Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (21): 4239-4245.doi: 10.3864/j.issn.0578-1752.2016.21.018

• RESEARCH NOTES • Previous Articles     Next Articles

Establishment and Application of Nested-PCR Method for Detection of Paranosema locustae

HU Hong-xia1, MA Yu-xuan1, WANG Yan-hong2, LIN Jun3, LI Zhan-wu2, JI Rong1   

  1. 1College of Life Sciences, Xinjiang Normal University/Key Laboratory of Conservation Biology and Management for Xinjiang Special Species/International Research Center for Cross-border Pest Management in Central Asia, Urumqi 830054
    2Xinjiang  Hami Locust and Rat Plagues Forecast Station, Hami 839000, Xinjiang
    3The Locust and Rat Plagues Forecast Center of  Xinjiang Uygur Autonomous Region, Urumqi 830046
  • Received:2016-05-16 Online:2016-11-01 Published:2016-11-01

Abstract: 【Objective】The objective of this study is to develop a rapid, sensitive and specific nested-PCR method for detection of Paranosema locustae and provide effective means for the monitoring of locusts and biological control. 【Method】 According to the sequence of small subunit ribosomal RNA genes of microsporidian published in GenBank, two pairs of primers were designed and synthesized (P.L.-F1/P.L.-R1 and P.L.-F2/P.L.-R2), and a series of assays (involving concentrations of primer pairs, Tm value and the number of cycling) were conducted to optimize the nested-PCR. P. locustae treated with 0.2 mol·L-1 KOH were used as template for nested-PCR. P.L.-F1 and P.L.-R1 were employed as the initial primers for the first amplification, which generated a 298 bp product, and P.L.-F2 and P.L.-R2 as the secondary primers for the final amplification, which generated a 242 bp fragment. Analytical sensitivity and reproducibility were assessed, respectively. The nested-PCR method was used to detect a series of dilution of P. locustae suspension, and to test the P. locustae suspension derived from Barkol Bei mountain in Hami region. At the same time, the P. locustae suspension was extracted and detected with the traditional microscope, and then the sensitivity of two methods was compared. 【Result】The nested PCR was established. The optimal parameters for the nested PCR reaction were performed in standard mixtures of 20 μL containing 2.0 μL of Buffer (10×), 0.3 μL of dNTPs (10 mmol·L-1), 0.3 μL of Taq DNA polymerase (250 U), 0.3 μL of each primer (10 μmol·L-1), 1 μL of DNA template (or the diluent of the first-round product was then diluted 10-fold with water) and 15.8 μL of double distilled water. Each PCR run was carried out in a thermal cycler. The conditions of the amplification were as follows: 1 cycle at 94℃ for 3 min, 35 cycles at 94℃ for 30 s, 60℃ (62℃ at secondary PCR) for 30 s, and 72℃ for 20 s and then 1 cycle at 72℃ for 10 min, with a final hold at 10℃. The result of two rounds PCR showed that the nested PCR assay could detect 12.2 spores/µL (1.07 pg DNA). A total of 240 locust samples from Bei mountain in Hami region were analyzed by nested PCR and microscope testing, respectively, the results showed that the positive detection rate was 23.3% and 3.8%, respectively. 【Conclusion】 The nested PCR mothed established in this study is more sensitivity than traditional microscope detection method. As well as, this assay can avoid human error, and more suitable for rapid and large-scale infection intensity survey.

