Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (6): 968-980.doi: 10.3864/j.issn.0578-1752.2019.06.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of Different Red and Blue Ratios on the Somatic Embryogenesis and Plant Regeneration of Cotton

WEI Xi1,2,WANG QianHua2,GE XiaoYang2,CHEN YanLi2,DING YanPeng2,ZHAO MingZhe1(),LI FuGuang2()   

  1. 1 College of Agricultural, Shenyang Agricultural University, Shenyang 110866
    2 Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 45000, Henan
  • Received:2018-11-29 Accepted:2019-01-27 Online:2019-03-16 Published:2019-03-22
  • Contact: MingZhe ZHAO,FuGuang LI E-mail:soyshen@126.com;aylifug@163.com

Abstract:

【Objective】Different light quality combinations were set up to clarify the effects of different light quality on cotton somatic embryogenesis, and to provide basis for improving cotton somatic embryogenesis ability and accelerating cotton genetically modified process. 【Method】The light quality combinations B﹕R (blue﹕red) = 1﹕1, B﹕R (blue﹕red) = 3﹕1, B﹕R (blue﹕red) = 1﹕3 and DL (fluorescent lamp) with different red and blue ratios were set respectively. The hypocotyl segments of CCRI12 cotton were cultured on the callus induction medium (CIM), embryogenic callus induction medium (ECDM), somatic embryo induction medium (EIM) and root induction medium (RIM) in turn. Under four different light quality ratios, the corresponding indicators of somatic embryogenesis at different stages were counted, including callus proliferation rate (CPR), callus proliferation, embryogenic callus differentiation rate, somatic embryo number, rooting rate, hypocotyl number, regenerated cotton plant number, chlorophyll concentration, etc.【Result】Compared with B﹕R=1﹕3 and DL light quality combinations, B﹕R=1﹕1 and B:R=3﹕1 light quality combinations significantly promoted callus proliferation. Compared with B﹕R=1﹕1 and B﹕R=3﹕1 light quality combinations, B﹕R=1﹕3 light quality combination significantly increased weight proliferation of callus without EC differentiation ability. B﹕R=1﹕3 and DL light quality combinations had significantly higher embryonic callus differentiation rate than B﹕R=1﹕1 and B﹕R=3﹕1 light quality combinations. The number of somatic embryos induced by B﹕R=1﹕3 treatment was significantly higher than that of B﹕R=1﹕1 and B:R=3﹕1 light quality combination, but there was no significant difference compared with DL; the number of hypocotyls induced by B﹕R=1﹕1 and B﹕R=3﹕1 light quality combination was significantly lower than that induced by B﹕R=1﹕3 and DL light quality combination, and the number of somatic embryos induced by B﹕R=1﹕1 light quality combination and B﹕R=3﹕1 light quality combination was significantly lower than that induced by B﹕R=1 light quality combination and B﹕R=3﹕1 light. The plant height of B﹕R=1﹕1 and B﹕R=1﹕3 combinations was significantly higher than that of B﹕R=1﹕3 and DL combinations; the chlorophyll content of B﹕R=1﹕3 treatment was higher than that of B﹕R=1﹕1 treatment, but the chlorophyll content of B﹕R=1﹕3 treatment was significantly higher than that of B﹕R=3﹕1 and DL light quality combination.【Conclusion】The regulation of different light quality combinations in different stages of somatic embryogenesis was clarified. Optimal light quality combinations could be selectively applied in different stages of somatic embryogenesis. The combination of red and blue B﹕R=1﹕3 can promote the somatic embryogenesis of cotton.

