Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (4): 733-743.doi: 10.3864/j.issn.0578-1752.2021.04.006

• PLANT PROTECTION • Previous Articles     Next Articles

The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica

LI TianCong1(),ZHU Hang1(),WEI Ning1,LONG Feng1,WU JianYing1,ZHANG Yan1,DONG JinGao2,3,SHEN Shen1(),HAO ZhiMin1,2()   

  1. 1College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071001, Hebei
    2State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, Hebei
    3College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
  • Received:2020-05-12 Accepted:2020-05-28 Online:2021-02-16 Published:2021-02-16
  • Contact: Shen SHEN,ZhiMin HAO E-mail:905351819@qq.com;1175593328@qq.com;shenshen0428@163.com;haozhimin@hebau.edu.cn

Abstract:

【Objective】The objective of this study is to obtain the homologous genes of the splicing factor SC35 in Setosphaeria turcica, and to analyze the interaction among them and the expression profiles during the different growth and development stages and infection process of the pathogen. It would lay the foundation for illustrating the relationship between the SC35 family members and fungal pathogenicity.【Method】Based on amino acid sequences of SC35 protein in Arabidopsis thaliana as probe sequences, online Blastp alignment was carried out in the S. turcica genome database to obtain candidate SC35 homologues. Then they were analyzed for conserved domain and phylogenetic relationship through bioinformatics procedures. The materials of S. turcica were collected at different infection stages on maize leaves and multiple developmental stages, such as hyphae, conidia, germ tubes, appressorium and penetration hyphae, to analyze the transcription levels of SC35 homologues through real-time quantitative PCR (qRT-PCR). And their interactions were verified in vitro by the yeast two-hybrid test.【Result】Eight SC35 genes of S. turcica were obtained, named as StSC1, StSC2, StSC3, StSC4, StSC5, StSC6, StSC7, and StSC8, respectively. All of them owned typical SR protein domains, besides StSC1 showed two RRM domains. They located at different physical locations of the genome and had no linkage. Phylogenetic analysis showed that the eight alternative splicing factors were distributed in different clades, with low homology. In the process of infection on maize leaves, gene StSC1, StSC2, StSC3, StSC4, StSC5, StSC6 and StSC8 were up-regulated, while StSC7 was down-regulated at 18 h after inoculation. StSC4 showed high expression activity at 6-18 h. In different development periods, the expression levels of StSC1 were extremely significant up-regulated (P<0.001) in the appressorium and the formation of penetration hyphae, which were 24.44 and 8.25 times higher than those in the conidial period, but the others were down-regulated during the development. The yeast two-hybrid proved that StSC4 interacted with StSC6, StSC3 with StSC8, StSC3 with StSC4, and StSC8 with StSC4. 【Conclusion】The expression patterns of SC35 are different in the infection process and multiple developmental stages of S. turcica. StSC4 is actively expressed throughout the infection process. StSC1, StSC4 and StSC6 play important regulatory roles during the formation of appressorium and penetration hyphae. StSC4 and StSC6, StSC3 and StSC8, StSC3 and StSC4, StSC8 and StSC4 interact to regulate the formation of splicing complexes.

Key words: Setosphaeria turcica, alternative splicing factor, qRT-RCR, yeast two-hybrid

Table 1

Primer sequences used for qRT-PCR"

引物Primer 序列Sequence (5′-3′)
Tubulin-F/R GGGAACTCCTCACGGATGTTG/TAACAACTGGGCAAAGGGTCA
StSC1-F/R AGAGCCAGAAACACTGAGCC/AAGCGAGAAAAGACACGCCT
StSC2-F/R GAAAATCAAGACGACCCGCC/CTTTGCCCATTGCTTTCGCT
StSC3-F/R AGCGCAAGGAGAAAGAGAGG/CCGTCTTCCTTGATACGCCT
StSC4-F/R CACTGGAGATGGTTGGCGAT/TTGCACACAAACAGCACGTT
StSC5-F/R GAACCTCTTCGTCACAGGCA/GCATGATGTTGCACTGCTCC
StSC6-F/R GCTTTGGCTTTGTCCGCTAC/ACGCGGATTCTACGTCCATC
StSC7-F/R GCGACTTTGGCACCGTTAAG/TCGAGCGTGGCATACTCAAT
StSC8-F/R GGCCTTGACCAAGAACGTCA/GCGGACATCCTTGATGACAC