Key words: Paranosema locustae, nested polymerase chain reaction, detection

[1]    Lomer C J, Bateman R P, Johnson D L, Langewald J, Thomas M. Biological control of locusts and grasshoppers. Annual review of entomology
[2]    Tounou A K, Kooyman C, Douro-Kpindou O K, Poehling H M. Interaction between Paranosema locustae and Metarhizium anisopliae var. acridum, two pathogens of the desert locust, Schistocerca gregaria under laboratory conditions. Journal of Invertebrate Pathology, 2008, 97(3): 203-210.
[3]    Lange C, Azzaro F G. New case of long-term persistence of Paranosema locustae (Microsporidia) in melanopline grasshoppers (Orthoptera: Acrididae: Melanoplinae) of Argentina. Journal of Invertebrate Pathology, 2008, 99(3): 357-359.
[4]    Plischuk S, Bardi C J, Lange C E. Spore loads of Paranosema locustae (Microspoidia) in heavily infected grasshoppers (Orthoptera: Acridoidea) of the Argentine Pampas and Patagonia. Journal of Invertebrate Pathology, 2013, 114(1): 89-91.
[5]    蔡德江, 李鹏, 石旺鹏. 蝗虫微孢子虫与卡死克互补应用对海南蝗虫的控制作用. 热带农业科学, 2008, 28(2): 21-24.
Cai D J, Li P, Shi W P. Effects of complementary application of nosema locustae and cascade on locusts and grasshoppers in Hainan. Chinese Journal of Tropical Agriculture, 2008, 28(2): 21-24. (in Chinese)
[6]    蒋湘, 石旺鹏. 蝗虫微孢子虫对青海省天峻县草原蝗虫的持续控制作用. 黑龙江畜牧兽医, 2003(2): 52-53.
Jiang X, Shi W P. Continuous control of nosema locustae to grasshopper of tianjun county of qinghai province. Heilongjiang Journal of Animal Science and Veterinary Medicine, 2003(2): 52-53. (in Chinese)
[7]    任程, 蒋湘, 石旺鹏. 蝗虫微孢子虫防治青藏高原蝗虫对主要天敌种群数量的影响. 黑龙江畜牧兽医, 2004(4): 11-13.
Ren C, Jiang X, Shi W P. Effect of nosema locustae for controlling grasshopper on natural enemy in the grassland. Heilongjiang Journal of Animal Science and Veterinary Medicine, 2004(4): 11-13. (in Chinese)
[8]    王永宾, 刘吉平. 微孢子虫检测技术的研究进展. 中国寄生虫学与寄生虫病杂志, 2009, 27(2): 161-166.
Wang Y B, Liu J P. Research progress on the technology of microsporidian detection. Chinese Journal of Parasitology and Parasitic Diseases, 2009, 27(2): 161-166. (in Chinese)
[9]    Franzen C, Müller A. Molecular techniques for detection, species differentiation, and phylogenetic analysis of microsporidia. Clinical Microbiology Reviews, 1999, 12(2): 243-285.
[10]   Blaker E A, Strange J P, James R R, Monroy F P, Cobb N S. PCR reveals high prevalence of non/low sporulating Nosema bombi (microsporidia) infections in bumblebees (Bombus) in Northern Arizona. Journal of Invertebrate Pathology, 2014, 123: 25-33.
[11]   Joseph J, Sharma S, Murthy S I, Krishna P V, Garg P, Nutheti R, Kenneth J, Balasubramanian D. Microsporidial keratitis in India: 16S rRNA gene-based PCR assay for diagnosis and species identification of microsporidia in clinical samples. Investigative Ophthalmology & Visual Science, 2006, 47(10): 4468-4473.
[12]   Valencakova A, Balent P, Ravaszova P, Horak A, Obornik M, Halanova M, Malcekova B, Novotny F, Goldova M. Molecular identification and genotyping of Microsporidia in selected hosts. Parasitology Research, 2012, 110(2): 689-693.
[13]   Milks M L, Sokolova Y Y, Isakova I A, Fuxa J R, Mitchell F, Snowden K F, Vinson S B. Comparative effectiveness of light-microscopic techniques and PCR in detecting Thelohania solenopsae (Microsporidia) infections in red imported fire ants (Solenopsis invicta). Journal of Eukaryotic Microbiology, 2004, 51(2): 187-191.
[14]   刘吉平, 曹阳, Smith J E, 徐兴耀. 模拟感染家蚕微粒子病的PCR分子诊断技术研究. 中国农业科学, 2004, 37(12): 1925-1931.
Liu J P, Cao Y, Smith J E, Xu X Y. Studies on the application of PCR molecular diagnosis to silkworms with simulated pebrine disease. Scientia Agricultura Sinica, 2004, 37(12): 1925-1931. (in Chinese)
[15]   Fallahi S, Seyyed Tabaei S J, Pournia Y, Zebardast N, Kazemi B. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia. Diagnostic Microbiology and Infectious Disease, 2014, 79(3): 347-354.
[16]   丁晓宇, 张龙. 蝗虫微孢子虫与绿僵菌协调使用对东亚飞蝗的毒力测定. 北京农学院学报, 2009, 24(1): 9-14.
Ding X Y, Zhang L. Virulence of Metarhizium anisopliae and Nosema locustae against the nymphs of Locusta migratoria manilensis. Journal of Beijing University of Agriculture, 2009, 24(1): 9-14. (in Chinese)
[17]   何永强, 吴姗, 鲁兴萌, 邱海洪, 帅江冰, 张晓峰, 王素华, 徐国群, 李光才, 董强. 不同DNA抽提方法对普通PCR和实时荧光定量PCR方法检测家蚕微孢子虫的影响. 昆虫学报, 2011, 54(11): 1329-1334.
He Y Q, Wu S, Lu X M, Qiu H H, Shuai J B, Zhang X F, Wang S H, Xu G Q, Li G C, Dong Q. Influence of DNA extraction methods on detection of Nosema bombycis by traditional PCR and real-time PCR methods. Acta Entomologica Sinica, 2011, 54(11): 1329-1334. (in Chinese)
[18]   洪军, 杜桂林, 王广君. 我国草原蝗虫发生与防治现状分析. 草地学报, 2014, 22(5): 929-934.
Hong J, Du G L, Wang G J. The occurring and control situation of grasshopper in the grassland of China. Acta Agrestia Sinica, 2014, 22(5): 929-934. (in Chinese)
[19]   王丽英, 严毓骅, 董雁军, 林志亮. 蝗虫微孢子虫对东亚飞蝗及蒙、新草原蝗虫的感染试验. 北京农业大学学报, 1987, 13(4): 459-462.
Wang L Y, Yan Y H, Dong Y J, Lin Z L. Observations of a microsporidian parasite Nosema locustae canning in the oriental migratory locust (Locusta migratoria manilensis (Meyen)) and other hosts from inner Mongolia and Xinjiang. Acta Agriculturae Universitatis Pekinensis, 1987, 13(4): 459-462. (in Chinese)
[20]   邱宝利, 徐兴耀, 牟志美,周鹏. 核酸分子杂交技术鉴别和检测家蚕微孢子虫的研究. 山东农业大学学报 (自然科学版), 2002, 33(1): 14-18.
Qiu B L, Xu X Y, Mu Z M, Zhou P. Identification and detection of nosema bombycis naegeli by nucleic acid hybridization. Journal of Shandong Agricultural University (Natural Science), 2002, 33(1): 14-18. (in Chinese)
[21]   吴嫒琼, 谢芝勋, 胡庭俊, 谢丽基, 罗思思, 邓显文, 谢志勤, 黄莉, 黄娇玲, 曾婷婷. H4亚型禽流感病毒套式RT-PCR检测方法的建立. 动物医学进展, 2015, 36(2): 11-15.
WU A Q, Xie Z X, Hu T J, Xie L J, Luo S S, