Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (4): 744-753.doi: 10.3864/j.issn.0578-1752.2021.04.007
• PLANT PROTECTION • Previous Articles Next Articles
YAN DuoZi(),CAI Ni,WANG Feng,NONG XiangQun(
),WANG GuangJun,TU XiongBing,ZHANG ZeHua
[1] | BARELLI L, MOONJELY S, BEHIE S W, BIDOCHKA M J. Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi. Plant Molecular Biology, 2016,90(6):657-664. |
[2] | JULIYA R F. Biocontrol potential and genetic diversity of Metarhizium anisopliae lineage in agricultural habitats. Journal of Applied Microbiology, 2019,127(2):556-564. |
[3] | CLARKSON J M, CHARNLEY A K. New insights into the mechanisms of fungal pathogenesis in insects. Trends in Microbiology, 1996,4(5):197-203. |
[4] | BARELLI L, PADILLA-GUERRERO I E, BIDOCHKA M J. Differential expression of insect and plant specific adhesin genes, MAD1 and MAD2, in Metarhizium robertsii. Fungal Biology, 2011,115(11):1174-1185. |
[5] | WANG C, ST LEGER R J. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryotic Cell, 2007,6(5):808-816. |
[6] | 赵宇, 张佳诗, 刘艳微, 王佳江, 徐文静, 张冬娜, 赵慧, 张正坤, 李启云. 创制转Mad1基因球孢白僵菌工程菌株提高对玉米螟毒力. 玉米科学, 2019,27(5):39-44, 51. |
ZHAO Y, ZHANG J S, LIU Y W, WANG J J, XU W J, ZHANG D N, ZHAO H, ZHANG Z K, LI Q Y. Construction of Mad1 gene transgenic Beauveria bassiana strain to promote the toxicity against Ostrinia furnacalis. Journal of Maize Sciences, 2019,27(5):39-44, 51. (in Chinese) | |
[7] | ABRO N A, WANG G J, ULLAH H, GUO L L, HAO K, NONG X Q, CAI N, TU X B, ZHANG Z H. Influence of Metarhizium anisopliae (IMI330189) and Mad1 protein on enzymatic activities and Toll- related genes of migratory locust. Environmental Science and Pollution Research International, 2019,26(17):17797-17808. |
[8] | SASAN R K, BIDOCHKA M J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, 2012,99(1):101-107. |
[9] | GARCÍA J E, POSADAS J B, PERTICARI A, LECUONA R E. Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Advances in Biological Research, 2011,5(1):22-27. |
[10] | CAI N, WANG F, NONG X Q, WANG G J, MCNEILL M, CAO G C, HAO K, LIU S F, ZHANG Z H. Visualising confirmation of the endophytic relationship of Metarhizium anisopliae with maize roots using molecular tools and fluorescent labelling. Biocontrol Science and Technology, 2019,29(11):1023-1036. |
[11] | TANG D, WANG G, ZHOU J M. Receptor kinases in plant-pathogen interactions: More than pattern recognition. The Plant Cell, 2017,29(4):618-637. |
[12] | JONES J D, DANGL J L. The plant immune system. Nature, 2006,444(7117):323-329. |
[13] | WOLF S. Plant cell wall signalling and receptor-like kinases. The Biochemical Journal, 2017,474(4):471-492. |
[14] | ZHU H Y, RIELY B K, BURNS N J, ANÉ J M. Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics, 2006,172(4):2491-2499. |
[15] | BROTMAN Y, LANDAU U, CUADROS-INOSTROZA Á, TOHGE T, TAKAYUKI T, FERNIE A R, CHET I, VITERBO A, WILLMITZER L. Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens, 2013,9(3):e1003221. |
[16] | CAO Y R, HALANE M K, GASSMANN W, STACEY G. The role of plant innate immunity in the legume-rhizobium symbiosis. Annual Review of Plant Biology, 2017,68:535-561. |
[17] | HAO K, WANG F, NONG X Q, MCNEILL M R, LIU S F, WANG G J, CAO G C, ZHANG Z H. Response of peanut Arachis hypogaea roots to the presence of beneficial and pathogenic fungi by transcriptome analysis. Scientific Reports, 2017,7(1):964. |
