Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (21): 4694-4708.doi: 10.3864/j.issn.0578-1752.2021.21.018

• RESEARCH NOTES • Previous Articles    

Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata

YE FangTing(),PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai()   

  1. College of Agriculture, FuJian Agriculture and Forestry University/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002
  • Received:2021-01-18 Accepted:2021-06-28 Online:2021-11-01 Published:2021-11-09
  • Contact: Kai FAN E-mail:fangtingye@163.com;fankai@fafu.edu.cn

Abstract:

【Objective】The genome-wide analysis of the bZIP family in Nymphaea colorata was used to identify the bZIP (basic leucine zipper) family members in waterlily, and then which were further analyzed. This study revealed molecular evolution and function of the bZIP family in waterlily.【Method】The genome sequence of N. colorata was downloaded from Waterlily Pond database. The bZIP members in waterlily were identified by using HMMER 3.0 program, and the conserved bZIP domain was verified by using CDD program. The phylogenetic tree was constructed by the IQ-tree software. The ExPASy and SOPMA online website were performed to analyze protein structure characters. The conserved motifs were identified by using MEME program. The gene duplication events were found and visualized by the MCScan and Circos software. Transcriptome data of NcbZIP members were obtained from the NCBI website (SRA Study: SRP222853). The Pearson Correlation Coefficient (PCC) about the expression levels of the NcbZIP family members was calculated by using R software, and the network of the expression levels in the NcbZIP family was analyzed by using Cytoscape software.【Result】46 bZIP members were identified in N. colorata, and were named from NcbZIP01 to NcbZIP46 according to their chromosome distributions. The A subfamily contained the most NcbZIP members (11 NcbZIPs). There were 10 subfamilies (A, B, C, D, E, G, H, I, J and S) according to the phylogenetic analysis. The protein length in the NcbZIP family was from 101 aa to 1 898 aa, and the molecular weight ranged from 12.04 kD to 214.64 kD. The NcbZIP members from same subfamily had the similar distributions of the conserved motifs and gene structures. Waterlily had 14 chromosomes, and 46 NcbZIP members were unevenly distributed across 10 chromosomes. Chromosome 1 had the highest number of NcbZIP members. There were 10 gene duplication events in the NcbZIP family, including nine segmental duplication events and one tandem duplication event. The A subfamily had the most number of the gene duplication events (three). Based on the expression patterns in different tissues, the NcbZIP family could be divided into three groups (I, II and III). The NcbZIP members in Group I were highly expressed in all tissues, while the NcbZIP members in group II were not expressed in almost all tissues. The NcbZIP members in group III had tissue-specific expression profiles, and most of NcbZIP members in C, D and E subfamilies belonged to group III. The PPC analysis about the expression levels of NcbZIP members indicated NcbZIP45 had the highest connection with other members.【Conclusion】46 NcbZIP members were identified in Nymphaea colorata, and were unevenly distributed in 14 chromosomes. The NcbZIP family could be divided into 10 subfamilies with conserved motifs distributions and diverse expression levels. The current study could lay the foundation on the functional analysis of the bZIP family in N. colorata.

Key words: Nymphaea colorata, bZIP family, molecular evolution, expression profile, function analysis

Fig. 1

Phylogenetic analysis of the bZIP family in Arabidopsis thaliana and Nymphaea colorata"

Table 1

The identification and structural analysis of NcbZIP members in this study"

