Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (16): 3199-3212.doi: 10.3864/j.issn.0578-1752.2023.16.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effect of Boiling Coconut Water on Flavor Formation of Wenchang Chicken

WU YuCan2,3(), ZHANG ZiHan2, ZHAO GuiPing1, WEI LiMin1, HUANG Feng1,2,3(), ZHANG ChunHui1,2,3()   

  1. 1 Sanya Institute of Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya 572025, Hainan
    2 Institute of Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture and Rural Affairs, Beijing 100193
    3 Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, Hainan
  • Received:2022-03-01 Accepted:2022-04-27 Online:2023-08-16 Published:2023-08-18

Abstract:

【Objective】The aim of this study was to clarify the quality characteristics of Wenchang chicken cooked with coconut water, so as to provide an effective basis for the research on the interaction mechanism of Wenchang chicken and coconut water components and the standardized production.【Method】With Wenchang chicken and Hainan green coconut as the main raw materials, the odor substances of Wenchang chicken, Wenchang chicken breast meat, and chicken leg meat cooked with coconut water were analyzed and compared using an electronic nose and gas chromatography-mass spectrometry (GC-MS), combined with odor activity value (OAV) and principal component analysis (PCA). The taste substances of chicken breast meat and chicken leg meat were analyzed using electronic tongue, free amino acid, and nucleotide detection techniques. The physical and chemical indexes of chicken and coconut water, as well as the cooking loss and texture indexes of coconut-boiled chicken and water-boiled chicken, were determined to clarify the changes in the quality characteristics of Wenchang chicken after cooking with coconut water.【Result】The protein content in chicken leg meat was 21.0 g/100 g, and the fat content was 3.08 g/100 g. The protein content in chicken breast meat was 23.6 g/100 g, and the fat content was 1.29 g/100 g. The content of reducing sugar in coconut water was 4.75 g/100 g. The cooking loss of chicken cooked with coconut water was the highest compared with that boiled with water, and there was no significant correlation between the two texture indicators (P>0.05). After cooking with coconut water, five new aldehydes were produced in the chicken, namely 2-heptanal, (E)-2-octenal, (E)-2-nonenal, 2, 5-dimethyl benzaldehyde, and 2-undecenal. The electronic nose was able to distinguish the volatile substances in boiled chicken legs from those in coconut water. After cooking with coconut water, the content of sweet amino acids in chicken legs and chicken soup increased, but the content of savory amino acids in boiled chicken legs, chicken breasts, and broth was higher than that in chicken cooked with coconut water. The contents of 5'-AMP, 5'-IMP, and 5'-GMP in chicken cooked with coconut water were higher than those in boiled chicken.【Conclusion】The fat content in the chicken leg and protein content in the chicken breast differed in various parts of the Wenchang chicken. Boiling Wenchang chicken with coconut water increased the nucleotide content in the muscles and the free amino acid content in the chicken leg meat, significantly enhancing the taste. Boiling Wenchang chicken with coconut water increased the types of aldehydes in the thigh meat, and resulted in better flavor formation than the breast meat.

Key words: chicken, coconut water, volatile flavor, taste, boiled

Table 1

Content of basic ingredients in chicken cooked with coconut water"

样品名称
Sample name
蛋白含量
Protein content (g/100 g)
脂肪含量
Fat content (g/100g)
维生素B1含量
Thiamine content (μg/100 g)
还原糖含量
Reducing sugar content (g/100 g)
鸡腿肉Chicken leg 21.0±0.190b 3.08±3.11a 0.11±0.01a 0.12±0.03c
鸡胸肉Chicken breast 23.6±0.390a 1.29±3.50b 0.11±0.01a 0.17±0.01b
椰子汁Coconut water 0.042±0.002c 0.03±0.05c - 4.75±0.45a

Table 2

Cooking loss and texture results of boiled chicken and coconut water cooked chicken"

指标Index 水煮鸡Boiled chicken 椰汁鸡Coconut water chicken
蒸煮损失Cooking loss (%) 24.78 31.11b
硬度Hardness (N) 23.89±4.25a 24.35±4.14a
恢复力Resilience (%) 22.81±2.78a 24.57±1.67a
凝聚力Cohesion 0.60±0.04a 0.62±0.02a
弹性Elasticity (mm) 0.73±0.09a 0.74±0.05a
黏性Viscosity (N) 14.36±2.31a 15.25±2.84a
咀嚼性Chewiness (N) 10.62±2.58a 11.32±2.63a