Key words: Gossypium hirsutum, red and blue ratio, somatic embryogenesis, callus, embryogenic callus, somatic embryo, regenerated seedlings

Table 1

Compositions of culture medium at somatic embryogenesis stage of cotton"

名称
Name
基础培养基
MSB
(mL·L-1)
蔗糖
Sucrose
(g·L-1)
葡萄糖
Glucose
(g·L-1)
6-糠氨基嘌呤
Kinetin (KT) (mg·L-1)
2,4-二氯苯氧乙酸
2,4-D
(mg·L-1)
吲哚乙酸
IAA
(mg·L-1)
6-苄氨基腺嘌呤
6-BA
(mg·L-1)
琼脂
Gelose (g·L-1)
愈伤诱导培养基CIM 65 28 0.1 0.1 2.2
胚性愈伤诱导培养基ECDM 65 28 0.15 0.05 2.2
体细胞胚诱导培养基EIM 65 28 0.1 0.2 2.2
再生苗诱导培养基RIM 65 25 0.05 0.05

Fig. 1

Cotton somatic embryogenesis A: Flow chart of cotton somatic embryogenesis; B: 5-7 mm cotton hypocotyl segments; C: Early callus; D: Late callus; E: Embryogenic callus; F: Globular embryo; G: Heart-shaped embryo; H: Torpedo embryo; I: Cotyledon embryo; J: Regenerated cotton plant"

Fig. 2

Effect of different light quality treatments on CPR A: Callus phenotype under four different red and blue ratios; B: Callus proliferation rate under four different light quality treatments was carried out by the least significant difference (LSD) method (P < 0.05). Different lower-case letters in B denote statistical differences of pairwise comparisons among each group of bars according to LSD test (P<0.05). The same as below"

Fig. 3

Effects of different light quality treatments on undifferentiated callus A: Phenotype of undifferentiated callus under four different red-blue ratios; B: Statistical analysis of the proliferation of undifferentiated callus under four different light quality treatments "

Fig. 4

Effects of different light quality treatments on embryogenic callus induction in cotton A: Phenotypes of hypocotylic callus with four different red and blue ratios; B: Statistical analysis of differentiation rate of embryonic callus with four different light quality treatments. ECs: Embryogenic callus"

Fig. 5

Effects of different light quality treatments on the induction stage of cotton embryoids A: The phenotype of somatic embryos under four different red and blue ratios; B: The statistics of somatic embryos under four different light quality treatments"

Fig. 6

Effects of different light quality treatments on the number of hypocotyls from SEs"

Fig. 7

Effects of different light quality treatments on rooting of cotton hypocotyls A: Phenotypes of rooting under four different ratios of red and blue; B: Statistics of rooting rates under four different light quality treatments"

Fig. 8

Effects of different light qualities on cotton seedling regeneration and plant height A: The phenotype of regenerated cotton plants under four different red-blue ratios; B: the statistics of seedling number of hypocotyl under four different light quality treatments; C: the statistics of seedling number of hypocotyl under four different light quality treatments"

Fig. 9

Effects of different light qualities on chlorophyll concentration of cotton regenerated seedlings A: Leaf phenotype of regenerated cotton under four different red-blue ratios; B: Statistical analysis of chlorophyll concentration under four different light quality treatments "