名称
Name
位点名称
Locus name
亚家族
Subfamily
蛋白质长度
Protein length (aa)
分子量
Molecular weight (kD)
理论pI
Theoretical pI
α-螺旋
α -helix
延伸链
Extended strand
β-折叠
β -turn
无规则卷曲
Random coil
NcbZIP01 GWHPAAYW000832 D 418 46.54 6.09 215 19 9 175
NcbZIP02 GWHPAAYW000931 G 537 59.56 9.08 200 46 16 275
NcbZIP03 GWHPAAYW000954 A 425 45.47 9.24 155 44 25 201
NcbZIP04 GWHPAAYW000981 D 564 62.21 7.12 260 47 19 238
NcbZIP05 GWHPAAYW001299 C 415 44.86 6.11 164 6 5 240
NcbZIP06 GWHPAAYW001709 J 377 41.80 5.40 151 67 22 137
NcbZIP07 GWHPAAYW002908 A 336 37.46 7.80 115 19 5 197
NcbZIP08 GWHPAAYW002911 A 336 37.46 7.80 115 19 5 197
NcbZIP09 GWHPAAYW002993 D 461 50.44 7.20 242 30 7 182
NcbZIP10 GWHPAAYW003042 B 792 86.18 5.84 179 94 28 491
NcbZIP11 GWHPAAYW003339 E 266 29.16 6.15 107 16 10 133
NcbZIP12 GWHPAAYW011330 S 152 17.55 5.91 98 5 2 47
NcbZIP13 GWHPAAYW014950 S 1898 214.64 9.00 712 280 94 812
NcbZIP14 GWHPAAYW015527 A 167 18.44 9.48 87 22 5 53
NcbZIP15 GWHPAAYW015722 I 428 47.31 6.74 145 17 11 255
NcbZIP16 GWHPAAYW015723 I 217 23.98 9.92 72 37 9 99
NcbZIP17 GWHPAAYW019618 E 450 49.50 5.62 147 27 16 260
NcbZIP18 GWHPAAYW020485 S 160 18.11 5.48 94 6 4 56
NcbZIP19 GWHPAAYW020561 I 372 40.4 5.69 154 21 13 184
NcbZIP20 GWHPAAYW021201 H 166 18.22 9.90 76 7 0 83
NcbZIP21 GWHPAAYW021532 C 385 40.82 8.58 164 8 5 208
NcbZIP22 GWHPAAYW025680 A 310 34.00 5.30 110 24 6 170
NcbZIP23 GWHPAAYW025682 D 178 20.14 9.19 79 21 1 77
NcbZIP24 GWHPAAYW025732 A 488 51.90 9.37 141 55 17 275
NcbZIP25 GWHPAAYW025769 A 149 16.94 9.52 78 16 16 39
NcbZIP26 GWHPAAYW026086 D 429 46.68 7.70 211 30 15 173
NcbZIP27 GWHPAAYW026335 S 195 22.17 5.82 105 10 2 78
NcbZIP28 GWHPAAYW026612 G 371 39.05 8.48 118 27 9 217
NcbZIP29 GWHPAAYW026862 B 755 82.16 5.57 147 90 21 497
NcbZIP30 GWHPAAYW027461 G 298 30.89 4.79 94 19 6 179
NcbZIP31 GWHPAAYW027688 I 541 59.03 6.30 183 22 12 324
NcbZIP32 GWHPAAYW028327 A 268 30.70 6.11 132 30 5 101
NcbZIP33 GWHPAAYW004093 A 462 49.89 7.11 124 55 14 269
NcbZIP34 GWHPAAYW004840 A 362 40.15 6.13 143 24 10 185
NcbZIP35 GWHPAAYW004844 D 364 40.64 7.00 227 21 8 108
NcbZIP36 GWHPAAYW004881 G 283 32.04 8.68 147 54 24 58
NcbZIP37 GWHPAAYW005079 H 168 18.92 6.64 78 7 6 77
NcbZIP38 GWHPAAYW005229 E 452 49.64 5.71 162 33 9 248
NcbZIP39 GWHPAAYW005452 S 169 18.77 5.53 103 5 2 59
NcbZIP40 GWHPAAYW005509 I 355 38.40 5.68 145 28 11 171
NcbZIP41 GWHPAAYW005714 G 545 60.52 8.75 175 66 22 282
NcbZIP42 GWHPAAYW005783 C 410 44.35 5.67 153 36 17 204
NcbZIP43 GWHPAAYW005814 A 101 12.04 8.96 81 4 0 16
NcbZIP44 GWHPAAYW005854 D 511 56.99 7.75 245 23 19 224
NcbZIP45 GWHPAAYW009588 I 334 36.76 7.01 137 19 13 165
NcbZIP46 GWHPAAYW028567 C 264 28.72 6.13 119 10 7 128