Fig. 1

PCA plot (a) and Radar plot (b) of boiled Wenchang chicken and coconut water boiled Wenchang chicken leg meat detected by electronic nose"

Fig. 2

PCA plot (a) and Radar plot (b) of electronic nose for detection of boiled Wenchang chicken and coconut water boiled Wenchang chicken breast meat"

Table 3

Types and contents of volatile substances in Wenchang chickens of different treatment groups (μg·kg-1)"

化合物名称
Compound name
保留时间
Retention time
分子式
Molecular formula
CAS 水煮鸡腿
Boiled chicken legs
椰汁鸡腿
Coconut water chicken legs
水煮鸡胸
Boiled chicken breasts
椰汁鸡胸
Coconut water chicken breasts

1
烃类化合物 Hydrocarbon
戊烷 Pentane

4.57

C5H12

109-66-0

54.99±0.24d

60.45±0.50c

123.60±1.01b

126.64±3.12a
2 辛烷 Octane 6.09 C8H18 111-65-9 - 17.59±0.05b 43.03±0.03a -
3 柠檬烯 Dipentene 15.52 C10H16 5989-27-5 44.78±0.11a 31.59±0.43c 30.09±0.02d 37.55±1.89b
4 3,3-二甲基戊烷 3,3-Dimethylpentane 18.59 C7H16 562-49-2 23.04±0.30c 31.98±0.67a 30.27±0.31b -
5 丙基环丙烷 Propyl cyclopropane 20.57 C6H12 2415-72-7 - - - 59.32±0.74
6 1,3-戊二烯 1,3-Pentadiene 24.85 C5H8 1574-41-0 - - 39.84±0.21 -
7 3,4-辛二烯 3,4-Octadiene
烃类总量 Total hydrocarbons
32.31
C8H14 34511-01-8
7.07±1.21
129.88
-
141.61
-
266.83
-
223.51
醛类化合物 Aldehydes
8 戊醛 Valeraldehyde 9.44 C5H10O 110-62-3 577.38±2.05a 415.88±3.22b 328.07±1.78d 388.00±4.26c
9 己醛 Hexanal 12.18 C6H12O 66-25-1 4467.04±5.06a 3440.20±4.80b 2611.86±3.28d 3073.26±5.65c
10 庚醛 Heptaldehyde 15.48 C7H14O 111-71-7 194.35±1.22a - 120.29±1.32b 104.63±1.97c
11 辛醛 Octanal 18.47 C8H16O 124-13-0 169.27±0.35a 116.85±3.72c 126.48±0.52b 98.85± 2.65d
12 2-庚醛 2-Heptanal 19.69 C7H12O 57266-86-1 - 19.53±0.76 - -
13
14
壬醛 Nonanal
(E)- 2-辛烯醛 (E)-2-Octenal
21.71
22.87
C9H18O
C8H14O
124-19-6
2548-87-0
741.49±3.58a
-
535.94±5.95d
52.54±0.76
689.74±4.57b
-
546.28±4.27c
-
15 癸醛 Decyl aldehyde 23.57 C10H20O 112-31-2 60.76±2.03b - 77.94±3.02a -
16
17
苯甲醛 Benzaldehyde
(E)-2-壬烯醛 (E)-2-Nonenal
25.68
25.95
C7H6O
C9H16O
100-52-7
18829-56-6
238.53±1.22c
-
237.04±3.71d
64.95±.30
306.81±2.07b
-
333.84±3.65a
-
18 (E,E)-2,4-壬二烯醛 (E,E)-2,4-Nonadienal 30.27 C9H14O 5910-87-2 143.29±2.04a 71.27±1.03c 85.82±1.79b -
19 4-乙基苯甲醛 4-Ethylbenzaldehyde 30.49 C9H10O 4748-78-1 - - 27.01±5.23b 58.99±0.08a
20 2,5-二甲基苯甲
2,5-Dimethyl benzaldehyde
30.51 C9H10O 5779-94-2 ND 56.62±0.98 - -
21 2-十一烯醛 2-Undecenal 31.44 C11H20O 2463-77-6 ND 49.77±0.86 - -
22 4-N-戊基苯甲醛 4-N-Pentylbenzaldehyde
醛类总量 Total aldehyde
36.86