Table 2

Primers used for yeast two-hybrid test"

引物Primer 序列Sequence (5′-3′)
StSC4-F/R GGCCATGGAGGCCAGTGAATTCATGTCTGTGCTTCTAGAAACATCAC/TTCATCTGCAGCTCGAGCTCGATGGATCCTCATCGTCGACGGTCCCGGT
StSC6-F/R CATATGGCCATGGAGGCCAGTGAATTCATGTCGAAACTCTTCATTG/CATCTGCAGCTCGAGCTCGATGGATCCCTACCATTGCTGCTG
StSC8-F/R TATGGCCATGGAGGCCGAATTCATGCCGTCCCGTTCGC/CTAGTTATGCGGCCGCTGCAGGTCGACGGATCCTCATCTGCGCTCCCTACTTG
StSC3-F/R ATATGGCCATGGAGGCCGAATTCATGAACTCGATCCGCGCCATCCAGGAG/GTTATGCGGCCGCTGCAGGTCGACGGATCCTTACACGCGAGTGTCTCTCT
StSC7-F/R CATATGGCCATGGAGGCCGAATTCATGGAGGACGACGCCAAGATG/TTATGCGGCCGCTGCAGGTCGACGGATCCCTACTCGTCGTCCATATCGTC

Table 3

Protein information of SC35 in S. turcica"

名称
Name
JGI标号
ID in JGI
NCBI登录号
Accession number in NCBI
大小
Size (aa)
基因长度
Gene length (bp)
基因定位
Gene mapping
StSC1 46444 XP_008023357.1 391 1505 scaffold_14:633653-635474 (+)
StSC2 21139 XP_008027986.1 282 1031 scaffold_4:463120-464150 (-)
StSC3 171745 XP_008027251.1 304 915 scaffold_3:679211-680616 (-)
StSC4 113046 XP_008020610.1 477 1555 scaffold_1:618088-619811 (+)
StSC5 99605 XP_008030866.1 111 336 scaffold_8:693429-693764 (+)
StSC6 168126 XP_008023544.1 161 835 scaffold_14:724868-726377 (-)
StSC7 88128 XP_008025196.1 159 537 scaffold_2:109463-109999 (-)
StSC8 156630 XP_008029952.1 343 1157 scaffold_6:1923760-1924916 (+)

Fig. 1

Schematic diagram of protein structure of SC35 in S. turcica"

Fig. 2

Phylogenetic analysis of splicing factor SC35 of S. turcica and other fungi"

Fig. 3

Expression of alternative splicing factor at different developmental stages ***: P<0.001"

Fig. 4

Expression of alternative splicing factor after inoculation at different times ***: P<0.001"

Fig. 5

Enzyme digestion verification of two-hybrid vectors 1: StSC4-BD; 2: StSC6-BD; 3: StSC8-BD; 4: StSC3-BD; 5: StSC7-BD"

Fig. 6

Verification of the alternative splicing factor interaction through yeast two-hybrid A:8个剪接因子间相互作用关系 The interaction of 8 alternative splicing factors;B:StSC4-AD/BD与StSC6-AD/BD StSC4-AD/BD and StSC6-AD/BD; C:StSC3-AD/BD与StSC8-AD/BD StSC3-AD/BD and StSC8-AD/BD;D:StSC3-AD/BD与StSC4-AD/BD StSC3-AD/BD and StSC4-AD/BD; E:StSC8-AD/BD与StSC4-AD/BD StSC8-AD/BD and StSC4-AD/BD ○:未验证Not verified;√:互作Interacted;×:不互作Not interacted"

