Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (18): 3801-3811.doi: 10.3864/j.issn.0578-1752.2012.18.013

• HORTICULTURE • Previous Articles     Next Articles

Differences in Tolerance of Four Apple Rootstock Seedlings to Zinc Stress

 LIU  Fei, WANG  Jin-Hua, ZHANG  Hong-Yi, FU  Chun-Xia, WANG  Yan-An   

  1. 1.山东农业大学生命科学学院/作物生物学国家重点实验室,山东泰安271018
  • Received:2012-04-25 Online:2012-09-15 Published:2012-07-19

Abstract: 【Objective】The response difference of four apple rootstock seedlings under variable zinc concentrations were investigated. The purpose of this work is to compare the tolerance of four apple cultivars to low and high zinc stress, which also has important significance in screening apple rootstocks well adapted to zinc stress. 【Method】The experiment was carried out with the seedlings of four apple rootstocks cultivars grown hydroponically under different zinc concentrations. The growth, dry weight, the morphology and architecture of root ,root activity, zinc accumulation and  utilization efficiency of apple rootstock seedlings were measured and analysised.【Result】The changes in height, biomass of plant, morphology and architecture of root, root activity, zinc accumulation and utilization in plant were studied under zinc deficiency (0 μmol•L-1), low zinc (1 μmol•L-1), control (4 μmol•L-1), optimal zinc (10 μmol•L-1), and excess zinc (100 μmol•L-1) with hydroponics. Results showed that many obvious zinc-deficiency symptoms were observed in the three apple rootstock (Malus hupehensis Rehd., M. xiaojinensis Cheng et Jiang., M. robusta Rehd.) seedlings receiving no Zn supply for 45 d, such as, the plant dwarfed, the new smaller leaves and the length of stem node decreased. The four apple rootstock seedlings all showed toxic symptoms receiving excess Zn, such as, the plant dwarfed, the new leaves etiolated and growth inhibited. The biomass, the height, total length, total surface of root, significantly decreased and the decreased degree was M. baccata Borkh. >M. hupehensis Rehd. >M. robusta Rehd. >M. xiaojinensis Cheng et Jiang. under the low zinc, while M. xiaojinensis Cheng et Jiang. performed more higher than that of other rootstock seedlings. And these physiological and morphological responses of root to excess zinc were exhibited: M. robusta Rehd>M. xiaojinensis Cheng et Jiang>M. hupehensis Rehd.>M. baccata. Borkh. Most zinc entered the seedlings were transported up to the part above the ground to meet demand for zinc under the low zinc condition. The toxicity of zinc to shoot was weakened though to retain most zinc in root under excess zinc condition.【Conclusion】The tolerance to deficient zinc of M. xiaojinensis Cheng et Jiang was higher than that of others, M. baccata Borkh. was sensitive to Zn-deficiency. The tolerance to excess zinc of M. robusta Rehd. was higher than that of others. The root tolerance to excess zinc of M. baccata Borkh. was weaker than that of others.

Key words: apple rootstocks, zinc stress, root architecture, nutrient uptake

[1]Broadley M R, White P J, Hammond J P, Zelko I, Lux A. Zinc in plants. New Phytologist, 2007, 173: 677-702.

[2]Hacisalihoglu G, Hart J, Wang Y H, Cakmak I, Kochian L V. Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiology, 2003, 131:595-602.

[3]Marschner H. Function of mineral nutrients: Micronutrients Mineral Nutrition of Higher Plants. London: Academic Press, 1986: 269-300.

[4]Alloway B J. Zinc in Soil and Crop Nutrition. Belgium and Paris, France: International Zinc Association, 2008: 66-67.

[5]王衍安, 张方爱, 李 玲, 范伟国, 李建明, 周广波, 张学东. 苹果小叶病发生规律调查报告. 山东林业科技, 2000, 130(5):20-26.

Wang Y A, Zhang F A, Li L, Fang W G, Li J M, Zhou G B, Zhang X D. Survey on the litter leaf disease occurrence of apple. Shandong Forestry Science and Technology, 2000, 130(5):20-26. (in Chinese)

[6]束怀瑞. 果树栽培理论与实践. 北京:中国农业出版社, 2009: 1019-1042.

Shu H R. Fruit Cultivation Theory And Practice. Beijing: China Agricultural Press, 2009: 1019-1042. (in Chinese)

[7]王中英, 古润泽, 杨佩芳, 解思敏. 不同砧木苹果树体内锌含量变化的研究. 落叶果树, 1992(3): 9-12.

Wang Z Y, Gu R Z, Yang P F, Xie S M. Studies on the mineral content of Zn on apple of different rootstocks. DeciduousFruits, 1992(3): 9-12. (in Chinese)

[8]王衍安. 苹果树锌运转分配及缺锌对其生理特性影响的研究[D]. 山东泰安:山东农业大学,2007.

Wang Y A. Studies on the transportation and distribution of zinc inapple trees and the effect of zinc deficiency on itsphysiological characteristics[D]. Taian, Shandong: Shandong Agriculture University, 2007.(in Chinese)

[9]刘 娣, 刘爱红, 王金花, 张元珍, 王衍安, 张福锁, 束怀瑞. 缺锌苹果树有机酸与锌吸收分配的关系. 中国农业科学, 2010, 43(16):3381-3391.

Liu D, Liu A H, Wang J H, Zhang Y Z, Wang Y A, Zhang F S, Shu H R. Organic acids in apple trees and their effects on Zinc uptake and distribution under Zinc deficiency. Scientia Agricultura Sinica, 2010, 43(16):3381-3391. (in Chinese)

[10]Sanders J R. The effect of pH on the total and free ionic concentrations of manganese, zinc and cobalt in soil solutions. European Journal of Soil Science, 1983, 34(2): 315-323.

[11]胡学玉, 李学恒, 谢振翅. 不同青菜品种吸锌能力差异及与根系分泌物的关系. 植物营养与肥料学报, 2002, 8(2):234-238.

Hu X Y, Li X Y, Xie Z C. Differences of Zn uptake in various pakchoi cultivars and relationship between Zn uptake and root exudates. Plant Nutrition and Fertilizer Science, 2002, 8(2):234-238. (in Chinese)

[12]张福锁, 刘书娟, 毛达如, 韩振海. 苹果抗缺铁基因型差异的生理生化指标研究. 园艺学报, 1995,22(1):1-6.

Zhang F S, Liu S J, Mao D R, Han Z H. Study on genotypic differences of physiology and biochemistry in iron-deficiency stress response in Malus. ActaHorticulturae Sinica, 1995, 22 (12): 1-6 (in Chinese)

[13]王人民, 杨晓娥. 水稻锌营养高效基因型筛选的农艺性状指标研究. 中国水稻科学, 2001, 15(3):175-181.

Wang R M, Yang X E Agronomic characteristic index for screening Zn-efficient rice genotype. Chinese Journal of Rice Science, 2001, 15(3): 175-181. (in Chinese)

[14]王景安, 张福锁. 供锌水平对玉米幼苗生长发育及锌含量的影响. 吉林农业大学学报, 2000, 22(1):69-72.

Wang J A, Zhang F S. The effect of supplying different levels of Zn on the growth and Zn concentration of maize seedling. Journal of Jilin Agricultural University, 2000, 22(1):69-72. (in Chinese)

[15]王慧先, 郭俊云, 徐卫红, 张海波, 陈贵青, 张晓璟, 赵 静, 王正银. 不同白菜品种对锌的响应及锌利用效率研究. 植物营养与肥料学报, 2011,17(1): 154-159.

Wang H X, Guo J Y, Xu W H, Zhang H B, Chen G Q, Zhang X J, Zhao J, Wang Z Y. Response and zinc use efficiency of Chinese cabbage under zinc fertilization. Plant Nutrition and Fertilizer Science, 2011, 17(1):154-159. (in Chinese)

[16]郭俊云. 低锌胁迫下油菜锌吸收的基因型差异及机理[D]. 重庆: 西南大学, 2008.

Guo J Y. Genotypic variation of Zn absorption and mechanisms at low Zn stress in rape[D]. Chongqing: Southwest University, 2008. (in Chinese)

[17]齐笑笑, 肖家欣, 徐春丽, 任  群, 申  燕, 杨  慧. 锌胁迫对3种柑橘砧木的生理特性和锌分配的影响.中国农学通报, 2009, 25(24):313-317.

Qi X X, Xiao J X, Xu C L, Ren Q, Shen Y, Yang H. Effects of zinc stress on physiological character and zinc distribution of the three citrus rootstocks. Chinese Agricultural Science Bulletin, 2009, 25(24): 313-317.(in Chinese)

[18]王衍安, 董佃朋, 李 坤, 李新会, 刘 娣, 李德全, 束怀瑞. 铁锌互作对苹果锌、铁吸收分配的影响.中国农业科学, 2007,40(7): 1469-1478.

WangY A, Dong D P, Li K, Li X H, Liu D, Li D Q, Shu H R. Effects of regulation of zinc and iron uptake and distribution in apple trees under zinc and iron interaction. Scientia Agricultura Sinica, 2007,40 (7):1469-1478. (in Chinese)

[19]Tian S K, Lu L L, Yang X E. Stem and leaf sequestration of zinc at the cellular level in the hyper accumulator Sedum alfredii. New Phytologist, 2009, 182: 116-126.

[20]Hendrik K, Enzo L, Zhao F J, McGrath S P. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis haller. Planta, 2000, 212: 75-84.

[21]Karen P, Christophe S, Jean L M. Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multi-contaminated soil. Plant and Soil, 2002, 49: 19-25.

[22]Palmgren M G, Clemens S, Williams L E, Krämer U, Borg S, Jan K, Sanders S D. Zinc biofortification of cereals: problems and solutions. Trends in Plant Science, 2009, 13(9): 464-473.

[23]Han Z H, Wang Q, Shen T. Comparison of some physiological and biochemical characteristics between iron-efficient and inefficient species in the genus Malus. Journal of Plant Nutrition, 1994, 17:230-241.

[24]Yang X E, Römheld V, Marschner H, Chaney R L. Application of chelator buffered nutrient solution technique in studies on zinc nutrition in rice plant (Oryza sativa L.). Plant and Soil, 1994, 163: 85-94.

[25]李合生. 植物生理生化实验原理和技术. 北京:高等教育出版社, 2000.

Li H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000. ( in Chinese)

[26]Zarcinas B A, Carwright B, Spouncer L R. Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. Communications in Soil Science and Plant Analysis, 1987, 18:131-146.

[27]Mishra N P, Misha R K, Singlral C S. Changes in the activities of anti-oxidant enzymes during exposure on intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiologist, 1993, 102: 903-910.

[28]Camp W V. Enhancement or oxidative stress tolerance in transgenic tobacco plants overproducing fe-superoxide dismutase in chloroplasts. Plant Physiologist, 1996, 112: 1703-1714.

[29]Rengel Z, Römheld V. Differential tolerance to Fe and Zn deficiencies in wheat germ plasma. Euphytica, 2000, 113(3): 219-225.

[30]王人民, 杨肖娥, 杨玉爱. 水稻低锌基因型的生长发育和若干重量特性的研究.植物营养与肥料学报, 1998 ,4(3): 284-293.

Wang R M, Yang X E, Yang Y A. A study on the development and the physiological characteristic in rice. Plant Nutrition and Fertilizer Science, 1998, 4(3):284-293. (in Chinese)

[31]Graham R D, Ascher J S, Hynes S C. Selecting zinc efficient cereal genotypes for soils of low zinc status. Plant and Soil, 1992, 146:241-250.

[32]Hacisalihoglu G, Ozturk L, Cakmak I, Welch R, Kochian L. Genotypic variation in common bean in response to zinc deficiency in calcareous soil. Plant and Soil, 2004, 259:71-83.

[33]Gao X P, Zou C Q, Zhang F Z, Sjoerd E A T M, Zee V D, Hoffland E. Tolerance to zinc deficiency in rice correlates with zinc uptake and translocation. Plant and Soil, 2005, 78: 253-261.

[34]Prakash C S, Ajay P S, Surendra K, Ramachandran V, Manoj S, D'souza S F. Comparative study of a Zn-enriched post-methanation bio-sludge and Zn sulfate as Zn sources for a rice-wheat crop rotation. Nutrient Cycling in Agroecosystems, 2009, 85 (2):195-202.

[35]Yoshida S, Ahn J S, Forno D A. Occurrence, diagnosis and correction of zinc deficiency of lowland rice. Soil Science and Plant Nutrition, 1973,19:83-93.

[36]Hacisalihoglu G, Hart J J, Kochian L V. High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiology, 2001, 125: 456-463.

[37]杨居荣, 黄  翌. 植物对重金属的耐性机理. 生态学杂志, 1994, 13(6): 20-26.

Yang J R, Huang Y. Mechanism of heavy metal tolerance of plant. Chinese Journal of Ecology, 1994, 13(6): 20-26. (in Chinese)

[38]吴照辉, 贺立源, 左雪冬. 低磷胁迫下不同基因型水稻阶段性磷营养特征. 中国水稻科学, 2008, 22(1): 71-76.

Wu Z H, He L Y, Zuo X D. Characteristics of phosphorus nutrition of different rice genotypes under low-p stress at different growth stages. Chinese Journal of Rice Science, 2008, 22(1): 71-76. (in Chinese)

[39]林文雄, 石秋梅, 郭玉春. 水稻磷效率差异的生理生化特性. 应用与环境生物学报, 2003, 9(6): 578-583.

Lin W X, Shi Q M, Guo Y C. Physio-biochemical characters of P-efficient differences in rice (Oryza Sativa L).Chinese Journal of Applied and Environmental Biology, 2003, 9(6): 578-583. (in Chinese)

[40]王金花, 刘 飞, 付春霞, 张洪毅, 王衍安. 缺锌胁迫对苹果砧木幼苗形态及其锌积累的影响.园艺学报, 2012, 39 (4): 613-620.

Wang J H, Liu F, Fu C X, Zhang H Y, Wang Y A. Effects of zinc deficiency stress on the root architecture and zinc accumulation of the different apple rootstocks. Acta Horticulturae Sinica, 2012, 39 (4):613-620. (in Chinese)

[41]Godbold D L, Horst W J, Marshner H. Root growth and Zn uptake by two ecotypes of Deschampsia caespitosaas affected by high Zn concentrations. Plant Physiology, 1983, 112: 315-334.

[42]吴  箐,杜锁军,曾晓雯,方晓航,于方明,仇荣亮 锌在长柔毛委陵菜细胞内的分布和化学形态研究. 生态环境, 2006, 15(1): 40-44.

