Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (19): 4050-4056.doi: 10.3864/j.issn.0578-1752.2012.19.017

• HORTICULTURE • Previous Articles     Next Articles

Protoplasts Culture Isolated from Friable Embryogenic Callus of Cassava and Plant Regeneration

 WEN  Feng, XIAO  Shi-Xin, NIE  Yang-Mei, MA  Qiu-Xiang, ZHANG  Peng, GUO  Wen-Wu   

  1. 1.华中农业大学园艺林学学院/园艺植物生物学教育部重点实验室,武汉 430070
    2.广西壮族自治区亚热带作物研究所,南宁 530001
    3.中国科学院上海生命科学研究院植物生理生态研究所植物分子遗传国家重点实验室,上海 200032
  • Received:2012-04-25 Online:2012-10-01 Published:2012-08-02

Abstract: 【Objective】The objective of this study is to establish an efficient system of protoplast regeneration for further developing protoplast fusion and transformation in cassava. 【Method】 Protoplasts were isolated from suspension cultures derived from friable embryogenic callus (FEC) of cassava genotype TMS60444. The highest protoplast yield obtained was 3.5×106 protoplasts/g fresh weight. Viabilities of the protoplasts assessed by the fluorescein diacetate (FDA) were approximately 90%. Protoplasts were cultured in TM2G medium with liquid thin layer culture at densities of 5×105 p/mL or 2×105 p/mL. During the first 30 d, the medium was refreshed by 0.3 mol•L-1 TM2G fresh medium every 10 d. After that, the medium was refreshed by 0.25 mol•L-1 TM2G fresh medium every 10 d. After cultured for 45 d, calli of 1-2 mm were picked out and separately developed into embryos on MSN medium, into mature embryos on CMM medium, into shoots on CEM medium and into roots on MS medium. 【Result】It was showed that all protoplasts cultured at density of 5×105 p/mL developed into compact calli (could develop into embryos), protoplasts cultured at density of 2×105 p/mL developed into compact calli and vacuolar calli (could not develop into embryos). A total of 1 479 compact calli were picked out and developed into 757 cotyledon embryos and regenerated 186 plants in the experiment. 【Conclusion】The yield and viability of isolated protoplasts had been greatly increased, the bottleneck of predecessors mentioned was improved, and the efficiency of plant regeneration from protoplasts was promoted. 

Key words: cassava, friable embryogenic callus (FEC), protoplast, plant regeneration

[1]Liu J, Zheng Q J, Ma Q X, Kranthi K G, Zhang P. Cassava genetic transformation and its application in breeding. Journal of Integrative Plant Biology, 2011, 53(7): 552-569.

[2]Raemakers C J J M, Schavemaker C M, Jacobsen E, Visser R G F. Improvement of cyclic somatic embryogenesis of cassava(Manihot esculenta Crantz). Plant Cell Reports, 1993, 12: 226-229.

[3]Ceballos H, Okogbenin E, Pérez J C, López-Valle L A B, Debouck D. Cassava//Root and Tuber Crops. Handbook of Plant Breeding. New York: Springer Science+Business Media, 2010: 53-94.

[4]Kyozuka J, Otoo E, Shimamoto K. Plant regeneration from protoplasts of indica rice: genotypic differences in culture response. Theoretical and Applied Genetics, 1988, 76: 887-890.

[5]Rhodes C A, Pierce D A, Metler I J, Mascarenhas D, Detmer J J. Genetically transformed maize plants from protoplasts. Science, 1988, 40: 204-207.

[6]Chen W H, Davey M R, Power J B, Cocking E C. Sugarcane protoplasts: factors affecting division and plant regeneration. Plant Cell Reports, 1988, 7: 344-347.

[7]Chang Y F, Wang W C, Colleen Y W, Nguyen H T, Wong J R. Plant regeneration from protoplasts isolated from long-term cell cultures of wheat (Triticum aestivum). Plant Cell Reports, 1991, 9: 611-614.

[8]Shahin E A, Shepard J F. Cassava mesophyll protoplasts: isolation, proliferation and shoot formation. Plant Science Letters, 1980, 17: 459-465.