[1] 侯晓强, 范永山, 董金皋, 马继芳. 玉米大斑病菌有性杂交F1代菌株的生理小种鉴定和AFLP分析. 植物保护学报, 2006,33(3):257-262.
HOU X Q, FAN Y S, DONG J G, MA J F. Identification of physiological races and AFLP analysis in F1 generation of sexual hybridization between isolates of Setosphaeria turcica. Journal of Plant Protection, 2006,33(3):257-262. (in Chinese)
[2] 孙淑琴, 温雷蕾, 董金皋. 玉米大斑病菌的生理小种及交配型测定. 玉米科学, 2005,13(4):112-113, 123.
SUN S Q, WEN L L, DONG J G. Identification of physiological race and mating type of Exserohilum turcicum. Journal of Maize Sciences, 2005,13(4):112-113, 123. (in Chinese)
[3] AST G. How did alternative splicing evolve? Nature Reviews. Genetics, 2004,5(10):773-782.
[4] GILBERT W. Recombinant DNA research: Government regulation. Science, 1977,197(4300):208.
[5] MAKI R, ROEDER W, TRAUNECKER A, SIDMAN C, WABL M, RASCHKE W, TONEGAWA S. The role of DNA rearrangement and alternative RNA processing in the expression of immunoglobulin delta genes. Cell, 1981,24(2):353-365.
[6] KRAINER A R, MAYEDA A, KOZAK D, BINNS G. Functional expression of cloned human splicing factor SF2: Homology to RNA-binding protein, U1 70K, and Drosophila splicing regulators. Cell, 1991,66(2):383-394.
[7] 季雄. SR蛋白介导的转录调控机制[D]. 武汉: 武汉大学, 2013.
JI X. SR protein-mediated transcriptional regulation mechanism[D]. Wuhan: Wuhan University, 2013. (in Chinese)
[8] FU X D, MANIATIS T. Isolation of a complementary DNA that encodes the mammalian splicing factor SC35. Science, 1992,256(5056):535-538.
[9] SPECTOR D L, FU X D, MANIATIS T. Associations between distinct pre-mRNA splicing components and the cell nucleus. The EMBO Journal, 1991,10(11):3467-3481.
[10] FU X D, MAYEDA A, MANIATIS T, KRAINER A R. General splicing factors SF2 and SC35 have equivalent activities in vitro, and both affect alternative 5′ and 3′ splice site selection. Proceedings of the National Academy of Sciences of the United States of America, 1992,89(23):11224-11228.
[11] FU X D, MANIATIS T. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature, 1990,343(6257):437-441.
[12] SHARMA S J, LIAO W, ZHOU X F, WONG D T W, LICHTENSTEIN A. Exon 11 skipping of E-cadherin RNA downregulates its expression in head and neck cancer cells. Molecular Cancer Therapeutics, 2011,10(9):1751-1759.
[13] LOH T J, MOON H, CHO S, JUNG D W, HONG S E, KIM D H, GREEN M R, ZHENG X X, ZHOU J H, SHEN H H. SC35 promotes splicing of the C5-V6-C6 isoform of CD44 pre-mRNA. Oncology Reports, 2014,31(1):273-279.
[14] YAN Q Q, XIA X, SUN Z F, FANG Y D. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes. PLoS Genetics, 2017,13(3):e1006663.
[15] SHAW B D, UPADHYAY S. Aspergillus nidulans swoK encodes an RNA binding protein that is important for cell polarity. Fungal Genetics and Biology, 2005,42(10):862-872.
[16] 贾慧, 孟庆江, 李志勇, 巩校东, 藏金萍, 郝志敏, 曹志艳, 董金皋. 玉米大斑病菌黑色素合成酶基因的全基因组定位及表达模式分析. 中国农业科学, 2015,48(14):2767-2776.
JIA H, MENG Q J, LI Z Y, GONG X D, ZANG J P, HAO Z M, CAO Z Y, DONG J G. Localization of melanin biosynthesis enzyme genes in the genome and expression pattern analysis of Setosphaeria turcica. Scientia Agricultura Sinica, 2015,48(14):2767-2776. (in Chinese)
[17] 刘爱丽. 采用酵母双杂交技术筛选热激反应相关剪接因子的互作蛋白[D]. 武汉: 华中师范大学, 2016.
LIU A L. Screening of proteins interacted with splicing factors involved in response to heat stress using yeast two-hybrid system[D]. Wuhan: Central China Normal University, 2016. (in Chinese)
[18] BOMMER U A, LUTSCH G, STAHL J, BIELKA H. Eukaryotic initiation factors eIF-2 and eIF-3: Interactions, structure and localization in ribosomal initiation complexes. Biochimie, 1991,73(7):1007-1019.
[19] 莫苏东. SRSF2蛋白促进转录的独特作用和SR及hnRNP蛋白对基因表达的影响机制[D]. 武汉: 武汉大学, 2014.
