12.07 9.44 3.30 4.59 5.08
40 5.01 6.15 7.65 14.57 6.92 6.09 7.34 5.17 5.13 5.12
60 5.42 8.68 8.35 8.38 9.16 7.39 8.79 7.55 6.16 5.40
80 6.45 9.08 8.94 8.13 9.31 8.66 9.22 8.39 7.00 7.53
100 7.08 9.42 8.90 8.36 10.01 9.20 9.74 8.68 7.40 8.19
120 7.42 9.35 9.43 11.46 11.23 9.78 9.86 8.86 8.32 7.01
140 7.58 9.21 9.52 11.34 11.52 11.92 10.38 9.26 8.49 6.93
160 7.79 10.27 9.71 11.02 11.72 13.88 10.99 9.12 8.19 7.69
180 8.36 9.39 9.94 9.66 11.51 14.87 10.86 8.92 8.21 8.11
200 8.54 8.65 9.81 8.57 10.70 12.78 11.17 9.04 8.43 8.45

Fig. 7

Soil water content of 0-200 cm before sowing and maturity period under different ploughing times during test years"

[1]
徐兆飞. 山西小麦. 北京: 中国农业出版社, 2006.
XU Z F. Shanxi Wheat. Beijing: China Agriculture Press, 2006. (in Chinese)
[2]
裴雪霞, 党建友, 张定一, 武雪萍, 赵娟. 近54年来晋南气候变化及其对旱地小麦产量的影响. 麦类作物学报, 2016, 36(11): 1502-1509.
PEI X X, DANG J Y, ZHANG D Y, WU X P, ZHAO J. Climate change during nearly 54 years in South of Shanxi and its effect on wheat yield in dryland. Journal of Triticeae Crops, 2016, 36(11): 1502-1509. (in Chinese)
[3]
BAUMHARDT R, JONES O. Residue management and tillage effects on soil-water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas. Soil and Tillage Research, 2002, 68(2): 71-82.

doi: 10.1016/S0167-1987(02)00097-1
[4]
XUE L Z, KHAN S, SUN M, ANWAR S, REN A X, GAO Z Q, LIN W, XUE J F, YANG Z P, DENG Y. Effects of tillage practices on water consumption and grain yield of dryland winter wheat under different precipitation distribution in the Loess Plateau of China. Soil and Tillage Research, 2019, 191: 66-74.

doi: 10.1016/j.still.2019.03.014
[5]
李念念, 孙敏, 高志强, 张娟, 张慧芋, 梁艳妃, 杨清山, 杨珍平, 邓妍. 极端年型旱地麦田深松和覆盖播种水分消耗与植株氮素吸收、利用关系的研究. 中国农业科学, 2018, 51(18): 3455-3469. doi: 10.3864/j.issn.0578-1752.2018.18.003.
LI N N, SUN M, GAO Z Q, ZHANG J, ZHANG H Y, LIANG Y F, YANG Q S, YANG Z P, DENG Y. A study on the relationship between water consumption and nitrogen absorption, utilization under sub-soiling during the fallow period plus mulched-sowing in humid and dry years of dryland wheat. Scientia Agricultura Sinica, 2018, 51(18): 3455-3469. doi: 10.3864/j.issn.0578-1752.2018.18.003. (in Chinese)
[6]
陈梦楠, 高志强, 孙敏, 任爱霞, 邓妍. 休闲期耕作配施磷肥对旱地小麦氮素吸收与转运的影响. 麦类作物学报, 2015, 35(11): 1569-1575.
CHEN M N, GAO Z Q, SUN M, REN A X, DENG Y. Effect of phosphorus application under tillage in fallow period on nitrogen absorption and translocation in dryland wheat. Journal of Triticeae Crops, 2015, 35(11): 1569-1575. (in Chinese)
[7]
孟晓瑜, 王朝辉, 李富翠, 李可懿, 薛澄, 李生秀. 底墒和施氮量对渭北旱塬冬小麦产量与水分利用的影响. 应用生态学报, 2012, 23(2): 369-375.
MENG X Y, WANG Z H, LI F C, LI K Y, XUE C, LI S X. Effects of soil moisture before sowing and nitrogen fertilization on winter wheat yield and water use on Weibei Plain of Loess Plateau. Chinese Journal of Applied Ecology, 2012, 23(2): 369-375. (in Chinese)
[8]
王培如, 钟融, 孙敏, 孔玮琳, 张敬敬, HAFEEZ N, 任爱霞, 林文, 高志强. 不同降水年型施氮量对冬小麦水氮资源利用效率的调控. 植物营养与肥料学报, 2022, 28(8): 1430-1443.
WANG P R, ZHONG R, SUN M, KONG W L, ZHANG J J, HAFEEZ N, REN A X, LIN W, GAO Z Q. Nitrogen application rates at rainfall gradients regulate water and nitrogen use efficiency in dryland winter wheat. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1430-1443. (in Chinese)
[9]
金善宝. 中国小麦学. 北京: 中国农业出版社, 1996.
JIN S B. Chinese Wheat Science. Beijing: China Agriculture Press, 1996. (in Chinese)
[10]
党建友, 裴雪霞, 张定一, 王姣爱, 张晶, 武雪萍. 休闲期深翻时间对旱地麦田土壤水分特性和小麦产量的影响. 应用生态学报, 2016, 27(9): 2975-2982.

