Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (7): 1345-1352.doi: 10.3864/j.issn.0578-1752.2018.07.012

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Functional Characterization of an Auxin Response Factor Gene MdARF5 in Apple

AN JianPing1, SONG LaiQing2, ZHAO LingLing2, YOU ChunXiang1, WANG XiaoFei1, HAO YuJin1   

  1. 1College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong; 2Yantai Academy of Agricultural Sciences, Yan’tai 265599, Shandong
  • Received:2017-08-13 Online:2018-04-01 Published:2018-04-01

Abstract: 【Objective】The objective of this study is to isolate an apple auxin response factor gene MdARF5, to analyze its expression of exposing to auxin, to identify its role in regulating anthocyanin biosynthesis, then to reveal its biological functions and to provide a theoretical basis for auxin-mediated anthocyanin accumulation. 【Method】 The apple auxin response factor gene MdARF5 was cloned by PCR technology from apple (Malus×domestica ‘Royal Gala’). The phylogenetic tree was constructed by MEGA 5.0 software. The transgenic apple calli were generated via Agrobacterium-mediated transformation. The differences in the anthocyanin accumulation were compared between wild-type and transgenic apple calli. The transient expression assays in tobacco leaves were carried out to test the transcriptional regulation of MdMYB1 gene by MdARF5. 【Result】MdARF5 gene (MDP0000143749) was obtained. The open reading frame (ORF) of MdARF5 contained 2 691 bp, encoding a protein of 896 amino acid residues. Phylogenetic tree analysis showed that the homology of MdARF5 was close to the PbARF5. The transcriptional analysis results indicated that MdARF5 was induced by auxin treatment. On the contrary, the expression levels of anthocyanin biosynthesis genes were repressed. The MdARF5-overexpressing apple calli exhibited decreased anthocyanin content, suggesting that MdARF5 gene might play an important role in regulating anthocyanin accumulation. The sequence of MdMYB1 promoter region was analyzed and a putative ARF binding motif was found. Meanwhile, the transient expression assays were performed in Nicotiana benthamiana leaves and the results showed that MdARF5 could repress the expression of MdMYB1. 【Conclusion】It is speculated that MdARF5 down-regulates anthocyanin accumulation by directly repressing the transcript of MdMYB1.

