Scientia Agricultura Sinica

Previous Articles    

Cloning and functional characterization of the promoter of GhSLD1 gene that predominantly expressed in cotton fiber

LIU Fang, XU Mengbei, WANG Qiaoling, MENG Qian, LI Guiming, ZHANG Hongju, TIAN Huidan, XU Fan, LUO Ming   

  1. Biotechnology Research Center, Southwest University/Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture, Chongqing 400716
  • Online:2023-05-17 Published:2023-05-17

Abstract: 【ObjectiveCotton fiber is the main economic product of cotton. It is the epidermal cells of the ovule outer integument through polar elongation and secondary wall thickening. As one of the longest plant cells, the cotton fiber cells are regarded as an ideal material in the study of plant cell growth and development. Identification of promoters specifically or preferentially expressed in fiber cells is of great significance for basic research on fiber development and molecular breeding for improving fiber traits. MethodIn this study, we cloned the promoter of GhSLD1 gene, which is predominantly expressed in fiber cells. Through the PlantCARE website for promoter sequence analysis, we identified the important cis-regulatory elements contained in the cloned sequence. According to the distribution of some important cis-regulatory elements, the cloned promoter fragments were deleted at 5 '- end. A total of 4 promoter fragments were obtained and the corresponding plant expression vector was constructed. The constructed plant expression vectors were used for genetic transformation of tobacco and cotton. The transgenic plants were identified through molecular identification of transgenic tobacco and cotton. GUS activity in different tissues, organs and fiber cells of transgenic plants at different development stages was also investigated. ResultThe longest promoter cloned was 2900 bp in length. In addition to there were a lot of transcription regulatory elements in the promoter, the sequence also contained multiple abscisic acid response elements, the elements essential for the anaerobic induction, methyl jasmonate response elements, brassinolide response elements, the elements involved in seed-specific regulation, the elements involved in defense and stress responsiveness, and MYB transcription factor binding sites. Four promoter fragments with a length of 2900 bp (GhSLD-P1), 2178 bp (GhSLD1-P2), 1657 bp (GhSLD1-P3) and 1232 bp (GhSLD-P4) were obtained by the 5'-terminal deletion, respectively. The transgenic tobacco plants were generated after confirmed by molecular identification. GhSLD-P1, GhSLD1-P2 and GhSLD1-P3 did not express in transgenic tobacco, while GhSLD-P4 is widely expressed, and the expression level of GhSLD-P4 was similar to that of CaMV 35S promoter. The different sequence between GhSLD1-P3 and GhSLD-P4 contained four abscisic acid response elements, two brassinolide response elements, and three MYB binding sites. These cis-regulatory elements may be associated with the non-expression of GhSLD1-P1, GhSLD1-P2, and GhSLD1-P3 promoters in transgenic tobacco. The transgenic cotton plants of GhSLD1-P2 were obtained after confirmed by molecular identification. GhSLD1-P2 predominantly expressed in transgenic cotton fibers, and its expression level was higher at the elongation stage (10-15 DPA) of fiber cells while lower in the early developmental stage (5 DPA) of fiber cells and the stage of secondary cell wall deposition (20-30 DPA). ConclusionThe GhSLD1-P4 promoter was a widely expressed promoter, and the GhSLD1-P2 promoter was a fiber predominant expression promoter, which was highly expressed during the elongation of fibers. It could be applied to the study on the gene function involved in cotton fiber development and molecular breeding for improving fiber traits.


Key words: cotton, promoter, functional characterization; GhSLD1, sphingolipid delta8- desaturase

[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[3] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[4] PAN FengYing, QU JunJie, LIU LuLu, SUN DaYun, GUO ZeXi, WEI XiaoLi, WEI ShuMei, YIN Ling. Expression and Functional Analysis of Glycosyl Hydrolase Genes from Plasmopara viticola [J]. Scientia Agricultura Sinica, 2023, 56(5): 879-891.
[5] LIANG ChengZhen, ZANG YouYi, MENG ZhiGang, WANG Yuan, MUBASHIR Abbas, HE HaiYan, ZHOU Qi, WEI YunXiao, ZHANG Rui, GUO SanDui. Identification of Target Traits and Genetic Stability of Transgenic Cotton GGK2 [J]. Scientia Agricultura Sinica, 2023, 56(17): 3251-3260.
[6] WANG WanRu, CAO YueFen, SHENG Kuang, CHEN JinHong, ZHAO TianLun, ZHU ShuiJin. The Creation and Characteristics of Cotton Germplasm Lines Transgenic 1174AALdico-2+CTP Gene with Excellent Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3261-3276.
[7] MA YanBin, LI HuanLi, WEN Jin, ZHOU XianTing, QIN Xin, WANG Xia, WANG XinSheng, LI YanE. Identification of Molecular Characterizations for Transgenic Cotton R1-3 Line of Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284.
[8] DANG WenWen, LIU Bing, CHU Dong, LU YanHui. Dominated Species and the Predation Assessment of Natural Enemies on Thrips in Cotton Fields in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(17): 3347-3357.
[9] LOU ShanWei, TIAN LiWen, LUO HongHai, DU MingWei, LIN Tao, YANG Tao, ZHANG PengZhong. Analysis on Key Production Techniques of Cotton with Good Quality and High Yield in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(14): 2673-2685.
[10] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[11] SONG Ci, GU FengXu, XING ZhenZhen, ZHANG JunMing, HE WenXue, WANG TianBo, WANG YuLu, CHEN JunYing. Physiological Changes and Integrity of ATP Synthase Subunits mRNA in Naturally Aged Cotton Seeds [J]. Scientia Agricultura Sinica, 2023, 56(10): 1827-1837.
[12] LI XuFei,YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe. Analysis of VlCKX4 Expression Characteristics and Prediction of Transcriptional Regulation in Grape [J]. Scientia Agricultura Sinica, 2023, 56(1): 144-155.
[13] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[14] WANG JunJuan, LU XuKe, WANG YanQin, WANG Shuai, YIN ZuJun, FU XiaoQiong, WANG DeLong, CHEN XiuGui, GUO LiXue, CHEN Chao, ZHAO LanJie, HAN YingChun, SUN LiangQing, HAN MingGe, ZHANG YueXin, FAN YaPeng, YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[15] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!