[9]Anthony P, Davey M R, Power J B, Lowe K C. An improved protocol for the culture of cassava leaf protoplasts. Plant Cell, Tissue and Organ Culture, 1995, 42: 229-302.

[10]Sofiari E, Raemakers C J J M, Bergervoet J E M, Jacobsen E, Visser R G F. Plant regeneration from protoplasts isolated from friable embroygenic callus of cassava. Plant Cell Reports, 1998, 18: 159-165.

[11]Taylor N J, Edwards M, Kiernan R C, Davey C D M, Blakesley D, Henshaw G G. Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Biotechnology, 1996, 14: 726-730.

[12]Gresshoff P, Doy C. Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of the anthers for haploid culture of this and other genera. Zeitschrift für Pflanzenphysiologie, 1974, 73: 132-141.

[13]Schenk R U, Hildebrandt A C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal Botany, 1972, 50: 199-204.

[14]Shahin E A. Totipotency of tomato protoplasts. Theoretical and Applied Genetics, 1985, 69: 235-240.

[15]Zhang P, Legris G, Coulin P, Puonti-Kaerlas J. Production of stably transformed cassava plants via particle bombardment. Plant Cell Reports, 2000, 19: 939-945.

[16]Saelim L, Phansiri S, Netrphan S, Suksangpanomrung M, Narangajavana J. Optimization of in vitro cyclic somatic embryogenesis and regeneration of the Asian cultivars of cassava (Manihot esculenta Crantz) for genetic manipulation system. Global Journal of Biotechnology & Biochemistry, 2006, 1(1): 7-15.

[17]Zhang P, Puonti-Kaerlas J. PIG-mediated cassava transformation using positive and negative selection. Plant Cell Reports, 2000, 19: 1041-1048. 

[18]马国华, 许秋生, 羡蕴兰. 从木薯嫩叶直接诱导初生体细胞胚胎发生和芽的形成. 植物学报, 1998, 40(6): 503-507.

Ma G H, Xu Q S, Xian Y L. Direct primary somatic embryogenesis and shoot formation from immature leaves of Manihot esculenta. Acta Botanica Sinica, 1998, 40(6): 503-507. (in Chinese)

[19]姚庆荣, 郭运玲, 孔  华, 郭安平. 木薯体细胞胚胎发生及植株再生研究. 中国生物工程杂志, 2008, 28(12): 52-56.

Yao Q R, Guo Y L, Kong H, Guo A P. Somatic embryogenesis and plant regeneration of cassava (Manihot esculenta Crantz). China Biotechnology, 2008, 28(12): 52-56. (in Chinese)

[20]康冬鸽, 李瑞梅, 胡新文, 郭建春. 木薯的再生体系和基因转化方法. 基因组学与应用生物学, 2009, 28(3): 619-624.

Kang D G, Li R M, Hu X W, Guo J C. Methods of tissue-cultured regeneration system and gene transformation of cassava. Genomics and Applied Biology, 2009, 28(3): 619-624. (in Chinese)

[21]Mathews H, Schopke C, Carcamo R, Chavarriaga P, Fauquet C, Beachy R N. Improvement of somatic embryogenesis and plant recovery in cassava. Plant Cell Reports , 1993, 12: 328-333.

[22]Konan N K, Sangwan R S, Sangwan-Norreel B S. Efficient in vitro shoot-regeneration systems in cassava (Manihot esculenta Crantz). Plant Breeding, 1994, 113: 227-236.

[23]Li H Q, Guo J Y, Huang Y W, Liang C Y, Liu H X, Potrykus I, Puonti-Kaerlas J. Regeneration of cassava plants via shoot organogenesis. Plant Cell Reports, 1998, 17: 410-414.

[24]Raemakers K, Jacobsen E, Visser R G F. The use of somatic embryogenesis for plant propagation in cassava. Molecular Biotechnology, 2000, 14: 215-21.

[25]Saelim L, Phansiri S, Suksangpanomrung M, Netrphan S, Narangajavana J. Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants. Plant Cell Reports, 2009, 28: 445-455.