Fig. 2

Identification of conserved motif (left) and gene structure (right) in the NcbZIP family"

Fig. 3

Chromosomal localization of bZIP members in waterlily"

Fig. 4

Syntenic analysis and Ks distribution of the duplicated bZIP members in Nymphaea colorata A: Syntenic analysis of the duplicated bZIP members in Nymphaea colorata; B: Subfamily distribution of the duplicated bZIP members in waterlily; C: Ks distribution of the duplicated bZIPs in waterlily, the arrow points topeak value of Ks"

Table 2

Ka and Ks analysis for the duplicated NcbZIP in N. colorata"

复制基因1
Duplicated gene 1
复制基因2
Duplicated gene 2
亚家族
Subfamily
Ka
Ka
Ks
Ks
Ka/Ks
Ka/Ks
纯化选择
Purifying selection
复制类型
Duplicated type
GWHPAAYW001299 GWHPAAYW021532 C 0.32 1.24 0.26 Yes Segmental duplication
片段复制
GWHPAAYW000931 GWHPAAYW005714 G 0.36 0.95 0.38 Yes Segmental duplication
片段复制
GWHPAAYW000954 GWHPAAYW005814 A 0.53 2.19 0.24 Yes Segmental duplication
片段复制
GWHPAAYW000981 GWHPAAYW005854 D 0.11 0.78 0.15 Yes Segmental duplication
片段复制
GWHPAAYW015527 GWHPAAYW025769 A 0.61 1.84 0.33 Yes Segmental duplication
片段复制
GWHPAAYW020485 GWHPAAYW005452 S 0.09 1.29 0.07 Yes Segmental duplication
片段复制
GWHPAAYW020561 GWHPAAYW005509 I 0.20 1.04 0.19 Yes Segmental duplication
片段复制
GWHPAAYW019618 GWHPAAYW005229 E 0.22 1.29 0.17 Yes Segmental duplication
片段复制
GWHPAAYW025680 GWHPAAYW004840 A 0.22 1.61 0.14 Yes Segmental duplication
片段复制
GWHPAAYW015722 GWHPAAYW015723 I 0.28 0.96 0.30 Yes Tandem duplication
串联复制

Fig. 5

Stress-responsive regulatory elements in the promoter regions of NcbZIP members"

Fig. 6

Expression patterns of NcbZIP members in different tissues"

Fig. 7

Heat map of PCC about the expression profiles of the bZIP family in N. colorata"

Fig. 8

The network of the bZIP family in N. colorata"