C12H16O 6853-57-2 57.05±0.53b

6649.16
-

5060.59
78.38±3.01a

4452.40
-

4603.85
醇类化合物 Alcohols
23 甲硫醇 Methyl mercaptan 5.12 CH4S 74-93-1 - - 113.44±3.65a 29.86±0.80b
24 乙醇 Ethanol 8.44 C2H6O 64-17-5 - 77.14±0.75b 99.98± 2.20a -
25 1-戊醇 1-Pentanol 17.46 C5H12O 71-41-0 253.11±1.34a 131.96±2.28c - 153.04±0.83b
26 正己醇 1-Hexanol 20.58 C6H14O 111-27-3 87.51±0.86a 51.22±1.00b - -
27 1-辛烯-3-醇 1-Octen-3-ol 23.39 C8H16O 3391-86-4 1417.71±2.18a 760.61±1.45c 774.99±4.27b 611.37±3.02d
28 正庚醇 1-Heptanol 23.60 C7H16O 111-70-6 46.87±3.07a 31.48±1.02b - -
29 辛醇 1-Octanol 26.52 C8H18O 111-87-5 78.04±0.42b 57.80±0.82c 27.01±1.07d 385.22±5.26a
30 (E)-2-十二碳烯醇 (E)-2-Dodecenol
醇类总量 Total alcohols
28.06
C12H24O 69064-36-4 127.22±3.02b
2010.46
-
1110.21
194.53±1.34a
1209.95
-
1179.49
杂环化合物 Heterocyclics
31 2-乙基呋喃 2-Ethylfuran 8.802 C6H8O 3208-16-0 4.66±2.01b - 14.27±0.03a -
32 2-正丁基呋喃 2-Butylfuran 13.43 C8H12O 4466-24-4 - 8.01±0.15 - -
33 2-戊基呋喃 2-Pentylfuran 16.58 C9H14O 3777-69-3 480.34±1.74a - 424.10±3.34b -
34 2,4,6-三甲基吡啶 2,4,6-Collidine 21.33 C8H11N 108-75-8 16.19±4.21b - 55.19±2.19a -
35 二甲基三硫 Dimethyl trisulfide 21.54 C2H6S3 3658-80-8 37.15±0.07a 21.26±0.20c - 36.73±1.82b
36 3-氨基-5-甲基吡3-Amino-5-methylpyrazole 26.38 C4H7N3 31230-17-8 4.50±0.06c - 66.55±2.05b 248.67±3.21a
37 N-甲基-3-氨基吡唑1-Methyl-1H-pyrazol-3-amine 29.32 C4H7N3 1904-31-0 9.54±0.03b - 25.02±0.57a -
38 2-乙基-3,4,5三甲基吡咯2-Ethyl-3,4,5-trimethyl-1H-pyrrole 31.58 C9H15N 69687-79-2 12.59±0.76a - 7.66±0.53b -
39 4-吡啶甲酰胺 Isonicotinamide
杂环总量 Total heterocyclics
47.20
C6H6N2O
1453-82-3
2.09±0.17b
567.06
33.92±0.15a
63.19
1.51±0.06c
594.30
-
285.40

Table 4

OAV values of volatile compounds in Wenchang chickens from different treatment groups"

化合物名称
Compound name
阈值
Threshold (μg·kg-1)
OAV
椰汁鸡腿
Coconut water chicken legs
水煮鸡腿
Boiled chicken
legs
椰汁鸡胸
Coconut water chicken breasts
水煮鸡胸
Boiled chicken
breasts
戊醛 Valeraldehyde 12 34.66 48.12 32.33 27.34
己醛 Hexanal 5 688.04 893.41 614.65 522.37
庚醛 Heptaldehyde 2.8 - 69.41 37.37 42.96
辛醛 Octanal 0.587 199.06 288.36 168.40 215.47
壬醛 Nonanal 1.1 487.22 674.08 496.62 627.04
(E)-2-辛烯醛 (E)-2-Nonenal 0.34 154.53 - - -
癸醛 Decyl aldehyde 3 - 20.25 - 25.98
苯甲醛 Benzaldehyde 750.89 0.32 0.32 0.44 0.41
(E)-2-壬烯醛 (E)-2-Nonenal 0.08 811.88 - - -
(E,E)-2,4-壬二烯醛 (E,E)-2,4-Nonadienal 0.1 712.70 1432.90 - 858.20
(E)-2-十一烯醛 (E)-2-Undecenal 0.78 63.81 - - -
正己醇 1-Hexanol 5.6 9.15 15.63 - -
1-辛烯-3-醇 1-Octen-3-ol 1.5 507.07 945.14 407.58 516.66
2-丁基呋喃 2-Butylfuran 5 1.00 - - -
2-戊基呋喃 2-Pentylfuran 5.8 - 82.82 - 73.12