[18] | MICHÉ L, BALANDREAU J. Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Applied and Environmental Microbiology, 2001,67(7):3046-3052. |
[19] | PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001,29(9):e45. |
[20] | KAPTEYN J C, HOYER L L, HECHT J E, MÜLLER W H, ANDEL A, VERKLEIJ A J, MAKAROW M, VAN DEN ENDE H, KLIS F M. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Molecular Microbiology, 2000,35(3):601-611. |
[21] | RICHARD M L, PLAINE A. Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryotic Cell, 2007,6(2):119-133. |
[22] | KULKARNI R D, KELKAR H S, DEAN R A. An eight-cysteine- containing CFEM domain unique to a group of fungal membrane proteins. Trends in Biochemical Sciences, 2003,28(3):118-121. |
[23] | 张丽勍, 段可, 邹小花, 何成勇, 高清华. 草莓胶孢炭疽菌CFEM候选效应子的生物信息学鉴定及其侵染过程中的转录分析. 植物保护, 2017,43(5):43-51. |
ZHANG L Q, DUAN K, ZOU X H, HE C Y, GAO Q H. Bioinformatic identification and transcriptional analysis of Colletotrichum gloeosporioides candidate CFEM effector proteins. Plant Protection, 2017,43(5):43-51. (in Chinese) | |
[24] | DEZWAAN T M, CARROLL A M, VALENT B, SWEIGARD J A. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. The Plant Cell, 1999,11(10):2013-2030. |
[25] | DESAKI Y, KOHARI M, SHIBUYA N, KAKU H. MAMP-triggered plant immunity mediated by the LysM-receptor kinase CERK1. Journal of General Plant Pathology, 2019,85:1-11. |
[26] | WANG C, WANG G, ZHANG C, ZHU P K, DAI H L, YU N, HE Z H, XU L, WANG E. OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Molecular Plant, 2017,10(4):619-633. |
[27] | YAMADA K, YAMAGUCHI K, YOSHIMURA S, TERAUCHI A, KAWASAKI T. Conservation of chitin-induced MAPK signaling pathways in rice and Arabidopsis. Plant and Cell Physiology, 2017,58(6):993-1002. |
[28] | OSAKABE Y, MARUYAMA K, SEKI M, SATOU M, SHINOZAKI K, YAMAGUCHI-SHINOZAKIA K. Leucine-rich repeat receptor- like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. The Plant Cell, 2005,17(4):1105-1119. |
[29] | OSAKABE Y, MIZUNO S, TANAKA H, MARUYAMA K, OSAKABE K, TODAKA D, FUJITA Y, KOBAYASHI M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. The Journal of Biological Chemistry, 2010,285(12):9190-9201. |
[30] | MENG X, ZHANG S. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology, 2013,51:245-266. |
[31] | YU X, FENG B M, HE P, SHAN L. From chaos to harmony: Responses and signaling upon microbial pattern recognition. Annual Review of Phytopathology, 2017,55:109-137. |
[32] | COUTO D, ZIPFEL C. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 2016,16(9):537-552. |
[33] | 武志刚, 武舒佳, 王迎春, 郑琳琳. 植物中钙依赖蛋白激酶(CDPK)的研究进展. 草业学报, 2018,27(1):204-214. |
WU Z G, WU S J, WANG Y C, ZHENG L L. Advances in studies of calcium-dependent protein kinase (CDPK) in plants. Acta Prataculturae Sinica, 2018,27(1):204-214. (in Chinese) | |
[34] | LIU J Z, HORSTMAN H D, BRAUN E, GRAHAM M A, ZHANG C Q, NAVARRE D, QIU W L, LEE Y, NETTLETON D, HILL J H, WHITHAM S A. Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiology, 2011,157(3):1363-1378. |
[35] | GLYAN’KO A K, ISCHENKO A A. Immunity of a leguminous plant infected by nodular bacteria Rhizobium spp. F. Applied Biochemistry and Microbiology, 2017,53(2):140-148. |