[1] ZHANG L S, CHEN F, ZHANG X T, LI Z, ZHAO Y Y, LOHAUS R, CHANG X J, DONG W, HO S Y W, LIU X, SONG A X, CHEN J H, GUO W L, WANG Z J, ZHUANG Y Y, WANG H F, CHEN X Q, HU J A, LIU Y H, QIN Y et al. The water lily genome and the early evolution of flowering plants. Nature, 2020, 577(7788):79-84.
doi: 10.1038/s41586-019-1852-5
[2] DRÖGE-LASER W, SNOEK B L, SNEL B, WEISTE C. The Arabidopsis bZIP transcription factor family-an update. Current Opinion in Plant Biology, 2018, 45(Pt A):36-49.
doi: 10.1016/j.pbi.2018.05.001
[3] 刘慧洁, 徐恒, 邱文怡, 李晓芳, 张华, 朱英, 李春寿, 王良超. bZIP转录因子在植物生长发育及非生物逆境响应的作用. 浙江农业学报, 2019, 31(7):1205-1214.
LIU H J, XU H, QIU W Y, LI X F, ZHANG H, ZHU Y, LI C S, WANG L C. Roles of bZIP transcription factors in plant growth and development and abiotic stress response. Acta Agriculturae Zhejiangensis, 2019, 31(7):1205-1214. (in Chinese)
[4] JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, VICENTE- CARBAJOSA J, TIEDEMANN J, KROJ T, PARCY F. bZIP transcription factors in Arabidopsis. Trends in Plant Science, 2002, 7(3):106-111.
doi: 10.1016/S1360-1385(01)02223-3
[5] 王金英, 丁峰, 潘介春, 张树伟, 杨亚涵, 黄幸, 范志毅, 李琳, 王颖. 植物bZIP转录因子家族的研究进展. 热带农业科学, 2019, 39(6):39-45.
WANG J Y, DING F, PAN J C, ZHANG S W, YANG Y H, HUANG X, FAN Z Y, LI L, WANG Y. Research progress of bZIP lineage transcription factors in plant. Chinese Journal of Tropical Agriculture, 2019, 39(6):39-45. (in Chinese)
[6] SORNARAJ P, LUANG S, LOPATO S, HRMOVA M. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function. Biochimica et Biophysica Acta, 2016, 1860(1 Pt A):46-56.
[7] 崔荣秀, 张议文, 陈晓倩, 谷彩红, 张荃. 植物bZIP参与胁迫应答调控的最新研究进展. 生物技术通报, 201, 35(2):143-155.
CUI R X, ZHANG Y W, CHEN X Q, GU C H, ZHANG Q. The Latest Research Progress on the Stress Responses of bZIP Involved in Plants. Biotechnology Bulletin, 2019, 35(2):143-155. (in Chinese)
[8] DAS P, LAKRA N, NUTAN K K, SINGLA-PAREEK S L, PAREEK A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice (New York, NY), 2019, 12(1):58.
[9] RONG S Y, WU Z Y, CHENG Z Z, ZHANG S, LIU H, HUANG Q M. Genome-wide identification, evolutionary patterns, and expression analysis of bZIP gene family in olive (Olea europaea L.). Genes (Basel), 2020, 11(5):510.
doi: 10.3390/genes11050510
[10] WANG Z H, YAN L Y, WAN L Y, HUAI D X, KANG Y P, SHI L, JIANG H F, LEI Y, LIAO B S. Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut. BMC Genomics, 2019, 20(1):51.
doi: 10.1186/s12864-019-5434-6
[11] LIU Y H, CHAI M N, ZHANG M, HE Q, SU Z X, PRIYADARSHANI S V G N, LIU L P, DONG G X, QIN Y A. Genome-wide analysis, characterization, and expression profile of the basic leucine zipper transcription factor family in pineapple. International Journal of Genomics, 2020, 2020:3165958.
[12] AZEEM F, TAHIR H, IJAZ U, SHAHEEN T. A genome-wide comparative analysis of bZIP transcription factors in G. arboreum and G. raimondii (Diploid ancestors of present-day cotton). Physiology and Molecular Biology of Plants, 2020, 26(3):433-444.
doi: 10.1007/s12298-020-00771-9
[13] WANG W W, WANG Y F, ZHANG S M, XIE K L, ZHANG C, XI Y J, SUN F L. Genome-wide analysis of the abiotic stress-related bZIP family in switchgrass. Molecular Biology Reports, 2020, 47(6):4439-4454.
doi: 10.1007/s11033-020-05561-w