Wu Q, Du S J, Zeng X W, Fang X H, Yu F M, Qiu R L. Subcellular distribution and chemical forms of Potentilla grifithii Hook. Ecology and Environment, 2006, 15(1): 40-44.(in Chinese)
[1] LIU Yuan,YUAN Liang,ZHANG ShuiQin,ZHAO BingQiang,LI YanTing. Effects of Polyaspartic Acid with Different Molecular Weights on Root Growth and Nutrient Uptake of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(13): 2526-2537.
[2] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[3] Mu ZHANG, ShuanHu TANG, QiaoYi HUANG, YuWan PANG, Qiong YI, Xu HUANG, Ping LI, HongTing FU. The Nutrient Supply Characteristics of Co-Application of Slow-Release Urea and Common Urea in Double-Cropping Rice [J]. Scientia Agricultura Sinica, 2018, 51(20): 3985-3995.
[4] WeiJun ZHANG, Tian LI, Lin QIN, Jing ZHAO, JunJie ZHAO, Hong LIU, Jian HOU, ChenYang HAO, DongSheng CHEN, YiQin WEI, RuiLian JIN, XueYong ZHANG. TaDRO, A Gene Associated with Wheat Root Architectures, Its Global Distribution and Evolution in Breeding [J]. Scientia Agricultura Sinica, 2018, 51(10): 1815-1829.
[5] HUANG Ping, CAO Hui, ZHANG RuiXue, JI Tuo, LI YanGe, YANG HongQiang. Different Response of Apple Root Physiology and Leaf Photosynthesis to Mulching of Different Materials [J]. Scientia Agricultura Sinica, 2018, 51(1): 160-169.
[6] CHEN Xin-Xin-1, DING Qi-Shuo-1, 2 , DING Wei-Min-1, TIAN Yong-Chao-2, ZHU Yan-2, CAO Wei-Xing-2. Measurement and Analysis of 3D Wheat Root System Architecture with a Virtual Plant Tool Kit [J]. Scientia Agricultura Sinica, 2014, 47(8): 1481-1488.
[7] FAN Wei-guo, YANG Hong-qiang. Response of Root Architecture, Nutrients Uptake and Shoot Growth of Malus hupehensis Seedling to the Shape of Root Zone [J]. Scientia Agricultura Sinica, 2014, 47(19): 3907-3913.
[8] XIAO Yuan-Song-1, PENG Fu-Tian-1, ZHANG Ya-Fei-1, QI Yu-Ji-1, WANG Gui-Fang-1, WANG Xin-Liang-2, SHU Huai-Rui-1. Effects of Aeration Cultivation on Root Architecture and Nitrogen Metabolism of Young Peach Trees [J]. Scientia Agricultura Sinica, 2014, 47(10): 1995-2002.
[9] NING Yun-Wang, MA Hong-Bo, XU Xian-Ju, WANG Ji-Dong, ZHANG Hui, XU Jian-Ping, CHEN Jie, ZHANG Yong-Chun. Effects of Deficiency of N, P, or K on Growth Traits and Nutrient Uptakes of Sweetpotato at Early Growing Stage [J]. Scientia Agricultura Sinica, 2013, 46(3): 486-495.
[10] HAN Tian-Tian, HU Yan-Li, MAO Zhi-Quan, SHEN Xiang, SHU Huai-Rui. Effects of Different Soil Interfaces on Apple Root Architecture and Soil Properties [J]. Scientia Agricultura Sinica, 2012, 45(17): 3639-3645.
[11] SU Wei; LU Jian-wei; ZHOU Guang-sheng; LI Xiao-kun; HAN Zi-hang; LEI Hai-xia. Effect of No-Tillage and Direct Sowing Density on Growth, Nutrient Uptake and Yield of Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2011, 44(7): 1519-1526.
[12] LI Wen-xi,LU Jian-wei,CHEN Fang,LI Xiao-kun
. Effect of N, P, K Application on Yield, Nutrient and Water Utilization Under Sudangrass and Ryegrass Rotation Regime
[J]. Scientia Agricultura Sinica, 2010, 43(7): 1414-1422 .
[13]

. Relationship Between Nitrogen Efficiency and Root Architecture of Maize Plants: Simulation and Application
[J]. Scientia Agricultura Sinica, 2009, 42(3): 843-853 .
[14] . Nutrient Deficiency Alter Root Architecture of Young Seedlings in M. hupehensis Rehd. [J]. Scientia Agricultura Sinica, 2007, 40(1): 161-166 .
[15] ,,. Modelling the relationship between summer maize NPK uptake and yield on the basis of the soil fertility indices [J]. Scientia Agricultura Sinica, 2005, 38(09): 1834-1840 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!