Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (7): 1223-1232.doi: 10.3864/j.issn.0578-1752.2018.07.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

New Resistance Sources of Wheat Stem Rust and Molecular Markers Specific for Relative Chromosomes That the Resistance Genes are Located on

HAN Ran1, LI TianYa2, GONG WenPing1, LI HaoSheng1, SONG JianMin1, LIU AiFeng1, CAO XinYou1, CHENG Dungong1, ZHAO Zhendong1, LIU Cheng1, LIU Jianjun1   

  1. 1 Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Yellow & Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat & Maize, Jinan 250100; 2College of Plant protection, Shenyang Agricultural University, Shenyang 110866
  • Received:2017-10-12 Online:2018-04-01 Published:2018-04-01

Abstract: 【Objective】Wheat stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn (Pgt) is one of the most potentially destructive wheat diseases, seriously threatening world wheat production. The emergence of new races Ug99 of stem rust caused the global wheat to be under the threat.Exploring new resistant source of wheat stem rust is one of the effective measures against Ug99. In order to explore stem rust new resistant source, the mixed dominant stem rust physiological races in China were inoculated to 165 wheat-alien species chromosome lines at the seeding stages. 【Method】All of the 165 wheat-alien species chromosome lines, 3 hexaploid wheat and the susceptible control Little Club (LC), were sown in the 10 cm diameter clay pots. When the primary leaves were fully expanded, they were inoculated using talcurediospore powder mixture of the common races 34MKGQM and 21C3CTHSM. The Infection Types (ITs) of the material tested was recorded according to the standard ‘0-4’. Meanwhile, genomic DNA was extracted from stem rust immune, nearly immune, or highly resistant additions/substitutions and their corresponding whole set of chromosome lines and Chinese Spring (CS). PCR was performed on these materials by screening 101 pairs of PLUG primer. PCR products were firstly digested by DNA restricted enzymes TaqI and HaeⅢ, and then were detected through 2.0% agarose gel electrophoresis to screen and establish chromosome-specific molecular marker where the stem rust resistance gene was located on.【Result】Among the 165 wheat-alien species chromosome lines, CS-Ae. geniculata 7Mg#1 addition, CS-Ae. geniculata 7Mg#1(7A) and 7Mg#1 (7B) substitutions, CS-Imperial rye 1R addition, CS-Th. intermedium ?Ai addition (? indicates homoeologous group of the alien chromosomes in wheat background was not identified), CS-Ae. uniaristata 6N addition, CS-Ae. variabilis 6SvS telosomic addition, CS-Chile barley 6Hch addition are immune or nearly immune to stem rust. ALCD-Ae. caudata 7C#1 addition, CS-Ae. geniculata 7Mg#1(7D) substitution, CS-Imperial rye 6R addition, CS-Ae. longissima 6Sl#3 addition, CS-Ae. longissima 6Sl#2(6B) substitution, CS-Ae. searsii 3Ss#1 addition, CS-Ae. speltoides 2S#3 addition are highly resistant to stem rust. Comparative analysis of chromosomal locations of stem rust resistant genes indicates that chromosomes 6Sl#2 and 6Sl#3 of Aegilops longissima, chromosome 6R of Imperial rye, chromosome 6Hch of Chile barley, chromosome 7Mg#1 of Ae. geniculata, chromosome7C of Ae. caudate and ?Ai of Th. intermedium may harbor new stem rust resistance gene (s). Molecular marker screening, localization, specificity verification showed that 8 new molecular markers have been developed. Among them, 5 (TNAC1715, TNAC1718, TNAC1737, TNAC1739 and TNAC1753) and 3 (TNAC1740, TNAC1751, and TNAC1756) have been assigned to chromosomes 6R and 6Sl, respectively. 【Conclusion】 Eight materials which probably contain new gene(s) against stem rust were obtained, and eight new chromosome specific molecular markers for stem rust resistance gene(s) were established.

Key words: wheat alien species, chromosome lines, stem rust, molecular marker

[1]    李伟华. 我国小麦秆锈菌兼Ug99监测新体系建立及其品种抗病基因分析[D]. 沈阳: 沈阳农业大学, 2012.
