Scientia Agricultura Sinica

Previous Articles    

Establishment and standardization of event-specific real-time quantitative PCR detection method of stress-resistant soybean IND-ØØ41Ø-5 

LI YunJing1, XIAO Fang1, WU YuHua1, LI Jun1, GAO HongFei1, ZHAI ShanShan1, LIANG JinGang2*, WU Gang1*   

  1. 1Oil Crops Research Institute of Chinese Academy of Agricultural Science/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs/ Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of agriculture and rural Affairs, Wuhan 430062; 2Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176
  • Online:2023-05-31 Published:2023-05-31

Abstract: 【ObjectiveStress-resistant soybean IND-ØØ41Ø-5 has been authorized as a safety certificate for imported processed raw materials in China. This study aims to develop a specific, accurate, and sensitive real-time quantitative PCR (qPCR) assay for the quantification of the stress-resistant soybean IND-ØØ41Ø-5 event, providing a precise measurement technique for regulating its safety in China. Method18 pairs of primers and probes were designed using Beacon designer 8.0 software for the 5' end flanking sequence of the stress-resistant soybean IND-ØØ41Ø-5 event, in combination with one pair of primer and probe providing by Instituto de Agrobiotecnologia Rosario (INDEAR) S.A. Subsequently, the specific screening of the primers and probes was performed using real-time PCR technology, and one pair of candidate primer and probe was selected. The reaction system parameters, such as primer and probe concentration, were optimized during the establishing the qPCR method. A specificity test was performed using different test samples. The pure stress-resistant soybean IND-ØØ41Ø-5 genomic DNA was serially diluted into standard solution templates, and standard curves were plotted to investigate the linear dynamic range of the qPCR method. Test samples with copy number ratios of 5%, 1% and 0.1% were prepared by mixing IND-ØØ41Ø-5 genomic DNA with non-GM counterpart to evaluate the accuracy of the qPCR method. The limit of detection (LOD) was detected by using test samples with copy number ratios of 0.05% and 0.025%. The limit of quantification (LOQ) was determined after 16 tests on samples with a copy number ratio of 0.1%. Finally, the technical parameters of qPCR assay for the stress-resistant soybean IND-ØØ41Ø-5 event were determined. The specificity, LOD, LOQ and accuracy of the qPCR method were validated by eight qualified testing laboratories. The repeatability and reproducibility of the qPCR were evaluated by Cochran's test and Grubbs' test, and the measurement uncertainty of the accuracy samples were pre-evaluated by linear least-square method. ResultThe RBORD-F1/RBORD-R1/RBORD-P1 primer and probe combination was selected as a candidate to establish the qPCR for the stress-resistant soybean IND-ØØ41Ø-5 event, with an amplified fragment of 138 bp. The optimized reaction system had a final concentration of 0.4 μmol·L-1 for the primer and 0.2 μmol·L-1 for the probe. Standard curves of IND-ØØ41Ø-5 and Lectin gene assay showed good linearity with the dynamic range from 33 to 83190 copies of genomic DNA. The qPCR can accurately quantify 5%, 1%, and 0.1% content of IND-ØØ41Ø-5 test samples with less than 25% relative standard deviation (RSD). The LOD was determined to be 0.05%, and the LOQ was 0.1%. After validation by eight qualified laboratories, the results indicated that the method was stable, specific and had good repeatability and reproducibility, with the LOD of 0.05% and LOQ of 0.1%. After pre-evaluating the measurement uncertainty, the content of IND-ØØ41Ø-5 in the five test samples was found to be (0.10±0.02)%, (0.53±0.09)%, (1.05±0.18)%, (2.05±0.34)% and (5.18±0.87)%, respectively. These results demonstrate the accuracy and reliability of the qPCR method established in this study for the quantification of stress-resistant soybean IND-ØØ41Ø-5 event components. 【Conclusion】This study successfully developed a specific, accurate, and sensitive qPCR assay for the quantification of stress-resistant soybean IND-ØØ41Ø-5 event using real-time PCR technology. The results show that method is capable of achieving precise measurement and reliable quantification of IND-ØØ41Ø-5 event components.

Key words: transgenic, stress-resistant soybean IND-??41?-5, event-specific, real-time quantitative PCR (qPCR)

[1] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[2] CAO Peng, XU JianJian, LI ChuXin, WANG XinLiang, WANG ChunQing, SONG ChenHu, SONG Zhen. Real-Time Quantitative PCR Detection of Citrus Yellow Mosaic Virus and Its Spatial and Temporal Distribution in Host Plants [J]. Scientia Agricultura Sinica, 2023, 56(18): 3574-3584.
[3] LI YunJing, XIAO Fang, WU YuHua, LI Jun, GAO HongFei, ZHAI ShanShan, LIANG JinGang, WU Gang. Establishment and Standardization of Event-Specific Real-Time Quantitative PCR Detection Method of Stress-Resistant Soybean IND-ØØ41Ø-5 [J]. Scientia Agricultura Sinica, 2023, 56(13): 2443-2460.
[4] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[5] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[6] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[7] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[8] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[9] HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845.
[10] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[11] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[12] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[13] XIAO Fang,LI Jun,WANG HaoQian,ZHAI ShanShan,CHEN ZiYan,GAO HongFei,LI YunJing,WU Gang,ZHANG XiuJie,WU YuHua. Establishment and Application of A Duplex ddPCR Method to Quantify the NK603/zSSIIb Copy Number Ratio in Transgenic Maize NK603 [J]. Scientia Agricultura Sinica, 2021, 54(22): 4728-4739.
[14] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[15] ZHAO LiQun,QIU YanHong,ZHANG XiaoFei,LIU Hui,YANG JingJing,ZHANG Jian,ZHANG HaiJun,XU XiuLan,WEN ChangLong. The Detection of Citrullus lanatus Cryptic Virus Using TaqMan-qPCR Method [J]. Scientia Agricultura Sinica, 2021, 54(20): 4337-4347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!