[1] ZHANG G Y, LIU L F , ZHI-YING M A . Study on heterosis utilization of insect-resistant transgenic Bt ( Bacillus thuringiensis) cotton. Acta Gossypii Sinica, 2001.
[2] SINGH D P, SINGH I P, TYAGI A P . Association analysis for yeild components in upland cotton. Madras Agricultural Journal, 1981.
[3] ZHENG W, ZHANG X Y, YANG Z R, WU J, LI F L, DUAN L L, LIU C L, LU L L, ZHANG C J, LI F G . At wuschel promotes formation of the embryogenic callus in Gossypium hirsutum. PLoS ONE, 2014,9(1):e87502.
[4] 张天真 . 棉花纤维品质分子育种的现状及展望. 棉花学报, 2000,12(6):321-326.
doi: 10.3969/j.issn.1002-7807.2000.06.010
ZHANG T Z . Current status and prospects of molecular breeding of cotton fiber quality. Cotton Science, 2000,12(6):321-326. (in Chinese)
doi: 10.3969/j.issn.1002-7807.2000.06.010
[5] ARNOLD S V, SABALA I, BOZHKOV P, DYACHOK J, FILONOVA L . Developmental pathways of somatic embryogenesis. Plant Cell Tissue & Organ Culture, 2002,69(3):233-249.
doi: 10.1023/A:1015673200621
[6] D"ONOFRIO C, MORINI S, BELLOCCHI G . Effect of light quality on somatic embryogenesis of quince leaves. Plant Cell Tissue and Organ Culture, 1998,53(2):91-98.
doi: 10.1023/a:1006059615088
[7] APPELGREN, MAIGULL. Effects of light quality on stem elongation of Pelargonium in vitro. Scientia Horticulturae (Amsterdam), 1991,45(3):345-351.
[8] ARNE S, KREKLING T, APPELGREN M . Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tissue & Organ Culture, 1995,41(2):177-185.
doi: 10.1007/BF00051588
[9] SHIN-ICHIRO I, TOSHINORI K, MASAKI M, NAKAYAMA K I, MICHIO D, KEN-ICHIRO S . Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(14):5626-5631.
doi: 10.1073/pnas.0709189105
[10] WANG H, GU M, CUI J X, SHI K, ZHOU Y H, YU J Q . Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry & Photobiology B Biology, 2009,96(1):30-37.
doi: 10.1016/j.jphotobiol.2009.03.010 pmid: 19410482
[11] WANG X Y, XU X M, CUI J . The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica, 2015,53(2):213-222.
doi: 10.1007/s11099-015-0083-8
[12] LI H, TANG C, XU Z . The effects of different light qualities on rapeseed ( Brassica napus L.) plantlet growth and morphogenesis in vitro. Scientia Horticulturae, 2013,150(2):117-124.
doi: 10.1016/j.scienta.2012.10.009
[13] HERNANDEZ R, KUBOTA C . Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental & Experimental Botany, 2016,121(1):66-74.
doi: 10.1016/j.envexpbot.2015.04.001
[14] 闻靖, 杨其长, 魏灵玲, 程瑞锋, 刘文科, 鲍顺淑, 周晚来 . 不同红蓝LED组合光源对叶用莴苣光合特性和品质的影响及节能评价. 园艺学报, 2011,38(4):761-769.
WEN J, YANG Q C, WEI L L, CHENG R F, LIU W K, BAO S S, ZHOU W L . Effect of different red and blue LED combined light sources on photosynthetic characteristics and quality of leaf lettuce and energy saving evaluation. Acta Horticulturae Sinica, 2011,38(4):761-769. (in Chinese)
[15] 王君, 杨其长, 仝宇欣 . 红蓝光下光强对生菜电能、光能利用效率及品质的影响. 中国农业大学学报, 2016,21(8):59-66.
doi: 10.11841/j.issn.1007-4333.2016.08.08
WANG J, YANG Q C, TONG Y X . The effect of light intensity under red and blue light on the energy, light energy utilization efficiency and quality of lettuce. Journal of China Agricultural University, 2016,21(8):59-66. (in Chinese)