LI W H. Establishment of new surveillance stem for chinese races and Ug99 of Puccinia graminis f.sp. tritici,resistant genes defection in commercial wheat varieties and distinct proteins display analysis of complementary host minn2761[D]. Shenyang: Shenyang agriculture university, 2012. (in Chinese)
[2]    JIN Y, SINGH R P. Resistance in US wheat to recent Eastern African isolates of Puccinia graminis f .sp. tritici with virulence to resistance gene Sr31. Plant Disease, 2006, 90: 476-480
[3]    何中虎, 夏先春, 陈万权. 小麦对秆锈菌新小种Ug99的抗性研究进展. 麦类作物学报, 2008, 28(1): 170-173.
He Z H, Xia X C, Chen W Q. Breeding for resistance to new raceUg99 of stem rust pathogen. Journal of Triticeae Crops, 2008, 28(1): 170-173. (in Chinese)
[4]    SINGH R P, HODSON D P, JIN Y,HUERTA-ESPINO J, KINYUA M G, WANYERA R, NJAN P, WARD R W. Current status, likely migration and strategies to mitigate the threat to wheat production from raceUG99 (TTKS) of stem rust pathogen. Perspective in Agriculture, Veterinary Science Nutrition and Natural Resources, 2006(54): 1-13.
[5]    曹远银, 陈万权. 小麦秆锈菌生理小种鉴别寄主及命名方法的演变. 麦类作物学报, 2010, 30(1): 167-172.
CAO Y Y, CHEN W Q. Stepwise shift of differential hosts and racial designation of Puccinia graminis f. sp .tritici. Journal of Triticeae Crops, 2010, 30(1): 167-172. (in Chinese)
[6]    韩建东, 曹远银, 孙仲桂. 2007-2008年我国小麦秆锈菌小种种群结构及其对Ug99抗性新种质的毒性分析.麦类作物学报, 2010, 30(1): 163-166.
HAN J D, CAO Y Y, SUN Z G. Race dynamics of Puccinia graminis f.sp.tritici in china and the virulence of CIMMYT wheat germplasm resistant to Ug99. Journal of Triticeae Crops, 2010, 30(1): 163-166. (in Chinese)  
[7]    吴限鑫, 李天亚, 陈思, 王冠钦, 曹远银, 马世良, 李明菊. 139份小麦品种()抗秆锈性测定及其Ug99抗病基因分子检测. 中国农业科学, 2014, 47(23): 4618-4626.
WU X X, LI T Y, CHEN S, WANG G Q, CAO Y Y, MA S L, LI M J. Stem rust resistance evaluation and Ug99-resistance gene detection of 139 wheat cultivars. Scientia Agricultura Sinica, 2014, 47(23): 4618-4626.
[8]    尹静, 王广金, 张宏纪, 马凤鸣, 孙岩, 肖佳雷. 小麦秆锈抗性遗传及抗性基因研究进展. 植物遗传资源学报, 2007, 8(1): 106-112.
YI J, WANG G J, ZHANG H J, MA F M, SUN Y, XIAO J L. Advances in resistance heredity and resistance stem rust genes of wheat. Journal of Plant Genetic Resources, 2007, 8(1): 106-112. (in Chinese)
[9]    SHARMA H C. how wide can a wide cross be. Euphytica, 1995, 82:43-64.
[10]   刘成, 李光蓉, 杨足君, 冯娟, 周建平, 任正隆. 黑麦基因组特异DNA片段的分离与SCAR标记的建立. 西北植物学报, 2016, 26(12): 2434-2438.
LIU C, LI G R, YANG Z J, FENG J, ZHOU J P, REN Z L. Specific DNA band isolation and SCAR marker construction of Rye genome. Acta Bitanica Boreali-occidentalia Sinica,2016, 26(12): 2434-2438. (in Chinese)
[11]   ISHIKAWA G, YONEMARU J, SAITO M, NAKAMURA T. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics, 2007, 8(1): 135.