Key words: apple, auxin, ARF transcription factor, anthocyanin

[1]    MOCKAITIS K, ESTELLE M. Auxin receptors and plant development: A new signaling paradigm. Annual Review of Cell and Developmental Biology, 2008, 24: 55-80.
[2]    VANNESTE S, RIML J. Auxin: a trigger for change in plant development. Cell, 2009, 136: 1005-1016.
[3]    任怡怡, 戴绍军, 刘炜. 生长素的运输及其在信号转导及植物发育中的作用. 生物技术通报, 2012, 3(4): 9-16.
REN Y Y, DAI S J, LIU W. Auxin transport and its roles in signal transduction and plant development. Biotechnology Bulletin, 2012, 3(4): 9-16. (in Chinese)
[4]    DHARMASIRI N, DHARMASIRI S, ESTELLE M. The F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 441-445.
[5]    LISCUM E, REED J W. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Molecular Biology, 2002, 49(3): 387-400.
[6]    KEPINSKI S, LEYSER O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 446-451.
[7]    QUINT M, GRAY W M. Auxin signaling. Current Opinion Plant Biology, 2006, 9: 448-453.
[8]    DHARMASIRI S, ESTELLE M. The role of regulated protein degradation in auxin response. Plant Molecular Biology, 2002, 49: 401-408.
[9]    WEIJERS D, FRIML J. SnapShot: auxin signaling and transport. Cell, 2009, 136: 1172-1172.
[10]   刘振华, 于延冲, 向凤宁. 生长素响应因子与植物的生长发育. 遗传, 2011, 33(12): 1335-1346.
LIU Z H, YU Y C, XIANG F N. Auxin response factors and plant growth and development. Hereditas, 2011, 33(12): 1335-1346. (in Chinese)
[11]   GUILFOYLE T J, HAGEN G. Auxin response factors. Current Issues in Molecular Biology, 2007, 10: 453-460.
[12]   WANG D, PEI K, FU Y, SUN Z, LI S, LIU H, TAO Y. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 2007, 394: 13-24.
[13]   TIWARI S B, HAGEN G, GUILFOYLE T. The roles of auxin response factor domains in auxin-responsive transcription. The Plant Cell, 2003, 15: 533-543.
[14]   ULMASOV T, HAGEN G, GUILFOYLE T J. Dimerization and DNA binding of auxin response factors. Plant Journal, 1999, 19: 309-319.
[15]   梅梅, 王晓禹, 张晓林, 陆秀君. 植物生长素响应因子ARF研究进展. 种子, 2017, 36(1): 47-54.
MEI M, WANG X Y, ZHANG X L, LU X J. Advances in plant auxin response factors. Seed, 2017, 36(1): 47-54. (in Chinese)
[16]   MALLORY A C, BARTEL D P, BARTEL B. MicroRNA-directed regulation of Arabidopsis auxin response factor17 is essential for proper development and modulates expression of early auxin response genes. The Plant Cell, 2005, 17: 1360-1375.
[17]   OKUSHIMA Y, OVERVOORDE P J, ARIMA K, ALONSO J M, CHAN A, CHANG C, ECKER J R, HUGHES B, LUI A, NGUYEN D. Function genomic analysis of the auxin response factor gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. The Plant Cell, 2005, 17: 444-463.
[18]   FUKAKI H, TASAKA M. Hormone interactions during lateral root formation. Plant Molecular Biology, 2009, 69: 437-449.
[19]   NAGPAL P, ELLIS C M, WEBER H, PLOENSE S E, BARKAWI L S, GUILFOYLE T J, HAGEN G, ALONSO J M, COHEN J D, FARMER E E. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and ?ower maturation. Development, 2005, 132: 4107-4118.
[20]   FINET C, FOURQUIN C, VINAUGER M, BERNE-DEDIEU A, CHAMBRIER P, PAINDAVOINE S, SCUTT C P. Parallel structural evolution of auxin response factors in the angiosperms. Plant Journal, 2010, 63: 952-959.
[21]   ELLIS C M, NAGPAL P, YOUNG J C, HAGE G, GUILFOYLE T J, REED J W. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005, 132: 4563-4574.
[22]   ATTIA K A, ABDELKHALIK A F, AMMAR M H, WEI C, YANG J, LIGHTFOOT D A, EL-SHEMY H A. Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Current Issues in Molecular Biology, 2009, 11: 129.
[23]   QI Y, WANG S, SHEN C, ZHANG S, CHEN Y, XU Y, JIANG D. OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). New Phytologist, 2002, 193: 109-120.
[24]   ZHANG S, WANG S, XU Y, YU C, SHEN C, QIAN Q, QI Y. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3 and OsBRI1. Plant Cell Environment, 2005, 38: 638-654.
[25]   李慧峰, 冉昆, 何平, 王海波, 常源升, 孙清荣, 程来亮, 李林光. 苹果生长素响应因子(ARF)基因家族全基因组鉴定及表达分析. 植物生理学报, 2015, 51(7): 1045-1054.
