Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (12): 2689-2698.doi: 10.3864/j.issn.0578-1752.2021.12.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

The Effect of Flumethrin on Metabolism of Worker Larvae of Apis mellifera with LC-MS Technique

YU LongTao1(),YANG HeYan1(),SU YuChen2,YAN WeiYu1,WU XiaoBo1()   

  1. 1Honeybee Research Institute, Jiangxi Agricultural University/Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045
    2College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045
  • Received:2020-09-20 Accepted:2020-11-09 Online:2021-06-16 Published:2021-06-24
  • Contact: XiaoBo WU E-mail:1208789722@qq.com;1035361586@qq.com;wuxiaobo21@163.com

Abstract:

【Objective】Flumethrin belongs to the second generation pyrethroid insecticides and acaricides, which is used for the control of honeybee mites. Because of the toxicity of acaricides, it can not only kill mites, but also threat the health of honeybees. The different metabolites of Apis mellifera worker larvae treated with different concentrations of flumethrin were tested using liquid chromatography-mass spectrometry (LC-MS) technology and the metabolic pathways involved of different metabolites were analyzed, so as to explore the toxicological effect of flumethrin on honeybees and provide references for scientific using in beekeeping.【Method】The queen was controlled to lay eggs on an empty worker frame for 12 h, and the spawning area was divided into four groups. From the 5th day, the small larvae of each group were fed with sugar water containing different concentrations of flumethrin (0, 0.5, 5, 50 mg·kg-1), the dose was increased daily from day 5 to day 8 (1.5, 2, 2.5, 3 μL), and lymph fluid from larvae was collected on day 9. The metabolites of A. mellifera larvae were analyzed by LC-MS and the metabolites with significant difference were screened by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), while the metabolic pathways of common differential metabolites in flumethrin treatment groups were analyzed.【Result】Compared with the control group, a total of 190 different metabolites were found and 87 types were identified in 0.5 mg·kg-1 group, and a total of 275 different metabolites were identified and 97 types were identified in 5 mg·kg-1 group, while there were a total of 275 different metabolites and a total of 131 species were identified in 50 mg·kg-1 group. Meanwhile, 29 common differential metabolites in treatment groups were screened, of which 16 metabolites were up-regulated, 12 metabolites were down-regulated, and 1 metabolite was down-regulated in 0.5 and 50 mg·kg-1 groups while it was up-regulated in 5 mg·kg-1 group. These differential metabolites include ribose, purine and its derivatives, fatty acids with their conjugates. After enrichment analysis of metabolic pathways, significant differences (P<0.05) were found in the metabolic pathways, which include amino sugar and nucleotide sugar metabolism, drug metabolism-other enzymes, α-linolenic acid metabolism and other pathways.【Conclusion】The LC-MS technology can effectively analyze the changes of metabolites in the honeybee larvae treated with flumethrin, and flumethrin can cause the contents of UDP-N-acetylglucosamine, azathioprine, traumatic acid, 9-oxononanoic acid and 13(s)-HPODE abnormal in honeybee larvae. The changes of these different metabolites confirm that flumethrin causes various substance metabolism disorders in honeybees. The analysis of these metabolic processes can further explain the mechanism of honeybees metabolizing toxic compounds, and provide a theoretical basis for the stress of acaricides and other toxic compounds on honeybees.

Key words: Apis mellifera, LC-MS, metabolomics, flumethrin, worker larva

Fig. 1

Overlapping BPC (base peak chromatogram) plot of the control group and flumflethrin-treated groups"

Fig. 2

PCA scores plots of honeybee metabolites between the control group and flumflethrin-treated groups"

Fig. 3

PLS-DA scores plots of honeybee metabolites between the control group and flumflethrin-treated groups"

Fig. 4

Plots of response ranking test for PLS-DA analysis model between the control group and flumethrin-treated groups"

Table 1

Differential metabolites and identification results"

组别
Group
差异代谢物总数
Total number of differential metabolites
差异代谢物鉴定数目
Identified number of differential metabolites
Up
Down
0.5 mg·kg-1-Control 190 87 96 94
5 mg·kg-1-Control 275 97 209 66
50 mg·kg-1-Control 275 131 147 128

Table 2

Differential metabolites between the control group and flumethrin-treated groups"