doi: 10.13287/j.1001-9332.201609.001
DANG J Y, PEI X X, ZHANG D Y, WANG J A, ZHANG J, WU X P. Effects of deep plowing time during the fallow period on water storage-consumption characteristics and wheat yield in dryland soil. Chinese Journal of Applied Ecology, 2016, 27(9): 2975-2982. (in Chinese)
[11]
裴雪霞, 党建友, 张定一, 张晶, 王姣爱, 程麦风, 武雪萍. 不同降水年型下旱地深翻时间和施肥方式对小麦产量及水肥利用率的影响. 麦类作物学报, 2018, 38(3): 330-339.
PEI X X, DANG J Y, ZHANG D Y, ZHANG J, WANG J A, CHENG M F, WU X P. Effects of deep plowing time during fallow period and fertilization method on yield, water and nutrition use efficiency of dryland wheat in different precipitation years in South Shanxi. Journal of Triticeae Crops, 2018, 38(3): 330-339. (in Chinese)
[12]
孙敏, 温斐斐, 高志强, 任爱霞, 邓妍, 赵维峰, 赵红梅, 杨珍平, 郝兴宇, 苗果园. 不同降水年型旱地小麦休闲期耕作的蓄水增产效应. 作物学报, 2014, 40(8): 1459-1469.
SUN M, WEN F F, GAO Z Q, REN A X, DENG Y, ZHAO W F, ZHAO H M, YANG Z P, HAO X Y, MIAO G Y. Effects of farming practice during fallow period on soil water storage and yield of dryland wheat in different rainfall years. Acta Agronomica Sinica, 2014, 40(8): 1459-1469. (in Chinese)

doi: 10.3724/SP.J.1006.2014.01459
[13]
张向前, 杨文飞, 徐云姬. 中国主要耕作方式对旱地土壤结构及养分和微生态环境影响的研究综述. 生态环境学报, 2019, 28(12): 2464-2472.

doi: 10.16258/j.cnki.1674-5906.2019.12.020
ZHANG X Q, YANG W F, XU Y J. Effects of main tillage methods on soil structure, nutrients and micro-ecological environment of upland in China: A review. Ecology and Environmental Sciences, 2019, 28(12): 2464-2472. (in Chinese)
[14]
李慧, 代新俊, 高志强. 夏闲期耕作对黄土高原旱地麦田土壤水稳性团聚体稳定性的影响. 中国农业科学, 2018, 51(13): 2524-2534. doi: 10.3864/j.issn.0578-1752.2018.13.008.
LI H, DAI X J, GAO Z Q. Stability characteristics of soil water-stable aggregates under different tillage treatments in summer fallow on the Loess Plateau. Scientia Agricultura Sinica, 2018, 51(13): 2524-2534. doi: 10.3864/j.issn.0578-1752.2018.13.008. (in Chinese)
[15]
张北赢, 徐学选, 刘文兆, 陈天林. 黄土丘陵沟壑区不同降水年型下土壤水分动态. 应用生态学报, 2008, 19(6): 1234-1240.
ZHANG B Y, XU X X, LIU W Z, CHEN T L. Dynamic changes of soil moisture in loess hilly and gully region under effects of different yearly precipitation patterns. Chinese Journal of Applied Ecology, 2008, 19(6): 1234-1240. (in Chinese)
[16]
SUN M, GAO Z Q, REN A X, DENG Y, ZHAO W F, ZHAO H M, YANG Z P, HE L H, ZONG Y Z. Contribution of subsoiling in fallow period and nitrogen fertilizer to the soil-water balance and grain yield of dryland wheat. International Journal of Agriculture Biology, 2015, 17: 175-180.
[17]
LI H, XUE J F, GAO Z Q, XUE N W, YANG Z P. Response of yield increase for dryland winter wheat to tillage practice during summer fallow and sowing method in the Loess Plateau of China. Journal of Integrative Agriculture, 2018, 17(4): 817-825.

