Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (21): 4694-4708.doi: 10.3864/j.issn.0578-1752.2021.21.018
• RESEARCH NOTES • Previous Articles
YE FangTing(),PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai(
)
[1] |
ZHANG L S, CHEN F, ZHANG X T, LI Z, ZHAO Y Y, LOHAUS R, CHANG X J, DONG W, HO S Y W, LIU X, SONG A X, CHEN J H, GUO W L, WANG Z J, ZHUANG Y Y, WANG H F, CHEN X Q, HU J A, LIU Y H, QIN Y et al. The water lily genome and the early evolution of flowering plants. Nature, 2020, 577(7788):79-84.
doi: 10.1038/s41586-019-1852-5 |
[2] |
DRÖGE-LASER W, SNOEK B L, SNEL B, WEISTE C. The Arabidopsis bZIP transcription factor family-an update. Current Opinion in Plant Biology, 2018, 45(Pt A):36-49.
doi: 10.1016/j.pbi.2018.05.001 |
[3] | 刘慧洁, 徐恒, 邱文怡, 李晓芳, 张华, 朱英, 李春寿, 王良超. bZIP转录因子在植物生长发育及非生物逆境响应的作用. 浙江农业学报, 2019, 31(7):1205-1214. |
LIU H J, XU H, QIU W Y, LI X F, ZHANG H, ZHU Y, LI C S, WANG L C. Roles of bZIP transcription factors in plant growth and development and abiotic stress response. Acta Agriculturae Zhejiangensis, 2019, 31(7):1205-1214. (in Chinese) | |
[4] |
JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, VICENTE- CARBAJOSA J, TIEDEMANN J, KROJ T, PARCY F. bZIP transcription factors in Arabidopsis. Trends in Plant Science, 2002, 7(3):106-111.
doi: 10.1016/S1360-1385(01)02223-3 |
[5] | 王金英, 丁峰, 潘介春, 张树伟, 杨亚涵, 黄幸, 范志毅, 李琳, 王颖. 植物bZIP转录因子家族的研究进展. 热带农业科学, 2019, 39(6):39-45. |
WANG J Y, DING F, PAN J C, ZHANG S W, YANG Y H, HUANG X, FAN Z Y, LI L, WANG Y. Research progress of bZIP lineage transcription factors in plant. Chinese Journal of Tropical Agriculture, 2019, 39(6):39-45. (in Chinese) | |
[6] | SORNARAJ P, LUANG S, LOPATO S, HRMOVA M. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function. Biochimica et Biophysica Acta, 2016, 1860(1 Pt A):46-56. |
[7] | 崔荣秀, 张议文, 陈晓倩, 谷彩红, 张荃. 植物bZIP参与胁迫应答调控的最新研究进展. 生物技术通报, 201, 35(2):143-155. |
CUI R X, ZHANG Y W, CHEN X Q, GU C H, ZHANG Q. The Latest Research Progress on the Stress Responses of bZIP Involved in Plants. Biotechnology Bulletin, 2019, 35(2):143-155. (in Chinese) | |
[8] | DAS P, LAKRA N, NUTAN K K, SINGLA-PAREEK S L, PAREEK A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice (New York, NY), 2019, 12(1):58. |
[9] |
RONG S Y, WU Z Y, CHENG Z Z, ZHANG S, LIU H, HUANG Q M. Genome-wide identification, evolutionary patterns, and expression analysis of bZIP gene family in olive (Olea europaea L.). Genes (Basel), 2020, 11(5):510.
doi: 10.3390/genes11050510 |
[10] |
WANG Z H, YAN L Y, WAN L Y, HUAI D X, KANG Y P, SHI L, JIANG H F, LEI Y, LIAO B S. Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut. BMC Genomics, 2019, 20(1):51.
doi: 10.1186/s12864-019-5434-6 |
[11] | LIU Y H, CHAI M N, ZHANG M, HE Q, SU Z X, PRIYADARSHANI S V G N, LIU L P, DONG G X, QIN Y A. Genome-wide analysis, characterization, and expression profile of the basic leucine zipper transcription factor family in pineapple. International Journal of Genomics, 2020, 2020:3165958. |
[12] |
AZEEM F, TAHIR H, IJAZ U, SHAHEEN T. A genome-wide comparative analysis of bZIP transcription factors in G. arboreum and G. raimondii (Diploid ancestors of present-day cotton). Physiology and Molecular Biology of Plants, 2020, 26(3):433-444.