[14] FAN K, WANG M, MIAO Y, NI M, BIBI N, YUAN S N, LI F, WANG X D. Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One, 2014, 9(11):e111837.
doi: 10.1371/journal.pone.0111837
[15] PERTEA M, KIM D, PERTEA G M, LEEK J T, SALZBERG S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 2016, 11(9):1650-1667.
doi: 10.1038/nprot.2016.095
[16] CHAI W B, SI W N, JI W, QIN Q Q, ZHAO M L, JIANG H Y. Genome-wide investigation and expression profiling of HD-zip transcription factors in foxtail millet (Setaria italica L.). BioMed Research International, 2018, 2018:8457614.
[17] YANG Y, YU T F, MA J, CHEN J, ZHOU Y B, CHEN M, MA Y Z, WEI W L, XU Z S. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. International Journal of Molecular Sciences, 2020, 21(2):670.
doi: 10.3390/ijms21020670
[18] 朱芸晔, 薛冰, 王安全, 王文杰, 周昂, 黄胜雄, 刘永胜. 番茄bZIP转录因子家族的生物信息学分析. 应用与环境生物学报, 2014, 20(5):767-774.
ZHU Y Y, XUE B, WANG A Q, WANG W J, ZHOU A, HUANG S X, LIU Y S. Comprehensive bioinformatic analysis of bZIP transcription factors in Solanum lycopersicum. Chinese Journal of Applied & Environmental Biology, 2014, 20(5):767-774. (in Chinese)
[19] 王升级, 孙赫, 党慧. 盐胁迫条件下杨树bZIP转录因子全基因组分析. 山西农业大学学报(自然科学版), 2018, 38(8):1-7, 14.
WANG S J, SUN H, DANG H. Genome-wide analysis of the bZIP transcription factors in Populus in response to salt stress. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(8):1-7, 14. (in Chinese)
[20] 高斌, 陈娟娟, 崔顺立, 侯名语, 穆国俊, 陈焕英, 杨鑫雷, 刘立峰. 花生bZIP基因家族全基因组鉴定及抗旱表达分析. 植物遗传资源学报, 2020, 21(1):174-191.
GAO B, CHEN J J, CUI S L, HOU M Y, MU G J, CHEN H Y, YANG X L, LIU L F. Genome-wide identification and expression analysis of bZIP gene family under drought stress in peanut. Journal of Plant Genetic Resources, 2020, 21(1):174-191. (in Chinese)
[21] BAILLO E H, KIMOTHO R N, ZHANG Z B, XU P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes (Basel), 2019, 10:771.
doi: 10.3390/genes10100771
[22] E Z G, ZHANG Y P, ZHOU J H, WANG L. Mini review roles of the bZIP gene family in rice. Genetics and Molecular Research, 2014, 13(2):3025-3036.
doi: 10.4238/2014.April.16.11 pmid: 24782137
[23] PAN F, WU M, HU W F, LIU R, YAN H W, XIANG Y. Genome-Wide Identification and Expression Analyses of the bZIP Transcription Factor Genes in moso bamboo (Phyllostachys edulis). International Journal of Molecular Sciences, 2019, 20(9):2203.
doi: 10.3390/ijms20092203
[24] ZHANG M, LIU Y H, SHI H, GUO M L, CHAI M N, HE Q, YAN M K, CAO D, ZHAO L H, CAI H Y, QIN Y A. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genomics, 2018, 19(1):159.
doi: 10.1186/s12864-018-4511-6
[25] YU J, HU S N, WANG J, KA-SHU G, LI S G, LIU B, DENG Y J, DAI L, ZHOU Y, ZHANG X Q, CAO M L, LIU J, SUN J D, TANG J B, CHEN Y J, HUANG X B, LIN W, YE C, TONG W, CONG L J, et al. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565):79-92.
doi: 10.1126/science.1068037
[26] SCHMUTZ J, CANNON S B, SCHLUETER J, MA J X, MITROS T, NELSON W, HYTEN D L, SONG Q J, THELEN J J, CHENG J L, XU D, HELLSTEN U, MAY G D, YU Y, SAKURAI T, UMEZAWA T, BHATTACHARYYA M K, SANDHU D, VALLIYODAN B, LINDQUIST E, et al. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463(7278):178-183.
doi: 10.1038/nature08670
[27] WEI K F, CHEN J, WANG Y M, CHEN Y H, CHEN S X, LIN Y N, PAN S, ZHONG X J, XIE D X. Genome-wide analysis of bZIP-encoding genes in maize. DNA Research, 2012, 19(6):463-476.