LI H F, RAN K, HE P, WANG H B, CHANG Y S, SUN Q R, CHENG L L, LI L G. Genome-wide identification and expression analysis of Auxin Response Factor (ARF) gene family in apple. Plant Physiology Journal, 2015, 51(7): 1045-1054. (in Chinese)
[26]   王意程, 许海峰, 王楠, 姜生辉, 刘静轩, 王得云, 左卫芳, 陈学 森. 红肉苹果愈伤组织生长素信号相关基因MdARF3的克隆与表达分析. 园艺学报, 2017, 44(4): 633-643.
WANG Y C, XU H F, WANG N, JIANG S H, LIU J X, WANG D Y, ZUO W F, CHEN X S. Molecular cloning and expression analysis of an auxin signaling related gene MdARF3 in red flesh apple. Acta Horticulturae Sinica, 2017, 44(4): 633-643. (in Chinese)
[27]   AN J P, QU F J, YAO J F, WANG X N, YOU C X, WANG X F, HAO Y J. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research, 2017, 4: 17023.
[28]   束怀瑞. 中国果树产业可持续发展战略研究. 落叶果树, 2012, 44(1): 1-4.
SHU H R. The sustainable development strategy research of fruit industry in China. Deciduous Fruits, 2012, 44(1): 1-4. (in Chinese)
[29]   SAURE M C. External control of anthocyanin formation in apple. Scientia Horticulturae, 1990, 42: 181-218
[30]   高华君, 王少敏, 王江勇. 套袋对苹果果皮花青苷合成及着色的影响. 果树学报, 2006(5): 750-755.
Gao H J, WANG, S M, WANG J Y. Effect of bagging on anthocyanin biosynthesis and pigmentation in apple skin. Journal of Fruit Science, 2006(5): 750-755. (in Chinese)
[31]   UBI, B E, HONDA C, BESSHO H, KONDO S, WADA M, KOBAYASHI S, MORIGUCHI T. Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Science, 2006, 170: 571-578.
[32]   BAN Y, HONDA C, HATSUYAMA Y, IGARASHI M, BESSHO H, MORIGUCHI T. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiology, 2007, 48: 958-970.
[33]   杨玲, 王忆, 丛佩华, 张新忠, 韩振海. 光诱导转录因子MdMYB1对苹果果皮花青苷合成调控的表达分析. 农业生物技术学报, 2014, 22(4): 422-431.
YANG L, WANG Y, CONG P H, ZHANG X Z, HAN Z H. Expression analysis of the regulation of anthocyanin biosynthesis in apple peels by the transcription factor MdMYB1 under light-induced. Journal of Agricultural Biotechnology, 2014, 22(4): 422-431.
[34]   于海涛, 霍俊伟, 吕其涛, 李兴国. 植物激素对果实花青苷合成的影响. 北方园艺, 2003(4): 56-57.
YU H T, HUO J W, LV Q T, LI X G. Effect of plant hormones on  fruit anthocyanin biosynthesis, North Horticulture, 2003(4): 56-57. (in Chinese)
[35]   NARAYAN M S, THIMMARAJU R, BHAGYALAKSHMI N. Interplay of growth regulators during solid-state and liquid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochemistry, 2005, 40: 351-358.
[36]   SHI M Z, XIE D Y. Engineering of red cells of Arabidopsis thaliana and comparative genome-wide gene expression analysis of red cells versus wild-type cells. Planta, 2011, 233: 787-805.
[37]   ULMASOV T, HAGEN G, GUILFOYLE T J. Dimerization and DNA binding of auxin response factors. The Plant Journal, 1999, 19: 309-319.
[38]   安建平, 宋来庆, 赵玲玲, 由春香, 王小非, 郝玉金. 超表达苹果细胞分裂素响应基因MdCRF6影响花青苷积累和盐胁迫抗性. 中国农业科学, 2017, 50(16): 3196-3204.
AN J P, SONG L Q, ZHAO L L, YOU C X, WANG X F, HAO Y J. Effects of overexpression of apple cytokinin response factor gene MdCRF6 on anthocyanins accumulation and salt stress tolerance. Scientia Agricultura Sinica, 2017, 50(16): 3196-3204.
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[4] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[5] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[6] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[7] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[8] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[9] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[10] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[11] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[12] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[13] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[14] YE Di,SHI Jiang,GAO ShuangCheng,WANG ZhanYing,SHI GuoAn. Correlation Analysis of Auxin Involved in the Process of Petal Abscission of Tree Peony Luoyanghong Cut Flowers by Ethylene Promoting [J]. Scientia Agricultura Sinica, 2021, 54(23): 5097-5109.
[15] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!