doi: 10.1007/s12298-020-00771-9 |
[13] |
WANG W W, WANG Y F, ZHANG S M, XIE K L, ZHANG C, XI Y J, SUN F L. Genome-wide analysis of the abiotic stress-related bZIP family in switchgrass. Molecular Biology Reports, 2020, 47(6):4439-4454.
doi: 10.1007/s11033-020-05561-w |
[14] |
FAN K, WANG M, MIAO Y, NI M, BIBI N, YUAN S N, LI F, WANG X D. Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One, 2014, 9(11):e111837.
doi: 10.1371/journal.pone.0111837 |
[15] |
PERTEA M, KIM D, PERTEA G M, LEEK J T, SALZBERG S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 2016, 11(9):1650-1667.
doi: 10.1038/nprot.2016.095 |
[16] | CHAI W B, SI W N, JI W, QIN Q Q, ZHAO M L, JIANG H Y. Genome-wide investigation and expression profiling of HD-zip transcription factors in foxtail millet (Setaria italica L.). BioMed Research International, 2018, 2018:8457614. |
[17] |
YANG Y, YU T F, MA J, CHEN J, ZHOU Y B, CHEN M, MA Y Z, WEI W L, XU Z S. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. International Journal of Molecular Sciences, 2020, 21(2):670.
doi: 10.3390/ijms21020670 |
[18] | 朱芸晔, 薛冰, 王安全, 王文杰, 周昂, 黄胜雄, 刘永胜. 番茄bZIP转录因子家族的生物信息学分析. 应用与环境生物学报, 2014, 20(5):767-774. |
ZHU Y Y, XUE B, WANG A Q, WANG W J, ZHOU A, HUANG S X, LIU Y S. Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum. Chinese Journal of Applied & Environmental Biology, 2014, 20(5):767-774. (in Chinese) | |
[19] | 王升级, 孙赫, 党慧. 盐胁迫条件下杨树bZIP转录因子全基因组分析. 山西农业大学学报(自然科学版), 2018, 38(8):1-7, 14. |
WANG S J, SUN H, DANG H. Genome-wide analysis of the bZIP transcription factors in Populus in response to salt stress. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(8):1-7, 14. (in Chinese) | |
[20] | 高斌, 陈娟娟, 崔顺立, 侯名语, 穆国俊, 陈焕英, 杨鑫雷, 刘立峰. 花生bZIP基因家族全基因组鉴定及抗旱表达分析. 植物遗传资源学报, 2020, 21(1):174-191. |
GAO B, CHEN J J, CUI S L, HOU M Y, MU G J, CHEN H Y, YANG X L, LIU L F. Genome-wide identification and expression analysis of bZIP gene family under drought stress in peanut. Journal of Plant Genetic Resources, 2020, 21(1):174-191. (in Chinese) | |
[21] |
BAILLO E H, KIMOTHO R N, ZHANG Z B, XU P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes (Basel), 2019, 10:771.
doi: 10.3390/genes10100771 |
[22] |
E Z G, ZHANG Y P, ZHOU J H, WANG L. Mini review roles of the bZIP gene family in rice. Genetics and Molecular Research, 2014, 13(2):3025-3036.
doi: 10.4238/2014.April.16.11 pmid: 24782137 |
[23] |
PAN F, WU M, HU W F, LIU R, YAN H W, XIANG Y. Genome-Wide Identification and Expression Analyses of the bZIP Transcription Factor Genes in moso bamboo (Phyllostachys edulis). International Journal of Molecular Sciences, 2019, 20(9):2203.
doi: 10.3390/ijms20092203 |
[24] |
ZHANG M, LIU Y H, SHI H, GUO M L, CHAI M N, HE Q, YAN M K, CAO D, ZHAO L H, CAI H Y, QIN Y A. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genomics, 2018, 19(1):159.
doi: 10.1186/s12864-018-4511-6 |
[25] |
YU J, HU S N, WANG J, KA-SHU G, LI S G, LIU B, DENG Y J, DAI L, ZHOU Y, ZHANG X Q, CAO M L, LIU J, SUN J D, TANG J B, CHEN Y J, HUANG X B, LIN W, YE C, TONG W, CONG L J, et al. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565):79-92.
doi: 10.1126/science.1068037 |
[26] |
SCHMUTZ J, CANNON S B, SCHLUETER J, MA J X, MITROS T, NELSON W, HYTEN D L, SONG Q J, THELEN J J, CHENG J L, XU D, HELLSTEN U, MAY G D, YU Y, SAKURAI T, UMEZAWA T, BHATTACHARYYA M K, SANDHU D, VALLIYODAN B, LINDQUIST E, et al. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463(7278):178-183.