化合物名称
Compound name
50 mg·kg-1-Control 5 mg·kg-1-Control 0.5 mg·kg-1-Control
VIP FC P 趋势
Trend
VIP FC P 趋势
Trend
VIP FC P 趋势
Trend
尿苷二磷酸-N-乙酰葡糖胺
UDP-N-acetylglucosamine
2.1451 3.7838 0.0175 1.0349 2.0512 0.0494 1.4664 2.4830 0.0277
硫唑嘌呤Azathioprine 3.5178 22.9131 0.0038 2.2240 6.6142 0.0216 2.8184 12.1241 0.0135
反玉米素Trans-zeatin 3.4573 27.3706 0.0012 2.1436 10.783 0.0109 3.5919 29.5094 0
焦炭酸二乙酯Diethylpyrocarbonate 1.8239 2.6369 0.0126 1.3799 2.1616 0.0312 1.8167 2.6558 0.0272
阿斯巴甜
Methyl alpha-aspartylphenylalaninate
2.4076 6.6251 0.0210 1.5393 3.6759 0.0056 2.5201 7.6114 0.0272
草完隆Noruron 2.5040 5.7411 0.0237 1.8949 5.3422 0.0312 2.4082 5.7124 0.0272
四聚乙醛Ethanal tetramer 3.1358 10.8657 0.0022 1.6834 4.3428 0.0168 1.9323 4.0922 0.0240
扎莫特罗Xamoterol 1.7021 2.5619 0.0303 1.6402 2.9414 0.0271 2.3289 4.8191 0.0272
二甲弗林Dimetofrine 2.0830 5.3298 0.0337 1.9187 6.1752 0.0216 2.3776 6.4440 0.0434
细辛脑Asarone 3.5178 22.9131 0.0038 2.2168 7.7327 0.0301 2.4104 5.5813 0.0399
异丙酚Propofol 1.9412 3.3387 0.0169 1.7439 3.4319 0.0121 2.2298 4.1785 0.0135
芹黄素Apigetrin 2.7393 7.0597 0 2.1954 5.8356 0.008 2.2192 5.1848 0.0070
4,4'-二硝基联苄4,4'-dinitrobibenzyl 3.5924 36.459 0.0024 1.7819 5.2543 0.0073 3.1705 15.6981 0.0019
早熟素Precocene ii 2.8581 11.2521 0.0012 1.0312 2.0035 0.0439 2.1354 3.8515 0.0428
贝那普利拉Benazeprilat 1.3429 2.0242 0.0438 1.8099 6.4223 0.0188 2.6353 10.2252 0.0135
氟扎可特Azacortid 2.6960 12.7132 0.0305 2.4081 15.5769 0.0188 3.5251 35.6758 0.0048
甲苯Toluene 1.5881 0.4467 0.0226 1.4841 0.2876 0.0301 1.9802 0.2721 0.0235
愈伤酸Traumatic acid 2.4552 0.1909 0.0021 1.5634 0.2683 0.0121 2.0103 0.2575 0.0079
9-羟基壬酸9-oxononanoic acid 2.9634 0.0980 0.0006 1.3122 0.2638 0.0139 2.7705 0.1129 0.0015
普瑞巴林Pregabalin 1.6876 0.4322 0.0028 1.2720 0.4581 0.0178 1.0768 0.5848 0.0389
阿伐那非Avanafil 1.9936 0.3237 0.0253 1.1258 0.4234 0.0347 1.7236 0.3553 0.0235
1-壬酸1-nonanoic acid 2.6990 0.1060 0.0104 2.0052 0.1232 0.0238 2.5335 0.1151 0.0260
匹伐加宾Pivagabine 2.8956 0.1266 0.0057 2.0864 0.1468 0.0560 2.1990 0.1935 0.0135
美噻吨Metixene 2.6297 0.1776 0.0012 1.1710 0.3815 0.0271 1.4653 0.3801 0.0277
樟脑(+/-)-camphor 2.2568 0.2106 0.0169 1.4478 0.2932 0.0247 2.2074 0.2177 0.0216
扎莫特罗Xamoterol [usan:ban:inn] 1.8083 0.2538 0.0229 2.1189 0.1402 0.0056 1.8550 0.2617 0.0235
二甲福林Dimetofrine 2.5825 0.1265 0.0139 2.1321 0.1535 0.0238 2.6898 0.1118 0.0199
苯乙酮Acetophenone 1.7796 0.3617 0.0213 1.8288 0.2989 0.0139 1.5460 0.4091 0.0387
氢过氧化亚油酸13(s)-HPODE 1.1855 0.5253 0.0414 1.6963 4.7824 0.0331 1.5777 0.4183 0.0235