doi: 10.11841/j.issn.1007-4333.2016.08.08
[16] 肖春生, 陈颐, 钟越峰, 杨虹琦, 何命军, 李帆, 裴晓东 . 不同比例红蓝光对烟苗生长及碳氮代谢的影响. 中国农学通报, 2013(22):160-166.
doi: 10.3969/j.issn.1000-6850.2013.22.029
XIAO C S, CHEN Y, ZHONG Y F, YANG H Q, HE M J, LI F, PEI X D . Effects of different ratios of red and blue light on growth and carbon and nitrogen metabolism of tobacco seedlings.Chinese Agricultural Science Bulletin, 2013(22):160-166. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2013.22.029
[17] 董合忠, 焦改丽, 陈志贤 . 2,4-D、KT对棉花愈伤组织的诱导和体细胞胚胎发生的影响. 华北农学报, 1993,8(3):87-91.
doi: 10.3321/j.issn:1000-7091.1993.03.016
DONG H Z, JIAO G L, CHEN Z X . The effect of 2,4-D and KT on callus initiation and somatic embryogenesis in cotton culture. Acta Agriculturae Boreali-Sinica, 1993,8(3):87-91. (in Chinese)
doi: 10.3321/j.issn:1000-7091.1993.03.016
[18] 于娅, 刘传亮, 马峙英, 李付广, 李凤莲, 王玉芬, 武芝霞, 张朝军 . 陆地棉中棉所24胚性愈伤组织的诱导及植株再生. 西北植物学报, 2004,24(2):306-310.
doi: 10.3321/j.issn:1000-4025.2004.02.021
YU Y, LIU C L, MA Z Y, LI F G, LI F L, WANG Y F, WU Z X, ZHANG C J . Induction and plant regeneration of embryogenic callus from upland cotton CCRI24. Acta Botanica Boreali-Occidentalia Sinica, 2004,24(2):306-310. (in Chinese)
doi: 10.3321/j.issn:1000-4025.2004.02.021
[19] YANG X Y, ZHANG X L, YUAN D J, JIN F Y, ZHANG Y C, XU J . Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biology, 2012,12(1):110.
doi: 10.1186/1471-2229-12-110 pmid: 22817809
[20] XIAO Y Q, CHEN Y L, DING Y P, WU J, WANG P, YU Y, WEI X, WANG Y, ZHANG C J, LI F G, GE X Y . Effects of GhWUS from upland cotton ( Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration. Plant Science, 2018,270:157-165.
doi: 10.1016/j.plantsci.2018.02.018
[21] GE X Y, ZHANG C J, WANG Q H, YANG Z R, WANG Y, ZHANG X Y, WU Z X, HOU Y X, WU J H , LI F G . iTRAQ protein profile differential analysis between somatic globular and cotyledonary embryos reveals stress, hormone, and respiration involved in increasing plantlet regeneration of Gossypium hirsutum L. Journal of Proteome Research, 2015,14(1):268-278.
doi: 10.1021/pr500688g pmid: 25367710
[22] 张朝军 . 棉花叶柄高效再生体系的建立与遗传分析[D]. 北京: 中国农业科学院, 2008.
ZHANG C J . Establishment and genetic analysis of efficient regeneration system of cotton petiole[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)
[23] KIM S J, HAHN E J, HEO J W, PAEK K Y . Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 2004,101(1):143-151.
doi: 10.1016/j.scienta.2003.10.003
[24] LEE S H, TEWARI R K, HAHN E J, PAEK K Y . Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera(L.) Dunal. plantlets. Plant Cell Tissue & Organ Culture, 2007,90(2):141-151.
doi: 10.1007/s11240-006-9191-2
[25] PORRA R J, THOMPSON W A, KRIEDEMANN P E . Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimbiophysacta, 1989,975(3):384-394.
[26] 李克勤, 王哲之 . 陆地棉组织细胞培养的研究. 西北植物学报, 1991(2):144-153.
LI K Q, WANG Z Z . Study on cell culture of upland cotton tissue.Acta Botanica Boreali-Occidentalia Sinica, 1991(2):144-153. (in Chinese)
[27] NOBRE J, KEITH D J, DUNWELL J M . Morphogenesis and regeneration from stomatal guard cell complexes of cotton ( Gossypium hirsutum L.). Plant Cell Reports, 2001,20(1):8-15.