doi: 10.1038/nature08670 |
[27] |
WEI K F, CHEN J, WANG Y M, CHEN Y H, CHEN S X, LIN Y N, PAN S, ZHONG X J, XIE D X. Genome-wide analysis of bZIP-encoding genes in maize. DNA Research, 2012, 19(6):463-476.
doi: 10.1093/dnares/dss026 |
[28] |
LIU M Y, WEN Y D, SUN W J, MA Z T, HUANG L, WU Q, TANG Z Z, BU T L, LI C L, CHEN H. Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat. BMC Genomics, 2019, 20(1):483.
doi: 10.1186/s12864-019-5882-z |
[29] |
LI D Y, FU F Y, ZHANG H J, SONG F M. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomics, 2015, 16:771.
doi: 10.1186/s12864-015-1990-6 |
[30] |
ZHAO P, YE M H, WANG R Q, WANG D D, CHEN Q. Systematic identification and functional analysis of potato (Solanum tuberosum L.) bZIP transcription factors and overexpression of potato bZIP transcription factor StbZIP-65 enhances salt tolerance. International Journal of Biological Macromolecules, 2020, 161:155-167.
doi: 10.1016/j.ijbiomac.2020.06.032 |
[31] |
FAN K, CHEN Y R, MAO Z J, FANG Y, LI Z W, LIN W W, ZHANG Y Q, LIU J P, HUANG J W, LIN W X. Pervasive duplication, biased molecular evolution and comprehensive functional analysis of the PP2C family in Glycine max. BMC Genomics, 2020, 21(1):465.
doi: 10.1186/s12864-020-06877-4 |
[32] |
FAN K, MAO Z J, ZHENG J X, CHEN Y R, LI Z W, LIN W W, ZHANG Y Q, HUANG J W, LIN W X. Molecular evolution and expansion of the KUP family in the allopolyploid cotton species Gossypium hirsutum and Gossypium barbadense. Frontiers in Plant Science, 2020, 11:545042.
doi: 10.3389/fpls.2020.545042 |
[33] |
LIANG C Z, MENG Z H, MENG Z G, MALIK W, YAN R, LWIN K M, LIN F Z, WANG Y A, SUN G Q, ZHOU T, ZHU T, LI J Y, JIN S X, GUO S D, ZHANG R. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Scientific Reports, 2016, 6:35040.
doi: 10.1038/srep35040 |
[34] |
LIM C W, BAEK W, JUNG J, KIM J H, LEE S C. Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences, 2015, 16(7):15251-15270.
doi: 10.3390/ijms160715251 |
[35] |
NAKASHIMA K, YAMAGUCHI-SHINOZAKI K. ABA signaling in stress-response and seed development. Plant Cell Reports, 2013, 32(7):959-970.
doi: 10.1007/s00299-013-1418-1 |
[36] | 郭贵华, 刘海艳, 李刚华, 刘明, 李岩, 王绍华, 刘正辉, 唐设, 丁艳锋. ABA缓解水稻孕穗期干旱胁迫生理特性的分析. 中国农业科学, 2014, 47(22):4380-4391. |
GUO G H, LIU H Y, LI G H, LIU M, LI Y, WANG S H, LIU Z H, TANG S, DING Y F. Analysis of physiological characteristics about ABA alleviating rice booting stage drought stress. Scientia Agricultura Sinica, 2014, 47(22):4380-4391. (in Chinese) | |
[37] | 山雨思, 代欢欢, 何潇, 辛正琦, 吴能表. 外源茉莉酸甲酯和水杨酸对盐胁迫下颠茄生理特性和次生代谢的影响. 植物生理学报, 2019, 55(9):1335-1346. |
SHAN Y S, DAI H H, HE X, XIN Z Q, WU N B. Effects of exogenous methyl jasmonate and salicylic acid on physiological characteristics and secondary metabolism of Atropa belladonna under NaCl stress. Plant Physiology Communications, 2019, 55(9):1335-1346. (in Chinese) | |
[38] |
YU X X, ZHANG W J, ZHANG Y, ZHANG X J, LANG D Y, ZHANG X H. The roles of methyl jasmonate to stress in plants. Functional Plant Biology, 2019, 46(3):197-212.
doi: 10.1071/FP18106 |
[39] |
HO T T, MURTHY H N, PARK S Y. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. International Journal of Molecular Sciences, 2020, 21(3):716.