Fig. 3

PCA analysis plot (a) and Radar plot (b) of boiled chicken and coconut water boiled chicken detected by electronic tongue"

Table 5

Area percentage of free amino acids in different parts of boiled chicken and coconut water boiled chicken and chicken soup"

氨基酸名称
Amino acid name
水煮Boiled 椰汁煮Boiled in coconut
鸡腿
Chicken legs
鸡胸
Chicken breasts
肉汤
Broth
鸡腿
Chicken legs
鸡胸
Chicken breasts
肉汤
Broth
天冬氨酸 Aspartic acid - - 61.41±15.66 - - -
甘氨酸 Glycine 0.56±0.12a - - - 0.28±0.02b -
组氨酸 Histidine 0.40±0.18b 1.95±0.10a - 0.43±0.09b 0.27±0.03c 0.16±0.003d
精氨酸 Arginine 5.74±0.29b 20.7±0.05a 0.66±0.02d 5.69±0.3b 5.70±0.55b 1.08±0.05c
苏氨酸 Threonine 9.86±0.99d 67.1±0.84a 1.47±0.04f 13.4±0.97c 18.09±2.94b 1.88±0.09e
丙氨酸 Alanine 0.81±0.16b 1.90±0.07a 0.07±0.004f 0.67±0.11c 0.43±0.18d 0.18±0.006e
脯氨酸 Proline 0.22±0.08b 0.37±0.03a - 0.18±0.04c 0.09±0.004d 0.05±0.003e
胱氨酸 Cystine 0.20±0.05a 0.48±0.18a - 0.21±0.04c 0.41±0.10b -
酪氨酸 Tyrosine 0.18±0.01 - - - - -
缬氨酸 Valine 0.77±0.09b 0.90±0.10a 0.06±0.008d - - 0.09±0.004c
蛋氨酸 Methionine 0.09±0.006 - - - - -
赖氨酸 Lysine 0.12±0.0001a - - 0.10±0.004b - -
总氨基酸 TAA 18.95 93.4 63.67 20.68 25.27 3.44
甜味氨基酸Sweet AAs 11.45 69.37 1.54 14.25 18.89 2.11
鲜味氨基酸 Umami AAs 1.71 2.27 61.48 0.95 0.8 0.23

Table 6

Nucleotide content of chicken leg and breast of boiled Wenchang chicken and coconut water boiled Wenchang chicken (mg/100 g)"

核苷酸名称
Nucleotide name
椰汁鸡腿
Coconut water chicken legs
水煮鸡腿
Boiled chicken legs
椰汁鸡胸
Coconut water chicken breasts
水煮鸡胸
Boiled chicken breasts
5'-CMP 8.31±0.59b 3.18±0.23c 9.31±0.18a 2.31±0.11d
5'-UMP 5.39±0.55b 2.19±0.33d 5.54±0.49a 3.64±0.18c
5'-GMP 4.62±0.59a 1.19±0.71d 3.62±0.48b 2.51±0.28c
5'-IMP 175.69±9.28b 113.94±9.33c 189.02±8.08a 101.54±8.25d
5'-AMP 8.15±0.31a 4.88±0.20d 7.96±0.25b 5.69±0.19c
[1]
李龙, 蒋守群, 郑春田, 苟钟勇, 陈芳, 范秋丽, 罗茜. 不同品种黄羽肉鸡肉品质比较研究. 中国家禽, 2015, 37(21): 6-11.
LI L, JIANG S Q, ZHENG C T, GOU Z Y, CHEN F, FAN Q L, LUO Q. Comparisons of meat quality characteristics of different yellow-feathered broilers. China Poultry, 2015, 37(21): 6-11. (in Chinese)
[2]
巨晓军, 束婧婷, 章明, 刘一帆, 屠云洁, 姬改革, 单艳菊, 邹剑敏. 不同品种、饲养周期肉鸡肉品质和风味的比较分析. 动物营养学报, 2018, 30(6): 2421-2430.
JU X J, SHU J T, ZHANG M, LIU Y F, TU Y J, JI G G, SHAN Y J, ZOU J M. Comparison analysis of meat quality and flavor of different breeds and feeding periods of broilers. Chinese Journal of Animal Nutrition, 2018, 30(6): 2421-2430. (in Chinese)
[3]
DENG S L, LIU R, LI C B, XU X L, ZHOU G H. Meat quality and flavor compounds of soft-boiled chickens: effect of Chinese yellow-feathered chicken breed and slaughter age. Poultry Science, 2022, 101(12): 102168.