[12]   TANGUY A M, CORITON O, ABELARD P, DEDRYVER F, JAHIER J. Structure of Aegilops ventricosa chromosome 6Nv, the donor of wheat genes Yr17, Lr37, Sr38, and Cre5. Genome, 2005, 48(3): 541.
[13]   LI J, ENDO T R, SAITO M, ISHIKAWA G, NAKAMURA T, NASUDA S. Homoeologous relationship of rye chromosome arms as detected with wheat PLUG markers. Chromosoma, 2013, 122: 555-564.
[14]   雷孟平, 李光蓉, 刘成, 杨足君. 抗条锈病的小麦-非洲黑麦异代换系的分子细胞学鉴定. 农业生物技术学报, 2013, 21(3): 263-271.
LEI M P, LI G R, LIU C, YANG Z J. Molecular cytogenetic characterization of a Triticum durum-Secale africanum substitution line for resistance to stripe rust (Puccinia striiformis Eriks. f. sp. tritici). Journal of Agricultural Biotechnology, 2013, 21(3): 263-271. (in Chinese)
[15]   MONIKA G, HIROYUKI T, NAOYUKI I, KANENORI T, MIKIKO Y, HISASHI T. A novel pair of HMW glutenin subunits from Aegilops searsii improves quality of hexaploid wheat. Cereal Chemistry, 2009, 86: 26-32.
[16]   刘晓明, 张姝倩, 宫文英, 唐海田, 王灿国, 程敦公, 刘成,, 刘建军. 高大山羊草1S1染色体特异分子标记的建立与应用. 湖北农业科学, 2015, 54(20): 4937-4940.
LIU X M, ZHANG Z Q, GONG W Y, TANG H T, WANG C G, CHENG D G, LIU C, LIU J J. Construction of 1Sl chromosome specific molecular markers in Aegilops longissima and its application. Hubei Agricultural Sciences,2015, 54(20): 4937-4940. (in Chinese)
[17]   WANG S, YU Z, CAO M, SHEN X, LI N, LI X, MA W, WEI GERBER H, ZELLER F, HSAM S. Molecular mechanisms of HMW glutenin subunits from 1S(l) genome of Aegilops longissima positively affecting wheat breadmaking quality. Plos One, 2013, 8(4): e58947.
[18]   GARG M, KUMAR R, SINGH R P, TSUJIMOTO H. Development of an Aegilops longissima substitution line with improved bread-making quality. Journal of Cereal Science, 2014, 60(2): 389-396.
[19]   RAWAT N, NEELAM K, TIWARI V K, RANDHAWA G S, FRIEBE B, GILL B S, DHALIWAL H S. Development and molecular characterization of wheat-Aegilops kotschyi addition and substitution lines with high grain protein, iron and zinc contents. Genome, 2011, 54(11): 943-953.
[20]   MENA M, ORELLANA J, LOPEZ-BRA A I, GARC A-OLMEDO F, DELIBES A. Biochemical and cytological characterization of wheat/ Aegilops ventricosa addition and transfer lines carrying chromosome 4MV. Theoretical and Applied Genetics, 1989, 77(2): 184-188.
[21]   CENCI A, D’OVIDIO R, TANZARELLA O A, CEOLONI C, PORCEDDU E. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theoretical and Applied Genetics, 1999, 98(3): 448-454.
[22]   SHENG H, SEE DR, MURRAY T D. Mapping resistance genes for Oculimacula acuformis in Aegilops longissima. Theoretical and Applied Genetics, 2014, 127(10): 2085-2093.
[23]   KERBER E R, DYCK P L. Transfer to hexaploid wheat of linked genes for adult plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides×Triticum monococcum. Genome, 1990, 33(4): 530-537.
[24]   吴金华, 吉万全, 李凤珍. 黑麦在小麦改良中的应用研究进展. 麦类作物学报, 2005, 25(1): 115-119.
WU J H, JI W Q, LI F Z. Advanees of study on the application of Secale cereale in the improvement of wheat. Journal of titiceae crops, 2005, 25(1): 115-119. (in Chinese)
[25]   刘成, 闫红飞, 宫文萍, 李光蓉, 刘大群, 杨足君. 小麦叶锈病新抗源筛选. 植物遗传资源学报, 2013, 14(5): 936-944.