doi: 10.3390/ijms21030716 |
[40] |
SCHLÖGL P S, NOGUEIRA F T S, DRUMMOND R, FELIX J M, DE ROSA V E, VICENTINI R, LEITE A, ULIAN E C, MENOSSI M. Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Reports, 2008, 27(2):335-345.
doi: 10.1007/s00299-007-0468-7 |
[41] |
YANG Z M, SUN J, CHEN Y, ZHU P P, ZHANG L, WU S Y, MA D F, CAO Q H, LI Z Y, XU T. Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida. BMC Genetics, 2019, 20(1):41.
doi: 10.1186/s12863-019-0743-y |
[42] |
MURMU J, BUSH M J, DELONG C, LI S T, XU M L, KHAN M, MALCOLMSON C, FOBERT P R, ZACHGO S, HEPWORTH S R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiology, 2010, 154(3):1492-1504.
doi: 10.1104/pp.110.159111 |
[43] |
XU D B, CHEN M, MA Y N, XU Z S, LI L C, CHEN Y F, MA Y Z. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis. PLoS ONE, 2015, 10(1):e0116385.
doi: 10.1371/journal.pone.0116385 |
[44] |
LIU D F, SHI S P, HAO Z J, XIONG W T, LUO M Z. A homologue of Arabidopsis VIP1, may positively regulate JA levels by directly targetting the genes in JA signaling and metabolism pathway in rice. International Journal of Molecular Sciences, 2019, 20(9):2360.
doi: 10.3390/ijms20092360 |
[1] | MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202. |
[2] | ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624. |
[3] | QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561. |
[4] | ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471. |
[5] | HaiXia ZHENG,YuLin GAO,FangMei ZHANG,ChaoXia YANG,Jian JIANG,Xun ZHU,YunHui ZHANG,XiangRui LI. Cloning of Heat Shock Protein Gene Ld-hsp70 in Leptinotarsa decemlineata and Its Expression Characteristics under Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(6): 1163-1175. |
[6] | TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825. |
[7] | LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336. |
[8] | XU Shu,LI Ling,ZHANG SiMeng,CAO RuXia,CHEN LingLing,CUI Peng,Lü ZunFu,WU LieHong,LU GuoQuan. Evaluation of Genotype Differences of Cold Tolerance of Sweet Potato Seedlings by Subordinate Function Value Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2929-2938. |
[9] | XU BingXia, YIN MeiQiang, WEN YinYuan, PEI ShuaiShuai, KE ZhenJin, ZHANG Bin, YUAN XiangYang. Gene Expression Profiling of Foxtail Millet (Setaria italica L.) Under Drought Stress During Germination [J]. Scientia Agricultura Sinica, 2018, 51(8): 1431-1447. |
[10] | LIU XiaoQiang, JIANG HongBo, LI HuiMin, XIONG Ying, WANG JinJun. The cDNA Cloning, Expression Profiling and Functional Characterization of Octopamine Receptor 3 (TcOctβR3) in Tribolium castaneum [J]. Scientia Agricultura Sinica, 2018, 51(7): 1315-1324. |
[11] | HongHong HE,ZongHuan MA,YuanXia ZHANG,Juan ZHANG,ShiXiong LU,ZhiQiang ZHANG,Xin ZHAO,YuXia WU,Juan MAO. Identification and Expression Analysis of LBD Gene Family in Grape [J]. Scientia Agricultura Sinica, 2018, 51(21): 4102-4118. |
[12] | YANG Li-qun, JIA Le-mei, TANG Mei, CHEN Yi-biao, CUI Hong-juan. Identification and Expression Analysis of BmYki-1 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2016, 49(8): 1607-1616. |
[13] | LI Sheng-nan, QIN Zhi-wei, XIN Ming, ZHOU Xiu-yan. Expression and Functional Analysis of CsWRKY30 in Cucumber Under Propamocarb Stress [J]. Scientia Agricultura Sinica, 2016, 49(7): 1277-1288. |
[14] | ZHANG Zhi-ke, WU Sheng-yong, LEI Zhong-ren. Cloning, Sequence Analysis and Expression Profile of an Odorant Binding Protein Gene in Western Flower Thrips (Frankliniella occidentalis) [J]. Scientia Agricultura Sinica, 2016, 49(6): 1106-1116. |
[15] | WU Yi-chen, DU Xing, LI Ping-hua, WU Yan, WANG Jun-shun, LIU Hong-lin, LI Qi-fa. Sequence Cloning, Tissue Expression Profile and Polymorphism of VRTN Gene in Suhuai Pig [J]. Scientia Agricultura Sinica, 2016, 49(18): 3639-3648. |
|