Table 3

Metabolic pathways of differential metabolite aggregation"

化合物名称Compound name Pathway ID 通路Pathway
尿苷二磷酸-N-乙酰葡糖胺 UDP-N-acetylglucosamine Map00520 氨基糖与核糖代谢 Amino sugar and nucleotide sugar metabolism
硫唑嘌呤 Azathioprine Map00983 药物代谢-其他酶类代谢 Drug metabolism-other enzymes
反玉米素 Trans-zeatin Map01100 其他代谢途径 Metabolic pathways
甲苯 Toluene Map01100 其他代谢途径 Metabolic pathways
愈伤酸 Traumatic acid Map00592 ɑ-亚麻酸代谢 alpha-Linolenic acid metabolism
9-羟基壬酸 9-oxononanoic acid Map00592 ɑ-亚麻酸代谢 alpha-Linolenic acid metabolism
氢过氧化亚油酸 13(s)-HPODE Map01100 其他代谢途径 Metabolic pathways
[1] 刘朋飞, 吴杰, 李海燕, 林素文. 中国农业蜜蜂授粉的经济价值评估. 中国农业科学, 2011,44(24):5117-5123.
LIU P F, WU J, LI H Y, LIN S W. Economic values of bee pollination to China’s agriculture. Scientia Agricultura Sinica, 2011,44(24):5117-5123. (in Chinese)
[2] 赵静, 李熠, 薛晓峰. 治螨新药——氟氯苯氰菊酯的性能和应用. 中国蜂业, 2004,55(4):17-18.
ZHAO J, LI Y, XUE X F. New drug for mite treatment—— Performance and application of flumethrin. Apiculture of China, 2004,55(4):17-18. (in Chinese)
[3] QI S Z, ZHU L Z, WANG D H, WANG C, CHEN X F, XUE X F, WU L M. Flumethrin at honey-relevant levels induces physiological stresses to honey bee larvae (Apis mellifera L.) in vitro. Ecotoxicology and Environmental Safety, 2020,190:110101.
doi: 10.1016/j.ecoenv.2019.110101
[4] QI S Z, NIU X Y, WANG D H, WANG C, ZHU L Z, XUE X F, ZHANG Z Y, WU L M. Flumethrin at sublethal concentrations induces stresses in adult honey bees (Apis mellifera L.). The Science of the Total Environment, 2020,700:134500.
doi: 10.1016/j.scitotenv.2019.134500
[5] 牛新月. 氟氯苯氰菊酯对意大利蜜蜂(Apis mellifera ligustica L.)的毒性作用研究[D]. 新乡: 河南科技学院, 2019.
NIU X Y. Toxic effects of flumethrin on Apis mellifera ligustica L. (Hymenoptera: Apidae)[D]. Xinxiang: Henan Institute of Science and Technology, 2019. (in Chinese)
[6] TAN K, YANG S, WANG Z W, MENZEL R. Effect of flumethrin on survival and olfactory learning in honeybees. PLoS ONE, 2013,8(6):e66295.
doi: 10.1371/journal.pone.0066295
[7] 江武军, 何旭江, 王子龙, 颜伟玉, 曾志将, 吴小波. 中华蜜蜂细胞色素CYP9E2基因克隆及其表达分析. 昆虫学报, 2016,59(10):1050-1057.
JIANG W J, HE X J, WANG Z L, YAN W Y, ZENG Z J, WU X B. Cloning and expression analysis of cytochrome CYP9E2 gene in the Chinese honeybee, Apis cerana cerana. Acta Entomologica Sinica, 2016,59(10):1050-1057. (in Chinese)
[8] YU L S, LIU F, WU H, TAN H R, RUAN X C, CHEN Y, CHAO Z. Flumethrin residue levels in honey from apiaries of China by high-performance liquid chromatography. Journal of Food Protection, 2015,78(1):151-156.
doi: 10.4315/0362-028X.JFP-14-297
[9] 韩爱华. 氯氰菊酯和氟氯苯氰菊酯免疫分析化学研究[D]. 扬州: 扬州大学, 2007.
HAN A H. Studies on immunochemistry for analysis of cypermethrin and flumethrin[D]. Yangzhou: Yangzhou University, 2007. (in Chinese)
[10] ROSENKRANZ P, AUMERIER P, ZIEGELMANN B. Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 2010,103:S96-S119.
doi: 10.1016/j.jip.2009.07.016
[11] BOGDANOV S. Current status of analytical methods for the detection of residues in bee products. Apiacta, 2003,38:190-197.
[12] JOHNSON R M, ELLIS M D, MULLIN C A, FRAZIER M. Pesticides and honey bee toxicity—USA. Apidologie, 2010,41(3):312-331.