LIU C, YAN H F, GONG W P, LI G R, LIU D Q, YANG Z J. Screening of new resistance sources of wheat leaf rust. Journal of Plant Genetic Resources, 2013, 14(5): 936-944. (in Chinese)
[26]   RAHMATOV M, ROUSE M N, NIRMALA J, DANILOVA T, FRIEBE B, STEFFENSON B J, JOHANSSON E. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. Theoretical and Applied Genetics, 2016, 129: 1-10.
[27]   韩建东. 小麦秆锈菌小种Ug99入侵的基因防控及相关机理研究[D]. 沈阳: 沈阳农业大学, 2009.
HAN J D. Resistant gene control and related mechanism to the invasion of race Ug99 of Puccinia graminis f.sp. tritici[D]. Shenyang: Shenyang agriculture university, 2009. (in Chinese)
[28]   AGHAEE-SARBARZEH M, FERRAHI M, SINGH S, SINGH H, FRIEBE B, GILL B S, DHALIWAL H S. PhI-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica, 2002, 127(3): 377-382.
[29]   ZAHARIEVA M, MONNEVEUX P, HENRY M, RIVOAL R, VALKOUN J, NACHIT M M. Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica, 2001, 119(1): 33-38.
[30]   HSAM S L K, LAPOCHKINA I F, ZELLER F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 8 gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica, 2003, 133(3): 367-370.
[31]   KURAPARTHY V, CHHUNEJA P, DHALIWAL H S, KAUR S, BOWDEN R L, GILL B S. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theoretical and Applied Genetics, 2007, 114(8): 1379-1389.
[32]   ZELLER F J, KONG L, HARTL L, MOHLER V, HSAM S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. gene Pm29 in line Pova. Euphytica, 2002, 123(2): 187-194.
[33]   NEVO E, CHEN G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell & Environment, 2010, 33(4): 670-685.
[34]   HU C J, HOLE D J, ALBRECHTSEN R S. Barley chromosome location and expression of dwarf bunt resistance in wheat addition lines. Plant Disease, 1996, 80(11): 1273-1276.
[35]   MATTERA M G, ÁVILA C M, ATIENZA S G, CABRERA A. Cytological and molecular characterization of wheat-Hordeum chilense chromosome 7Hch introgression lines. Euphytica, 2015, 203(1): 165-176.
[36]   CASTILLO A, ATIENZA S G, MART N A C. Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome. Journal of Experimental Botany, 2014, 65(22): 6667-6677.
[37]   GILL B S, SHARMA H C, RAUPP W J. Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, hessian fly, and greenbug. Plant Disease, 1985, 69: 314-316.
[38]   RIIAR A K, KAUR S, DHALIWAL H S, SINGH K, CHHUNEJA P. Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. Journal of Genetics, 2012, 91(2): 155-161.
[39]   FRIEBE B, SCHUBERT V, B L THNER W D, HAMMER K. C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum-Ae. caudata and six derived chromosome addition lines. Theoretical and Applied Genetics, 1992, 83(5): 589-596.
[40]   张超. 长穗偃麦草E组染色体特异PCR标记开发[D]. 扬州: 扬州大学, 2009.
ZHANG C. Development of E-chromosome specific PCR markers for Thinopyrum elongatum[D]. Yangzhou: Yangzhou University, 2009. (in Chinese)
[41]   陈士强, 秦树文, 黄泽峰, 戴毅, 张璐璐, 高营营, 高勇, 陈建民. 基于SLAF-seq技术开发长穗偃麦草染色体特异分子标记. 作物学报, 2013, 39(4): 727-734.
CHEN S Q, QIN S W, HUANG Z F, DAI Y, ZHANG L L, GAO Y Y, GAO Y, CHEN J M. Development of specific molecular markers for Thinopyrum elongatum chromosome using SLAF-seq technique. Acta Agronomica Sinica, 2013, 39(4): 727-734. (in Chinese)
[42]   李天亚. 中国小(燕)麦秆锈病及Ug99遗传防控技术研究[D]. 沈阳: 沈阳农业大学, 2014.