doi: 10.1093/dnares/dss026
[28] LIU M Y, WEN Y D, SUN W J, MA Z T, HUANG L, WU Q, TANG Z Z, BU T L, LI C L, CHEN H. Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat. BMC Genomics, 2019, 20(1):483.
doi: 10.1186/s12864-019-5882-z
[29] LI D Y, FU F Y, ZHANG H J, SONG F M. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomics, 2015, 16:771.
doi: 10.1186/s12864-015-1990-6
[30] ZHAO P, YE M H, WANG R Q, WANG D D, CHEN Q. Systematic identification and functional analysis of potato (Solanum tuberosum L.) bZIP transcription factors and overexpression of potato bZIP transcription factor StbZIP-65 enhances salt tolerance. International Journal of Biological Macromolecules, 2020, 161:155-167.
doi: 10.1016/j.ijbiomac.2020.06.032
[31] FAN K, CHEN Y R, MAO Z J, FANG Y, LI Z W, LIN W W, ZHANG Y Q, LIU J P, HUANG J W, LIN W X. Pervasive duplication, biased molecular evolution and comprehensive functional analysis of the PP2C family in Glycine max. BMC Genomics, 2020, 21(1):465.
doi: 10.1186/s12864-020-06877-4
[32] FAN K, MAO Z J, ZHENG J X, CHEN Y R, LI Z W, LIN W W, ZHANG Y Q, HUANG J W, LIN W X. Molecular evolution and expansion of the KUP family in the allopolyploid cotton species Gossypium hirsutum and Gossypium barbadense. Frontiers in Plant Science, 2020, 11:545042.
doi: 10.3389/fpls.2020.545042
[33] LIANG C Z, MENG Z H, MENG Z G, MALIK W, YAN R, LWIN K M, LIN F Z, WANG Y A, SUN G Q, ZHOU T, ZHU T, LI J Y, JIN S X, GUO S D, ZHANG R. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Scientific Reports, 2016, 6:35040.
doi: 10.1038/srep35040
[34] LIM C W, BAEK W, JUNG J, KIM J H, LEE S C. Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences, 2015, 16(7):15251-15270.
doi: 10.3390/ijms160715251
[35] NAKASHIMA K, YAMAGUCHI-SHINOZAKI K. ABA signaling in stress-response and seed development. Plant Cell Reports, 2013, 32(7):959-970.
doi: 10.1007/s00299-013-1418-1
[36] 郭贵华, 刘海艳, 李刚华, 刘明, 李岩, 王绍华, 刘正辉, 唐设, 丁艳锋. ABA缓解水稻孕穗期干旱胁迫生理特性的分析. 中国农业科学, 2014, 47(22):4380-4391.
GUO G H, LIU H Y, LI G H, LIU M, LI Y, WANG S H, LIU Z H, TANG S, DING Y F. Analysis of physiological characteristics about ABA alleviating rice booting stage drought stress. Scientia Agricultura Sinica, 2014, 47(22):4380-4391. (in Chinese)
[37] 山雨思, 代欢欢, 何潇, 辛正琦, 吴能表. 外源茉莉酸甲酯和水杨酸对盐胁迫下颠茄生理特性和次生代谢的影响. 植物生理学报, 2019, 55(9):1335-1346.
SHAN Y S, DAI H H, HE X, XIN Z Q, WU N B. Effects of exogenous methyl jasmonate and salicylic acid on physiological characteristics and secondary metabolism of Atropa belladonna under NaCl stress. Plant Physiology Communications, 2019, 55(9):1335-1346. (in Chinese)
[38] YU X X, ZHANG W J, ZHANG Y, ZHANG X J, LANG D Y, ZHANG X H. The roles of methyl jasmonate to stress in plants. Functional Plant Biology, 2019, 46(3):197-212.
doi: 10.1071/FP18106
[39] HO T T, MURTHY H N, PARK S Y. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. International Journal of Molecular Sciences, 2020, 21(3):716.
doi: 10.3390/ijms21030716
[40] SCHLÖGL P S, NOGUEIRA F T S, DRUMMOND R, FELIX J M, DE ROSA V E, VICENTINI R, LEITE A, ULIAN E C, MENOSSI M. Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Reports, 2008, 27(2):335-345.
doi: 10.1007/s00299-007-0468-7
[41] YANG Z M, SUN J, CHEN Y, ZHU P P, ZHANG L, WU S Y, MA D F, CAO Q H, LI Z Y, XU T. Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida. BMC Genetics, 2019, 20(1):41.