MO S D. Unique role of SRSF2 in transcription activation and diverse functions of the SR and hnRNP proteins in gene expression[D]. Wuhan: Wuhan University, 2014. (in Chinese)
[20] GROSS T, RICHERT K, MIERKE C, LUTZELBERGER M, KAUFER N F. Identification and characterization of srp1, a gene of fission yeast encoding a RNA binding domain and a RS domain typical of SR splicing factors. Nucleic Acids Research, 1998,26(2):505-511.
[21] LUTZELBERGER M, GROß T, KAUFER N F. Srp2, an SR protein family member of fission yeast: in vivo characterization of its modular domains. Nucleic Acids Research, 1999,27(13):2618-2626.
[22] TANG Z H, KAUFER N F, LIN R J. Interactions between two fission yeast serine/arginine-rich proteins and their modulation by phosphorylation. Biochemical Journal, 2002,368(2):527-534.
[23] YEAKLEY J M, TRONCHÈRE H, OLESEN J, DYCK J A, WANG H Y, FU X D. Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors. The Journal of Cell Biology, 1999,145(3):447-455.
[24] GUI J F, TRONCHERE H, CHANDLER S D, FU X D. Purification and characterization of a kinase specific for the serine- and arginine- rich pre-mRNA splicing factors. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(23):10824-10828.
[25] LORKOVIC Z J, LOPATO S, PEXA M, LEHNER R, BARTA A. Interactions of Arabidopsis RS domain containing cyclophilins with SR proteins and U1 and U11 small nuclear ribonucleoprotein-specific proteins suggest their involvement in pre-mRNA splicing. The Journal of Biological Chemistry, 2004,279(32):33890-33898.
[26] CAVAREC L, KAMPHAUSEN T, DUBOURG B, CALLEBAUT I, LEMEUNIER F, METIVIER D, FEUNTEUN J, FISCHER G, MODJTAHEDI N. Identification and characterization of Moca-cyp: A Drosophila melanogaster nuclear cyclophilin. The Journal of Biological Chemistry, 2002,277(43):41171-41182.
[27] BOURQUIN J P, STAGLJAR I, MEIER P, MOOSMANN P, SILKE J, BAECHI T, GEORGIEV O, SCHAFFNER W. A serine/arginine- rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II. Nucleic Acids Research, 1997,25(11):2055-2061.
[28] CHANDLER S D, MAYEDA A, YEAKLEY J M, KRAINER A R, FU X D. RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(8):3596-3601.
[29] LEE F J, MOSS J. An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. The Journal of Biological Chemistry, 1993,268(20):15080-15087.
[30] 张艺美. 禾谷镰刀菌中SR蛋白FgSrp1和FgSrp2的功能研究[D]. 杨凌: 西北农林科技大学, 2017.
ZHANG Y M. Functional characterization of SR proteins FgSrp1 and FgSrp2 in Fusarium graminearum[D]. Yangling: Northwest A & F University, 2017. ( in Chinese)
[31] CZOLPINSKA M, RUREK M. Plant glycine-rich proteins in stress response: An emerging, still prospective story. Frontiers in Plant Science, 2018,9:302.
[32] LORKOVIC Z J, BARTA A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Research, 2002,30(3):623-635.
[33] WU J Y, MANIATIS T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell, 1993,75(6):1061-1070.
[34] KOHTZ J D, JAMISON S F, WILL C L, ZUO P, LUHRMANN R, GARCIA-BLANCO M A, MANLEY J L. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature, 1994,368(6467):119-124.
[35] LOPATO S, FORSTNER C, KALYNA M, HILSCHER J, LANGHAMMER U, INDRAPICHATE K, LORKOVIC Z J, BARTA A. Network of interactions of a novel plant-specific Arg/Ser-rich protein, atRSZ33, with atSC35-like splicing factors. The Journal of Biological Chemistry, 2002,277(42):39989-39998.
[36] GRAVELEY B R. Sorting out the complexity of SR protein functions. RNA, 2000,6(9):1197-1211.
[1] HAO YuBin,LI HaiXiao,ZHANG Sai,LIU Ning,LIU YingZi,CAO ZhiYan,DONG JinGao. Identification and Functional Analysis of StSCD Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2022, 55(16): 3134-3143.