[36] | LIANG Y, CAO Y, TANAKA K, THIBIVILLIERS S, WAN J, CHOI J, KANG C, QIU J, STACEY G. Nonlegumes respond to rhizobial nod factors by suppressing the innate immune response. Science, 2013,341(6152):1384-1387. |
[37] | TELLSTRM V, USADEL B, THIMM O, STITT M, KÜSTER H, KARSTEN H, NIEHAUS K. The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiology, 2007,143(2):825-837. |
[1] | WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346. |
[2] | DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820. |
[3] | HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111. |
[4] | CAI Ni,YAN DuoZi,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Adhesin Gene mad2 Knockout and Functional Effects on Biological Characteristics and Inducing Plant Responses in Metarhizium anisopliae [J]. Scientia Agricultura Sinica, 2021, 54(22): 4800-4812. |
[5] | ZHENG FengSheng,WANG HaiHua,WU QingTao,SHEN Quan,TIAN JianHong,PENG XiXu,TANG XinKe. Genome-Wide Identification of VQ Gene Family in Fagopyrum tataricum and Its Expression Profiles in Response to Leaf Spot Pathogens [J]. Scientia Agricultura Sinica, 2021, 54(19): 4048-4060. |
[6] | XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178. |
[7] | YU ZhengWang,ZHOU ZhongXin. Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds [J]. Scientia Agricultura Sinica, 2021, 54(13): 2895-2905. |
[8] | ZHANG YuFei,CAO ManYuan,WANG LiYing,ZHAO WeiGang,LI XiaoXia,CHANG Tong,XU BaoZeng. Eukaryotic Expression, Purification and Biological Activity of Recombinant Cervus Nippon Activin A Protein [J]. Scientia Agricultura Sinica, 2020, 53(5): 1058-1070. |
[9] | QI Yue,LÜ JunYuan,ZHANG Yue,WEI Jie,ZHANG Na,YANG WenXiang,LIU DaQun. Puccinia triticina Effector Protein Pt18906 Triggered Two-Layer Defense Reaction in TcLr27+31 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2371-2384. |
[10] | AN JunXia,ZHAO Yu,ZHANG ZhengKun,SHI HaiPeng,JI DongMing,CAO HongYi,DU Qian,LI QiYun. Induction of Cold Tolerance in Rice at the Breeding Stage by Gongzhulingmycin [J]. Scientia Agricultura Sinica, 2020, 53(11): 2195-2206. |
[11] | LI YongHua, CHE LuPing, QIU XuSheng, TAN Lei, SUN YingJie, LIU WeiWei, SONG CuiPing, LIAO Ying, DING Chan, WANG JinQuan, MENG ChunChun. Construction of Chicken TIGAR Gene Eukaryotic Expression Plasmid and Evaluation of Its Anti-Apoptotic Function [J]. Scientia Agricultura Sinica, 2019, 52(6): 1102-1109. |
[12] | TIAN ZhiLong,TANG JiShun,SUN Qing,WANG YuQin,ZHANG XiaoSheng,ZHANG JinLong,CHU MingXing. Tissue Expression and Polymorphism of Sheep SMAD1 Gene and Their Association with Litter Size [J]. Scientia Agricultura Sinica, 2019, 52(4): 755-766. |
[13] | NING Yue,MI Xue,CHEN XingYi,SHAO JianHang,ZAN LinSen. Silencing and Overexpressing SMAD Family Member 1 (SMAD1) Gene and Its Effect on Myogenesis in Primary Myoblast of Qinchuan Cattle (Bos taurus) [J]. Scientia Agricultura Sinica, 2019, 52(10): 1818-1829. |
[14] | HE YuJuan, JU Di, WANG Yue, YANG XueQing, WANG XiaoQi . Compositive and Inductive Expression Patterns of Protease Inhibitor Genes OsLTPL164 and OsLTPL151 in Rice (Oryza sativa) [J]. Scientia Agricultura Sinica, 2018, 51(12): 2311-2321. |
[15] | Feng YANG, ChuanWu CHEN, QiJun FAN, ChunMei SHI, ZongZhou XIE, DaYong GUO, JiHong LIU. Influence of Temperature and Polyamines on Occurrence of Citrus Canker Disease and Underlying Mechanisms [J]. Scientia Agricultura Sinica, 2018, 51(10): 1899-1907. |
|