LI T Y. Genetic control approaches to wheat (Oat) stem rusts and Ug99 in China[D]. Shenyang: Shenyang agriculture university, 2014. (in Chinese)
[43]   覃碧, 王海燕, 纪剑辉, 曹爱忠, 黄倬, 王秀娥. 基于EST的普通小麦近缘物种第二部分同源群染色体特异分子标记. 南京农业大学学报, 2011, 34(2): 8-12.
QIN B, WANG H Y, JI J H, CAO A Z, HUANG Z, WANG X E. EST-based specific markers for homoeologous group 2 chromosomes of wheat relative species. Journal of Nanjing Agricultural University, 2011, 34(2): 8-12. (in Chinese)
[44]   KOEBNER R M D. Generation of PCR-based markers for the detection of rye chromatin in a wheat background. Theoretical and Applied Genetics, 1995, 90(5): 740-745.
[45]   KOFLER R, BARTOŠ J, GONG L, STIFT G, SUCH NKOV P, ŠIMKOV H, BERENYI M, BURG K, DOLE?EL J, LELLEY T. Development of microsatellite markers specific for the short arm of rye ( Secale cereale L.) chromosome 1. Theoretical and Applied Genetics, 2008, 117(6): 915-926.
[46] 王春梅, 冯祎高, 庄丽芳, 曹亚萍, 增军, 别同德, 曹爱忠, 陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选. 作物学报, 2007, 33(11): 1741-1747. 
WANG C M, FENG Y G, ZHUANG L F, CAO Y P, QI Z J, BIE T D, CAO A Z, CHEN P D. Screening of chromosome-specific markers for chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria Kamoji. Acta Agronomica Sinica, 2007, 33(11): 1741-1747. (in Chinese)
[47]   唐宗祥, 符书兰, 张怀琼, 晏本菊, 任正隆. 小麦SSR引物扩增黑麦及附加系6R染色体特异DNA片段的克隆. 麦类作物学报, 2008, 28(5): 728-732.
TANG Z X, FU S L, ZHANG H Q, YAN B J, REN Z L. Amplification of wheat SSR prime rs in Rye and cloning of 6R chromosome-specific DNA fragment. Journal of Triticeae Crops, 2008, 28(5): 728-732. (in Chinese)
[1] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[2] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[3] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[4] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[5] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[6] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[7] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[8] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[9] HAN GuangJie,LIU Qin,LI ChuanMing,QI JianHang,XU Bin,LU YuRong,XU Jian. The Persistent Infection and Detection of Cnaphalocrocis medinalis Granulovirus in Cnaphalocrocis medinalis [J]. Scientia Agricultura Sinica, 2020, 53(19): 3988-3995.
[10] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[11] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[12] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
[13] WANG Jia, ZENG ZhaoQiong, LIANG JianQiu, YU XiaoBo, WU HaiYing, ZHANG MingRong. Development New Molecular Markers for Quantitative Trait Locus (QTL) Analysis of the Seed Protein Content Based on Whole Genome Re-Sequencing in Soybean [J]. Scientia Agricultura Sinica, 2019, 52(16): 2743-2757.
[14] CHEN JingNan,MA XiaoLan,WANG Zhen,LI ShiJin,XIE Hao,YE XingGuo,LIN ZhiShan. SSR Sequences and Development of PCR Markers Based on Transcriptome of Dasypyrum villosum No.1026 [J]. Scientia Agricultura Sinica, 2019, 52(1): 1-10.
[15] ZHOU JunFei, CUI YeHan, TANG Hao, LI Lun, CHEN Hong, WEN Wen, HAN RuiXi, HUANG SiSi, FANG ZhiWei, PENG Hai. Utilizing Probability Estimation Improves the Accuracy of Plant Variety Identification by Molecular Markers [J]. Scientia Agricultura Sinica, 2018, 51(6): 1013-1019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!