doi: 10.1051/apido/2010018
[13] 李帅伟, 杨庆生, 苗博钧. 蜜蜂翅翼几丁质结构的粘弹性力学性能研究//中国力学大会论文集, 2019: 3343-3349.
LI S W, YANG Q S, MIAO B J. Study on viscoelastic properties of chitin structure of bee wings//The Chinese Congress of Theoretical and Applied Mechanics, 2019: 3343-3349. (in Chinese)
[14] 曾志将. 蜜蜂生物学. 北京: 中国农业出版社, 2007: 2-3.
ZENG Z J. Bee Biology. Beijing: China Agriculture Press, 2007: 2-3. (in Chinese)
[15] GLASER L, BROWN D H. The synthesis of chitin in cell-free extracts of Neurospora crassa. Journal of Biological Chemistry, 1957,228(2):729-742.
doi: 10.1016/S0021-9258(18)70655-8
[16] KARNER S, SHI S J, FISHER C, SCHAEFFELER E, NEURATH M F, HERRLINGER K R, HOFMANN U, SCHWAB M. Determination of 6-thioguanosine diphosphate and triphosphate and nucleoside diphosphate kinase activity in erythrocytes: novel targets for thiopurine therapy? Therapeutic Drug Monitoring, 2010,32(2):119-128.
doi: 10.1097/FTD.0b013e3181d12f19
[17] HERNANDEZ E P, KUSAKISAKO K, TALACTAC M R, GALAY R L, HATTA T, FUJISAKI K, TSUJI N, TANAKA T. Glutathione S-transferases play a role in the detoxification of flumethrin and chlorpyrifos in Haemaphysalis longicornis. Parasites and Vectors, 2018,11(1):460.
doi: 10.1186/s13071-018-3044-9
[18] WOJCICKI J, PAWLIK A, SAMOCHOWIEC L, KALDONSKA M, MYSLIWIEC Z. Clinical evaluation of lecithin as a lipid-lowering agent. Phytotherapy Research, 1995,9(8):597-599.
doi: 10.1002/(ISSN)1099-1573
[19] HUSSON F, BOMPAS D, KERMASHA S, BELIN J M. Biogeneration of 1-octen-3-ol by lipoxygenase and hydroperoxide lyase activities of Agaricus bisporus. Process Biochemistry, 2001,37(2):177-182.
doi: 10.1016/S0032-9592(01)00201-1
[20] MANIKANDAN P, NAGINI S. Cytochrome P450 structure, function and clinical significance: A review. Current Drug Targets, 2018,19(1):38-54.
[21] OMURA T. Forty years of cytochrome P450. Biochemical and Biophysical Research Communications, 1999,266(3):690-698.
doi: 10.1006/bbrc.1999.1887
[22] 郭晓波. 甘草解毒作用及机制的研究[D]. 西安: 陕西师范大学, 2016.
GUO X B. Research on detoxification effect and mechanism of glycyrrhiza[D]. Xi’an: Shaanxi Normal University, 2016. (in Chinese)
[23] REN R, HASHIMOTO T, MIZUNO M, TAKIGAWA H, YOSHIDA M, AZUMA T, KANAZAWA K. A lipid peroxidation product 9- oxononanoic acid induces phospholipase A2 activity and thromboxane A2 production in human blood. Journal of Clinical Biochemistry and Nutrition, 2013,52(3):228-233.
doi: 10.3164/jcbn.12-110
[24] KANAZAWA K, NATAKE M. Identifications of 9-oxononanoic acid and hexanal in liver of rat orally administered with secondary autoxidation products of linoleic acid. Agricultural and Biological Chemistry, 1986,50(1):115-120.
[25] 王帅. 意大利蜜蜂饲粮中适宜赖氨酸添加水平的研究[D]. 泰安: 山东农业大学, 2018.
WANG S. Studies of optimal lysine levels in diet of honeybee (Apis mellifera L.)[D]. Taian: Shandong Agricultural University, 2018. (in Chinese)
[26] 姜春姣, 江芸, 耿志明, 张牧焓, 孙冲, 卞欢, 王道营, 徐为民. 亚油酸氧化产物——羟基十八碳二烯酸的研究进展. 食品科学, 2018,39(7):278-284.
JIANG C J, JIANG Y, GENG Z M, ZHANG M H, SUN C, BIAN H, WANG D Y, XU W M. Progress in research on hydroxyoctadecaenoic acids as oxidation products of linoleic acid. Food Science, 2018,39(7):278-284. (in Chinese)