doi: 10.1016/j.psj.2022.102168
[4]
李远韬. 陈皮鸡制作及品质变化的研究[D]. 广州: 仲恺农业工程学院, 2020.
LI Y T. Study on production and quality change of tangerine-flavored chicken[D]. Guangzhou: Zhongkai College of Agricultural Engineering, 2020. (in Chinese)
[5]
PREETHA P P, DEVI V G, RAJAMOHAN T. Hypoglycemic and antioxidant potential of coconut water in experimental diabetes. Food & Function, 2012, 3(7): 753-757.
[6]
PREETHA P P, DEVI V G, RAJAMOHAN T. Antihyperlipidemic effects of mature coconut water and its role in regulating lipid metabolism in alloxan-induced experimental diabetes. Comparative Clinical Pathology, 2014, 23(5): 1331-1337.

doi: 10.1007/s00580-013-1784-7
[7]
中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品中蛋白质的测定: GB 5009.5—2016. 北京: 中国标准出版社, 2016.
National Health and Family Planning Commission of the PRC. Determination of protein in food of National Standard for Food Safety: GB 5009.5-2016. Beijing: Standards Press of China, 2016. (in Chinese)
[8]
中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品中维生素B1的测定: GB 5009. 48—2016. 北京: 中国标准出版社, 2016.
National Health and Family Planning Commission of the PRC. Determination of vitamin B1 in National Standard of Food Safety: GB 5009.48-2016. Beijing: Standards Press of China, 2016. (in Chinese)
[9]
中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中脂肪的测定: GB/T5009.6—2016. 北京: 中国标准出版社, 2016.
National Health and Family Planning Commission of the PRC, State Food and Drug Administration. National Standard for Food Safety- Determination of fat in food: GB/T5009.6-2016. Beijing: Standards Press of China, 2016. (in Chinese)
[10]
宋玉. 不同品种鸡肉成熟过程中品质特性比较研究[D]. 南京: 南京农业大学, 2011.
SONG Y. Comparative study on quality characteristics of different chicken varieties during ripening[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[11]
FENG Y Z, CAI Y, FU X, ZHENG L, XIAO Z B, ZHAO M M. Comparison of aroma-active compounds in broiler broth and native chicken broth by aroma extract dilution analysis (AEDA), odor activity value (OAV) and omission experiment. Food Chemistry, 2018, 265: 274-280.

doi: S0308-8146(18)30838-0 pmid: 29884383
[12]
张亮子, 荣建华, 胡坚, 赵思明. 前处理对鸡汤体系营养特性的影响. 食品科学, 2009, 30(23): 83-87.

doi: 10.7506/spkx1002-6300-200923017
ZHANG L Z, RONG J H, HU J, ZHAO S M. Effect of pre-treatment on nutritional characteristics of chicken soup. Food Science, 2009, 30(23): 83-87. (in Chinese)
[13]
QI J, LIU D Y, ZHOU G H, XU X L. Characteristic flavor of traditional soup made by stewing Chinese yellow-feather chickens. Journal of Food Science, 2017, 82(9): 2031-2040.

doi: 10.1111/1750-3841.13801 pmid: 28732107
[14]
GE S, CHEN Y Y, DING S H, ZHOU H, JIANG L W, YI Y J, DENG F M, WANG R R. Changes in volatile flavor compounds of peppers during hot air drying process based on headspace -gas chromatography-ion mobility spectrometry (HS-GC-IMS). Journal of the Science of Food and Agriculture, 2020, 100(7): 3087-3098.

doi: 10.1002/jsfa.v100.7
[15]
ROTZOLL N, DUNKEL A, HOFMANN T. Quantitative studies, taste reconstitution, and omission experiments on the key taste compounds in morel mushrooms (Morchella deliciosa Fr.). Journal of Agricultural and Food Chemistry, 2006, 54(7): 2705-2711.