doi: 10.1007/s002990000281
[28] 董合忠 . 棉花体细胞胚发生和植株再生. 植物生理学通讯, 1990(2):8-12.
DONG H Z . Somatic embrygenesis of cotton and its plant regeneration in vitro.Plant Physiology Communications, 1990(2):8-12. (in Chinese)
[29] 商海红, 刘传亮, 张朝军, 武芝霞, 李付广 . 棉花体细胞胚发生机理的研究进展. 西北植物学报, 2009,29(3):000637-000642.
doi: 10.3321/j.issn:1000-4025.2009.03.033
SHANG H H, LIU C L, ZHANG C J, WU Z X, LI F G . Advances in research on somatic embryogenesis mechanism of cotton. Acta Botanica Boreali-Occidentalia Sinica, 2009,29(3):000637-000642. (in Chinese)
doi: 10.3321/j.issn:1000-4025.2009.03.033
[30] XU J, YANG X Y, LI B Q, CHEN L, MIN L, ZHANG X L . GhL1L1 affects cell fate specification by regulating GhPIN1-mediated auxin distribution. Plant Biotechnology Journal, 2019,17(1):63-74.
doi: 10.1111/pbi.12947 pmid: 29754405
[31] ARACELI R S, GUSTAVO A H, JOSE M, RODIGUEZ D, BENJAMIN R G, JESUS C M, OSVALDO A , CASTELLANOS . Effect of light quality and culture medium on somatic embryogenesis of Agave tequilana Weber var. Azul. Plant Cell Tissue & Organ Culture, 2011,104(2):271-275.
doi: 10.1007/s11240-010-9815-4
[32] FEHER A, PASTERNAK T P, DUDITS D . Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue & Organ Culture, 2003,74(3):201-228.
[33] NHUT D T, HUY N P, TAI N T, NAM N B, LUAN V Q, HIEN V T, TUNG H T, VINH B T, LUAN T C . Light-emitting diodes and their potential in callus growth, plantlet development and saponin accumulation during somatic embryogenesis of Panax vietnamensis Ha et Grushv. Biotechnology & Biotechnological Equipment, 2015,29(2):299-308.
doi: 10.1080/13102818.2014.1000210 pmid: 09
[34] HERINGER A S, REIS R S, PASSAMANI L Z, SANTA -CATARINA C, SILVEIRA V . Comparative proteomics analysis of the effect of combined red and blue lights on sugarcane somatic embryogenesis. Acta Physiologiae Plantarum, 2017,39(2):52.
doi: 10.1007/s11738-017-2349-1
[35] WANG S, LI L, XU P B, LIAN H L, WANG W X, XU F, MAO Z L, ZHANG T, YANG H Q . CRY1 interacts directly with HBI1 to regulate its transcriptional activity and photomorphogenesis in Arabidopsis. Journal of Experimental Botany, 2018,69(16):3867-3881.
doi: 10.1093/jxb/ery209 pmid: 29860272
[36] XU D Q, JIANG Y, LI J G, LIN F, HOLM M, DENG X W . BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(27):7655.
doi: 10.1073/pnas.1607687113 pmid: 27325768
[37] HU X M, XU L . Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiology, 2016,172(4):2363.
doi: 10.1104/pp.16.01067 pmid: 27784768
[38] 李雯琳, 郁继华, 张国斌, 杨其长 . LED光源不同光质对叶用莴苣幼苗叶片气体参数和叶绿素荧光参数的影响. 甘肃农业大学学报, 2010,45(1):47-51.
doi: 10.3969/j.issn.1003-4315.2010.01.010
LI W L, YU J H, ZHANG G B, YANG Q C . Effects of different light quality of LED light sources on leaf gas parameters and chlorophyll fluorescence parameters of leaf lettuce seedlings. Journal of Gansu Agricultural University, 2010,45(1):47-51. (in Chinese)
doi: 10.3969/j.issn.1003-4315.2010.01.010
[39] YE S Y, SHAO Q S, XU M J, LI S L, WU M, TAN X, SU L Y . Effects of light quality on morphology, enzyme activities, and bioactive compound contents in anoectochilus roxburghii. Frontiers in Plant Science, 2017,8:857.