doi: 10.1016/S2095-3119(17)61806-9
[18]
SUN M, GAO Z Q, ZHAO W F, DENG L F, DENG Y, ZHAO H M, REN A X, LI G, YANG Z P. Effect of subsoiling in fallow period on soil water storage and grain protein accumulation of dryland wheat and its regulatory effect by nitrogen application. PLoS ONE, 2013, 8(10): e75191.

doi: 10.1371/journal.pone.0075191
[19]
李瑞雅, 孙敏, 任爱霞, 林文, 秦基伟, 李蕾, 卢鹏飞, 高志强. 耕作模式和播种方式对旱地小麦产量形成的影响. 干旱地区农业研究, 2022, 40(2): 17-26, 51.
LI R Y, SUN M, REN A X, LIN W, QIN J W, LI L, LU P F, GAO Z Q. Effects of tillage and seeding methods on yield formation of dryland wheat. Agricultural Research in the Arid Areas, 2022, 40(2): 17-26, 51. (in Chinese)
[20]
胡晓黎, 赵小宁, 雷蕾, 董宇轩, 李晓静. 商洛市降水量对冬小麦产量的影响. 现代农业科技, 2023(20): 156-159.
HU X L, ZHAO X N, LEI L, DONG Y X, LI X J. Effect of precipitation on winter wheat yield in Shangluo City. Modern Agricultural Science and Technology, 2023(20): 156-159. (in Chinese)
[21]
张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响. 作物学报, 2023, 49(9): 2539-2551.

doi: 10.3724/SP.J.1006.2023.21062
ZHANG L H, ZHANG J T, DONG Z Q, HOU W B, ZHAI L C, YAO Y R, L H, ZHAO Y A, JIA X L. Effect of water management on yield and its components of winter wheat in different precipitation years. Acta Agronomica Sinica, 2023, 49(9): 2539-2551. (in Chinese)
[22]
赵杰, 林文, 孙敏, 任爱霞, 仝锦, 李浩, 王鑫炜, 高志强. 休闲期深翻和探墒沟播对旱地小麦水氮资源利用的影响. 应用生态学报, 2021, 32(4): 1307-1316.

doi: 10.13287/j.1001-9332.202104.019
ZHAO J, LIN W, SUN M, REN A X, TONG J, LI H, WANG X W, GAO Z Q. Effects of deep ploughing during the fallow period and soil moisture-based furrow sowing on water and nitrogen utilization of dryland wheat. Chinese Journal of Applied Ecology, 2021, 32(4): 1307-1316. (in Chinese)