doi: 10.1021/jf053131y
[16]
EFFIONG B, UDOFIA U. Production and evaluation of sport drink from coconut juice and watermelon juice. Food Science and Quality Management, 2018, 76: 12-17.
[17]
杨春雪, 孔凡华, 欧阳俊, 喻志林, 杨春波, 崔晨曦, 白沙沙, 崔亚娟. 鳄鱼肉与其他肉类营养成分的比较分析. 肉类研究, 2022, 36(3): 7-13.
YANG C X, KONG F H, OUYANG J, YU Z L, YANG C B, CUI C X, BAI S S, CUI Y J. Comparative analysis of nutrient composition in crocodile meat and other meats. Meat Research, 2022, 36(3): 7-13. (in Chinese)
[18]
侯成立, 李欣, 王振宇, 黄彩燕, 张强, 罗章, 张德权. 不同部位牦牛肉氨基酸、脂肪酸含量分析与营养价值评价. 肉类研究, 2019, 33(2): 52-57.
HOU C L, LI X, WANG Z Y, HUANG C Y, ZHANG Q, LUO Z, ZHANG D Q. Amino acid and fatty acid composition and nutritional value evaluation of different yak meat cuts. Meat Research, 2019, 33(2): 52-57. (in Chinese)
[19]
柳艳霞, 于家欢, 赵改名, 朱瑶迪, 刘世杰, 武苏苏, 常亚楠. 基于多元统计分析的卤煮鸡肉与鸡汤滋味差异研究. 河南农业大学学报, 2022, 56(2): 301-311.
LIU Y X, YU J H, ZHAO G M, ZHU Y D, LIU S J, WU S S, CHANG Y N. Study on taste characteristics differences between braised chicken and its broth based on multivariate statistical analysis. Journal of Henan Agricultural University, 2022, 56(2): 301-311. (in Chinese)
[20]
王晓方, 常文环, 刘国华, 张姝, 郑爱娟, 蔡辉益. 畜禽肌肉肌苷酸研究进展. 中国畜牧兽医, 2012, 39(5): 221-225.
WANG X F, CHANG W H, LIU G H, ZHANG S, ZHENG A J, CAI H Y. Recent advances on inosinic acid of animal muscle. China Animal Husbandry & Veterinary Medicine, 2012, 39(5): 221-225. (in Chinese)
[21]
王昱苏, 孟兰奇, 郭烨, 查恩辉. 热加工方式对鸡肉风味的影响. 保鲜与加工, 2022, 22(12): 44-52.
WANG Y S, MENG L Q, GUO Y, ZHA E H. Effect of thermal processing method on chicken flavor. Storage and Process, 2022, 22(12): 44-52. (in Chinese)
[22]
QI J, XU Y, ZHANG W W, XIE X F, XIONG G Y, XU X L. Short-term frozen storage of raw chicken meat improves its flavor traits upon stewing. LWT, 2021, 142: 111029.

doi: 10.1016/j.lwt.2021.111029
[23]
赵文华, 王桂瑛, 王雪峰, 程志斌, 谷大海, 徐志强, 范江平, 普岳红, 葛长荣, 廖国周. 鸡肉中挥发性风味物质及其影响因素的研究进展. 食品工业科技, 2019, 40(21): 337-343, 351.
ZHAO W H, WANG G Y, WANG X F, CHENG Z B, GU D H, XU Z Q, FAN J P, PU Y H, GE C R, LIAO G Z. Research progress on volatile flavor substances and their influencing factors of chicken. Science and Technology of Food Industry, 2019, 40(21): 337-343, 351. (in Chinese)
[24]
JIN Y X, CUI H X, YUAN X Y, LIU L, LIU X J, WANG Y L, DING J Q, XIANG H, ZHANG X X, LIU J F, LI H, ZHAO G P, WEN J. Identification of the main aroma compounds in Chinese local chicken high-quality meat. Food Chemistry, 2021, 359: 129930.

doi: 10.1016/j.foodchem.2021.129930
[25]
孙圳, 韩东, 张春晖, 李海, 李侠, 刘志斌, 徐世明. 定量卤制鸡肉挥发性风味物质剖面分析. 中国农业科学, 2016, 49(15): 3030-3045. doi: 10.3864.issn.0578-1752.2016.15.01.