doi: 10.1186/s12863-019-0743-y
[42] MURMU J, BUSH M J, DELONG C, LI S T, XU M L, KHAN M, MALCOLMSON C, FOBERT P R, ZACHGO S, HEPWORTH S R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiology, 2010, 154(3):1492-1504.
doi: 10.1104/pp.110.159111
[43] XU D B, CHEN M, MA Y N, XU Z S, LI L C, CHEN Y F, MA Y Z. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis. PLoS ONE, 2015, 10(1):e0116385.
doi: 10.1371/journal.pone.0116385
[44] LIU D F, SHI S P, HAO Z J, XIONG W T, LUO M Z. A homologue of Arabidopsis VIP1, may positively regulate JA levels by directly targetting the genes in JA signaling and metabolism pathway in rice. International Journal of Molecular Sciences, 2019, 20(9):2360.
doi: 10.3390/ijms20092360
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[3] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[4] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[5] HaiXia ZHENG,YuLin GAO,FangMei ZHANG,ChaoXia YANG,Jian JIANG,Xun ZHU,YunHui ZHANG,XiangRui LI. Cloning of Heat Shock Protein Gene Ld-hsp70 in Leptinotarsa decemlineata and Its Expression Characteristics under Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(6): 1163-1175.
[6] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[7] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[8] XU Shu,LI Ling,ZHANG SiMeng,CAO RuXia,CHEN LingLing,CUI Peng,Lü ZunFu,WU LieHong,LU GuoQuan. Evaluation of Genotype Differences of Cold Tolerance of Sweet Potato Seedlings by Subordinate Function Value Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2929-2938.
[9] XU BingXia, YIN MeiQiang, WEN YinYuan, PEI ShuaiShuai, KE ZhenJin, ZHANG Bin, YUAN XiangYang. Gene Expression Profiling of Foxtail Millet (Setaria italica L.) Under Drought Stress During Germination [J]. Scientia Agricultura Sinica, 2018, 51(8): 1431-1447.
[10] LIU XiaoQiang, JIANG HongBo, LI HuiMin, XIONG Ying, WANG JinJun. The cDNA Cloning, Expression Profiling and Functional Characterization of Octopamine Receptor 3 (TcOctβR3) in Tribolium castaneum [J]. Scientia Agricultura Sinica, 2018, 51(7): 1315-1324.
[11] HongHong HE,ZongHuan MA,YuanXia ZHANG,Juan ZHANG,ShiXiong LU,ZhiQiang ZHANG,Xin ZHAO,YuXia WU,Juan MAO. Identification and Expression Analysis of LBD Gene Family in Grape [J]. Scientia Agricultura Sinica, 2018, 51(21): 4102-4118.
[12] YANG Li-qun, JIA Le-mei, TANG Mei, CHEN Yi-biao, CUI Hong-juan. Identification and Expression Analysis of BmYki-1 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2016, 49(8): 1607-1616.
[13] LI Sheng-nan, QIN Zhi-wei, XIN Ming, ZHOU Xiu-yan. Expression and Functional Analysis of CsWRKY30 in Cucumber Under Propamocarb Stress [J]. Scientia Agricultura Sinica, 2016, 49(7): 1277-1288.
[14] ZHANG Zhi-ke, WU Sheng-yong, LEI Zhong-ren. Cloning, Sequence Analysis and Expression Profile of an Odorant Binding Protein Gene in Western Flower Thrips (Frankliniella occidentalis) [J]. Scientia Agricultura Sinica, 2016, 49(6): 1106-1116.
[15] WU Yi-chen, DU Xing, LI Ping-hua, WU Yan, WANG Jun-shun, LIU Hong-lin, LI Qi-fa. Sequence Cloning, Tissue Expression Profile and Polymorphism of VRTN Gene in Suhuai Pig [J]. Scientia Agricultura Sinica, 2016, 49(18): 3639-3648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!