[27] NIKI E, YOSHIDA Y, SAITO Y, NOGUCHI N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications, 2005,338(1):668-676.
doi: 10.1016/j.bbrc.2005.08.072
[28] 徐莉, 王建华, 梅宇, 李冬植. 解毒酶和转运蛋白介导的害虫抗药性分子机制研究进展. 农药学学报, 2020,22(1):1-10.
XU L, WANG J H, MEI Y, LI D Z. Research progress on the molecular mechanisms of insecticides resistance mediated by detoxification enzymes and transporters. Chinese Journal of Pesticide Science, 2020,22(1):1-10. (in Chinese)
[29] 张娟. 谷胱甘肽对乳酸菌胁迫抗性的调控机制研究[D]. 无锡: 江南大学, 2008.
ZHANG J. Regulation mechanism of glutathione on stress resistance of lactic acid bacteria[D]. Wuxi: Jiangnan University, 2008. (in Chinese)
[30] 李春燕, 孙传政, 宋鑫. 肿瘤细胞死亡的一种新形式——铁死亡. 中国生物化学与分子生物学报, 2019,35(11):1208-1214.
LI C Y, SUN C Z, SONG X. A new form of tumor cell death: Ferroptosis. Chinese Journal of Biochemistry and Molecular Biology, 2019,35(11):1208-1214. (in Chinese)
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[3] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[4] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[5] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[6] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[7] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[8] WANG YaHui, LIU XiaoHong, YONG MingLi, XIONG AiSheng, SU XiaoJun. Analysis of Changes in Phenolic Acids of Luffa cylindrica Pulp During Browning Based on Metabolomics [J]. Scientia Agricultura Sinica, 2021, 54(22): 4869-4879.
[9] DAI YuQiao,Lü CaiYou,HE LuNan,YI Chao,LIU XueYan,HUANG Wen,CHEN JiaMin. Metabolic Changes in the Processing of Yunkang 10 Sun-Dried Green Tea based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(2): 357-370.
[10] XU Ying,YAN ChangYan,YANG WeiCong,ZHANG YunXiao,YU Yang,HUANG XianHui. Pharmacokinetics of Chlortetracycline Microspheres in Pigs [J]. Scientia Agricultura Sinica, 2020, 53(19): 4083-4091.
[11] ZHANG LiCui,MA Chuan,FENG Mao,LI JianKe. Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(18): 3833-3845.
[12] CHEN QinCao,DAI WeiDong,LIN ZhiYuan,XIE DongChao,LÜ MeiLing,LIN Zhi. Effects of Shading on Main Quality Components in Tea (Camellia Sinensis (L) O. Kuntze) Leaves Based on Metabolomics Analysis [J]. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077.
[13] DeCheng SUO,ShuLin WEI,ZhiMing XIAO,PeiLong WANG,RuiGuo WANG,Yang LI. Simultaneous Determination of 18 β-agonists in Blood Products for Feeds by Liquid Chromatography Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2019, 52(24): 4613-4623.
[14] XU YanYang,YAO GuiXiao,LIU PingXiang,ZHAO Jie,WANG XinLu,SUN JunMao,QIAN YongZhong. Review on the Application of Metabolomic Approaches to Investigate and Analysis the Nutrition and Quality of Agro-Products [J]. Scientia Agricultura Sinica, 2019, 52(18): 3163-3176.
[15] WANG Li, WANG Hong-fang, XU Bao-hua. Differences of Methyl Donor S-adenosylmethionine Synthesis and Metabolism Between Apis mellifera ligustica Queen Bee Larvae and Worker Bee Larvae [J]. Scientia Agricultura Sinica, 2016, 49(21): 4231-4238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!