doi: 10.3389/fpls.2017.00857 pmid: 5440764
[1] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[2] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[3] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[4] HOU SiYu,WANG XinFang,DU Wei,FENG JinHua,HAN YuanHuai,LI HongYing,LIU LongLong,SUN ZhaoXia. Genome-Wide Identification of WOX Family and Expression Analysis of Callus Induction Rate in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2021, 54(17): 3573-3586.
[5] ZHAO Juan,YIN YiZhen,WANG XiaoLu,MA ChunYing,YIN MeiQiang,WEN YinYuan,SONG XiE,DONG ShuQi,YANG XueFang,YUAN XiangYang. Physiological Response of Millet Callus with Different Herbicide-Resistance to Sethoxydim Stress [J]. Scientia Agricultura Sinica, 2020, 53(5): 917-928.
[6] TAN Bin,CHEN TanXing,HAN YaPing,ZHANG YaRu,ZHENG XianBo,CHENG Jun,WANG Wei,FENG JianCan. Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 882-892.
[7] BIAN ShuXun,HAN XiaoLei,YUAN GaoPeng,ZHANG LiYi,TIAN Yi,ZHANG CaiXia,CONG PeiHua. Cloning and Functional Analysis of U6 Promoter in Apple [J]. Scientia Agricultura Sinica, 2019, 52(23): 4364-4373.
[8] LIU Yan-rong, CEN Hui-fang, YAN Jian-ping, ZHANG Wan-jun. Optimizing of Agrobacterium-Mediated Transformation of Switchgrass Cultivars [J]. Scientia Agricultura Sinica, 2016, 49(1): 80-89.
[9] LAI Cheng-Chun, LAI Zhong-Xiong, FANG Zhi-Zhen, HE Yuan, JIANG Shun-Ri. Proteomic Analysis of Early Somatic Embryogenesis in Longan (Dimocarpus longan Lour.) [J]. Scientia Agricultura Sinica, 2012, 45(9): 1775-1790.
[10] WEN Feng, XIAO Shi-Xin, NIE Yang-Mei, MA Qiu-Xiang, ZHANG Peng, GUO Wen-Wu. Protoplasts Culture Isolated from Friable Embryogenic Callus of Cassava and Plant Regeneration [J]. Scientia Agricultura Sinica, 2012, 45(19): 4050-4056.
[11] CHEN Jing, DONG Hao, MA Hai-Zhen, SUN Quan-Xi, LIU Jiang, QI Bao-Xiu, LI Xin-Zheng, DONG Shu-Ting. Comparison of Induction and Regeneration of Embryogenic Callus Initiated from Immature Embryos and Seedling-Derived Young Leaf Segments of Maize [J]. Scientia Agricultura Sinica, 2011, 44(17): 3676-3682.
[12] FANG Zhi-Zhen, LAI Zhong-Xiong, LAI Cheng-Chun, JIANG Shun-Ri. Proteomics on Somatic Embryogenesis During the Middle Stage in Longan [J]. Scientia Agricultura Sinica, 2011, 44(14): 2966-2979 .
[13] ZHANG Li-ming,WANG Yun-sheng,GAO Li-ping,XIA Tao
. Analysis of Differential Protein Expression of Tea Callus with Different Catechins Contents
[J]. Scientia Agricultura Sinica, 2010, 43(19): 4053-4062 .
[14] LI Hui-hua,LAI Zhong-xiong,LIN Yu-ling,SU Ming-hua
. Cloning of ACO Gene from Embryogenic Calli of Longan (Dimocarpus longan Lour.) and Its Expression During Longan Somatic Embryogenesis
[J]. Scientia Agricultura Sinica, 2010, 43(18): 3798-3808 .
[15] LAI Cheng-chun,LAI Zhong-xiong,FANG Zhi-zhen,LIN Yu-ling,JIANG Shun-ri
.

Cloning of Mitochondrial F1-ATPase Beta Subunit Gene from Embryogenic Callus and Its Expression Analysis by qRT-PCR During Somatic Embryogenesis in Longan

[J]. Scientia Agricultura Sinica, 2010, 43(16): 3392-3401 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!