doi: 10.13287/j.1001-9332.202104.019
[23]
张礼军, 鲁清林, 张文涛, 白玉龙, 周刚, 汪恒兴, 杨长刚. 耕作方式和施氮量对旱地冬小麦开花后干物质转运特征、糖含量及产量的影响. 麦类作物学报, 2018, 38(12): 1453-1464.
ZHANG L J, LU Q L, ZHANG W T, BAI Y L, ZHOU G, WANG H X, YANG C G. Effects of tillage regime and nitrogen application rate on post-anthesis dry matter remobilization, sugar content and grain yield of winter wheat in dryland. Journal of Triticeae Crops, 2018, 38(12): 1453-1464. (in Chinese)
[24]
薛玲珠, 孙敏, 高志强, 王培如, 任爱霞, 雷妙妙, 杨珍平. 深松蓄水增量播种对旱地小麦植株氮素吸收利用、产量及蛋白质含量的影响. 中国农业科学, 2017, 50(13): 2451-2462. doi: 10.3864/j.issn.0578-1752.2017.13.005.
XUE L Z, SUN M, GAO Z Q, WANG P R, REN A X, LEI M M, YANG Z P. Effects of incremental seeding rate under sub-soiling during the fallow period on nitrogen absorption and utilization, yield and grain protein content in dryland wheat. Scientia Agricultura Sinica, 2017, 50(13): 2451-2462. doi: 10.3864/j.issn.0578-1752.2017.13.005. (in Chinese)
[25]
张礼军, 张耀辉, 鲁清林, 白玉龙, 周刚, 汪恒兴, 张文涛, 白斌, 周洁, 何春雨. 耕作方式和氮肥水平对旱地冬小麦籽粒品质的影响. 核农学报, 2017, 31(8): 1567-1575.

doi: 10.11869/j.issn.100-8551.2017.08.1567
ZHANG L J, ZHANG Y H, LU Q L, BAI Y L, ZHOU G, WANG H X, ZHANG W T, BAI B, ZHOU J, HE C Y. Effect of tillage model and nitrogen rate on grain quality of dryland winter wheat. Journal of Nuclear Agricultural Sciences, 2017, 31(8): 1567-1575. (in Chinese)

doi: 10.11869/j.issn.100-8551.2017.08.1567
[26]
SUN M, DENG Y, GAO Z Q, ZHAO H M, REN A X, LI G, YANG Z P, HAO X Y, ZONG Y Z. Effects of tillage in fallow period and sowing methods on water storage and grain protein accumulation of dryland wheat. Pakistan Journal of Agricultural Sciences, 2015, 52(1): 1-8.
[27]
李廷亮, 谢英荷, 洪坚平, 冯倩, 孙丞鸿, 王志伟. 晋南旱地麦田夏闲期土壤水分和养分变化特征. 应用生态学报, 2013, 24(6): 1601-1608.
LI T L, XIE Y H, HONG J P, FENG Q, SUN C H, WANG Z W. Change characteristics of soil moisture and nutrients in rain-fed winter wheat field under different fertilization modes in Southern Shanxi of China during summer fallow period. Chinese Journal of Applied Ecology, 2013, 24(6): 1601-1608. (in Chinese)
[28]
廖允成, 韩思明, 温晓霞. 黄土台塬旱地小麦土壤水分特征及水分利用效率研究. 中国生态农业学报, 2002, 10(3): 55-58.
LIAO Y C, HAN S M, WEN X X. Study on characteristics of soil moisture and its use efficiency in dryland wheat in the loess tableland. Chinese Journal of Eco-Agriculture, 2002, 10(3): 55-58. (in Chinese)
[29]
刘朋召, 周栋, 郭星宇, 于琦, 张元红, 李昊昱, 张琦, 王旭敏, 王小利, 王瑞, 李军. 不同降雨年型旱地冬小麦水分利用及产量对施氮量的响应. 中国农业科学, 2021, 54(14): 3065-3076. doi: 10.3864/j.issn.0578-1752.2021.14.012.
LIU P Z, ZHOU D, GUO X Y, YU Q, ZHANG Y H, LI H Y, ZHANG Q, WANG X M, WANG X L, WANG R, LI J. Response of water use and yield of dryland winter wheat to nitrogen application under different rainfall patterns. Scientia Agricultura Sinica, 2021, 54(14): 3065-3076. doi: 10.3864/j.issn.0578-1752.2021.14.012. (in Chinese)
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[6] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[7] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[8] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[9] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[10] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[11] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[12] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[13] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[14] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
[15] CAO WenZhuo, YU ZhenWen, ZHANG YongLi, ZHANG Zhen, SHI Yu, WANG YongJun. The Difference of Grain Starch Accumulation Dynamics and Yield Formation of Spring Maize Under Different Nitrogen Application Rates in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(22): 4431-4443.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!