[26]Bull S E, Owiti J A, Niklaus M, Beeching J R, Gruissem W, Vanderschuren H. Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nature Protocols, 2009, 4: 1845-1854.
[1] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[2] LIN HongXin, PAN XiaoHua, YUAN ZhanQi, XIAO YunPing, LIU RenGen, WANG RuiQing, Lü FengJuan. Effects of Nitrogen Application and Cassava-Peanut Intercropping on Cassava Nutrient Accumulation and System Nutrient Utilization [J]. Scientia Agricultura Sinica, 2018, 51(17): 3275-3290.
[3] LIU Wei, LIU Hao, DONG ShuangYu, GU FengWei, CHEN ZhiQiang, WANG JiaFeng, WANG Hui. Construction of Rice Leaf Sheath Protoplast Transformation System and Transient Expression of Pik-H4 and AvrPik-H4 Proteins [J]. Scientia Agricultura Sinica, 2017, 50(23): 4575-4584.
[4] AN Fei-fei, CHEN Song-bi, LI Geng-hu, ZHOU Kai, LI Kai-mian. Comparison Analysis of Starch and Protein Expression Profiles on Cassava Tuberous Roots cv. SC8 and Its Tetraploid [J]. Scientia Agricultura Sinica, 2015, 48(13): 2656-2665.
[5] AN Fei-Fei-1, FAN Jie-1, LI Geng-Hu-2, JIAN Chun-Ping-2, LI Kai-Mian-1. Comparison of Leaves Proteome and Chlorophyll Fluorescence of Cassava cv. SC8 and Its Tetraploid Mutants [J]. Scientia Agricultura Sinica, 2013, 46(19): 3978-3987.
[6] GAO Zhi-hong,CHEN Xiao-yuan,LIN Chang-hua,Zhang Yu-peng,HE Yong-sheng. Effect of Fertilizer Application Rates on Cassava N, P, K Accumulations and Allocation and Yield in Sloping Lands of North Guangdong [J]. Scientia Agricultura Sinica, 2011, 44(8): 1637-1645 .
[7] LI Po,GU Shou-qin,LIU Li-hua,NIU An-li,WU Min,DONG Jin-gao
. Establishment of REMI Mutagenesis of Setosphaeria turcica and Characterization of Mutants
[J]. Scientia Agricultura Sinica, 2011, 44(4): 716-722 .
[8] SHI Zhen-yuan,YIN Gui-xiang,DU Li-pu,TAO Li-li,XU Hui-jun,YE Xing-guo
. Plant Regeneration and Agrobacterium-mediated Transformation Using Large Immature Embryos of Wheat
[J]. Scientia Agricultura Sinica, 2011, 44(2): 225-232 .
[9] DI Chao-Zeng, XU Zhao-Shi, CHEN Yao-Feng, LIU Pei, LI Lian-Cheng, CHEN Ming, MA You-Zhi. Cloning and Activity Analysis of Protein KinaseTaNPK Gene Promoter in Wheat [J]. Scientia Agricultura Sinica, 2011, 44(19): 3930-3936.
[10] . Plant Regeneration from Leaves of Persimmon(Diospyros lotus L.) [J]. Scientia Agricultura Sinica, 2008, 41(2): 607-612 .
[11] . The research of tissue culture and regenerated of the different explants of sunflower [J]. Scientia Agricultura Sinica, 2006, 39(11): 2208-2213 .
[12] ,,. Analysis of the Factors Affecting Callus Induction and Plant Regeneration of Zoysia japonica Steud. from Mature Seed [J]. Scientia Agricultura Sinica, 2006, 39(02): 368-374 .
[13] ,,,,. Plant Regeneration from in vitro Cultured Hypocotyl Explants of Euonymus japonicus 'Cu zhi' [J]. Scientia Agricultura Sinica, 2005, 38(12): 2502-2507 .
[14] ,,,,. Interspecific Somatic Hybrids Between Brassica oleracea var. botrytis and Ogura Type CMS Brassica napus via Asymmetric Protoplast Fusion [J]. Scientia Agricultura Sinica, 2005, 38(11): 2372- .
[15] ,,,. The Establishment of Efficient Regeneration System for Different Genotypes of Tagetes patula L. [J]. Scientia Agricultura Sinica, 2005, 38(07): 1414-1417 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!