doi: 10.3864/j.issn.0578-1752.2016.15.017
SUN Z, HAN D, ZHANG C H, LI H, LI X, LIU Z B, XU S M. Profile analysis of the volatile flavor compounds of quantitative marinated chicken during processing. Scientia Agricultura Sinica, 2016, 49(15): 3030-3045. doi: 10.3864.issn.0578-1752.2016.15.01. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.15.017
[26]
石芬, 徐军, 姜宗伯, 白新鹏, 黄欢, 陈星. HS-SPME-GC-MS结合多元统计分析初榨椰子油常温储藏过程中挥发性风味成分. 食品工业科技, 2022, 43(10): 314-322.
SHI F, XU J, JIANG Z B, BAI X P, HUANG H, CHEN X. Analysis of volatile flavor components of virgin coconut oil during normal temperature storage based on HS-SPME-GC-MS and multivariate statistical analysis. Science and Technology of Food Industry, 2022, 43(10): 314-322. (in Chinese)
[27]
唐修君, 樊艳凤, 葛庆联, 贾晓旭, 高玉时, 唐梦君, 陈大伟, 张静, 王珏, 杨星星. 不同贮藏条件下鸡肉肌苷酸含量的变化规律. 食品工业科技, 2019, 40(2): 266-270.
TANG X J, FAN Y F, GE Q L, JIA X X, GAO Y S, TANG M J, CHEN D W, ZHANG J, WANG J, YANG X X. Change law of inosine acid in chicken muscle under different storage conditions. Science and Technology of Food Industry, 2019, 40(2): 266-270. (in Chinese)
[28]
杜琨, 张亚宁, 方多. 呈味核苷酸及其在食品中的应用. 中国酿造, 2005, 24(10): 50-52.
DU K, ZHANG Y N, FANG D. Flavor nucleotides and their application in food. China Brewing, 2005, 24(10): 50-52. (in Chinese)
[29]
KAWAI M, OKIYAMA A, UEDA Y. Taste enhancements between various amino acids and IMP. Chemical Senses, 2002, 27(8): 739-745.
[30]
魏跃胜, 李茂顺, 王辉亚, 王权. 烹饪中“火候”运用与物质化学变化关系探讨. 武汉商业服务学院学报, 2012, 26(1): 93-96.
WEI Y S, LI M S, WANG H Y, WANG Q. Analysis of relation between heating control and chemical change when cooking. Journal of Wuhan Commercial Service College, 2012, 26(1): 93-96. (in Chinese)
[31]
张璟琳, 黄明泉, 孙宝国. 四大名醋的游离氨基酸组成成分分析. 食品安全质量检测学报, 2014, 5(10): 3124-3131.
ZHANG J L, HUANG M Q, SUN B G. Study on free amino acid composition of 4 famous vinegars in China. Journal of Food Safety & Quality, 2014, 5(10): 3124-3131. (in Chinese)
[32]
杨慧敏, 周文化, 李维敏, 赵登登. 椰子水及其饮料中氨基酸组分分析. 食品与机械, 2013, 29(6): 63-66.
YANG H M, ZHOU W H, LI W M, ZHAO D D. Analysis of amino acid in the coconut water and beverage. Food & Machinery, 2013, 29(6): 63-66. (in Chinese)
[1] JU XiaoJun, ZHANG Ming, SHAN YanJu, JI GaiGe, TU YunJie, LIU YiFan, ZOU JianMin, SHU JingTing. Chicken Quality Analysis and Screening of Key Flavor Substances and Genes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1813-1826.
[2] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[3] GUO YuChen, DONG Ming, ZENG XianMing, TIAN HuiXin, YIN JiaQi, HOU YuKe, BAI Yun, TANG ChangBo, HAN MinYi, XU XingLian. Effects of Pulsed Electric Field on Gelation Properties of PSE-Like Chicken Myosin: A Molecular Dynamics Simulation Analysis [J]. Scientia Agricultura Sinica, 2023, 56(4): 741-753.
[4] XI MengXue, SHEN Dan, SHI YiFan, LI ChunMei. Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses [J]. Scientia Agricultura Sinica, 2023, 56(4): 779-787.
[5] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[6] MA GaoXing,TAO TianYi,PEI Fei,FANG DongLu,ZHAO LiYan,HU QiuHui. Effects of Different Stir-Fry Conditions on the Flavor of Agaricus bisporus in Ready-to-Eat Dishes [J]. Scientia Agricultura Sinica, 2022, 55(3): 575-588.
[7] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[8] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[9] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[10] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[11] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[12] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[13] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[14] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[15] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!