[2] SUN YuChen,JIA RuiPu,FAN KuoHai,SUN Na,SUN YaoGui,SUN PanPan,LI HongQuan,YIN Wei. Detection of Interaction Between Porcine Type I Complement Receptor and C3b Active Fragment in Vitro [J]. Scientia Agricultura Sinica, 2021, 54(19): 4243-4254.
[3] LONG Feng,WANG Qing,ZHU Hang,WANG JianXia,SHEN Shen,LIU Ning,HAO ZhiMin,DONG JinGao. Identification and Expression Pattern Analysis of Septin Gene Family of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2020, 53(24): 5017-5026.
[4] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[5] XU HaiFeng,YANG GuanXian,ZHANG Jing,ZOU Qi,WANG YiCheng,QU ChangZhi,JIANG ShengHui,WANG Nan,CHEN XueSen. Molecular Mechanism of Apple MdWRKY18 and MdWRKY40 Participating in Salt Stress [J]. Scientia Agricultura Sinica, 2018, 51(23): 4514-4521.
[6] WANG YuKui,BAI XiaoJing,LIAN XiaoPing,ZHANG HeCui,LUO ShaoLan,PU Min,ZUO TongHong,LIU QianYing,ZHU LiQuan. Cloning and Expression Analysis of BoSPx in Brassica oleracea [J]. Scientia Agricultura Sinica, 2018, 51(22): 4328-4338.
[7] ZHAO QingQing, LI JunPing, LIANG LiBin, HUANG ShanYu, ZHOU ChenChen, ZHAO YuHui, WANG Qian, ZHOU Yuan, JIANG Li, CHEN HuaLan, LI ChengJun. Interaction between Influenza Virus PA Protein and Host Protein PCBP1 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3389-3396.
[8] LI Shuai, JIANG XiZi, LIANG WeiFang, CHEN SiHan, ZHANG XiangXiang, ZUO DengPan, HU YaHui, JIANG Tong. Screening of the Host Factors of Woodland Strawberry Interacting with P6 of Strawberry vein banding virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2017, 50(18): 3519-3528.
[9] RU JingNa, YU TaiFei, CHEN Jun, CHEN Ming, ZHOU YongBin, MA YouZhi, XU ZhaoShi, MIN DongHong. Response of Wheat Zinc-Finger Transcription Factor TaDi19A to Cold and Its Screening of Interacting Proteins [J]. Scientia Agricultura Sinica, 2017, 50(13): 2411-2422.
[10] ZHAO JuanYing, LIU JiaMing, FENG ZhiJuan, CHEN Ming, ZHOU YongBin, CHEN Jun, XU ZhaoShi, GUO ChangHong. The Response to Heat and Screening of the Interacting Proteins of Zinc Finger Protein GmDi19-5 in Soybean [J]. Scientia Agricultura Sinica, 2017, 50(12): 2389-2398.
[11] WANG Yu-qiu, LI Guo-bang, YANG Juan, LI Liang, ZHAO Zhi-xue, FAN Jing, WANG Wen-ming. Construction and Application of a Yeast Two-Hybrid cDNA Library from Rice Spikelets Infected with Ustilaginoidea virens [J]. Scientia Agricultura Sinica, 2016, 49(5): 865-873.
[12] ZHANG He-cui, LIU Jing, LIAN Xiao-ping, ZENG Jing, YANG Kun, ZHANG Xue-jie, YANG Dan, SHI Song-mei, GAO Qi-guo, ZHU Li-quan. Expression and Interaction Between ROH1 and EXO70A1 in Reproductive Development [J]. Scientia Agricultura Sinica, 2016, 49(4): 775-783.
[13] WANG Jia-feng, LIU Hao, WANG Hui, CHEN Zhi-qiang . Screening of Putative Proteins That are Interacted with NBS-LRR Protein Pik-h by the Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2016, 49(3): 482-490.
[14] LUO Wei-yu, ZHU Peng-yang, ZHANG Jie, HU Yong-hao, KONG Hui-hui, LIANG Li-bin, ZHOU Yuan, LI Cheng-jun, JIANG Li, CHEN Hua-lan. Construction of cDNA Library Derived from Human Lung Epithelial Cell Lines and Screening for Host Cellular Proteins Interacting with Influenza Virus Nucleoprotein [J]. Scientia Agricultura Sinica, 2016, 49(22): 4451-4459.
[15] SHI Song-mei, GAO Qi-guo, LIAN Xiao-ping, BI Yun-long, LIU Xiao-huan, PU Quan-ming, LIU Gui-xi, LIU Jing, REN Xue-song, YANG Xiao-hong, ZHU Li-quan, WANG Xiao-jia. Identification of Interaction Domain of SRK-ARC1-Exo70A1 and Interaction Strength Analysis in Brassica oleracea var. capitata L. [J]. Scientia Agricultura Sinica, 2016, 49(1): 14-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!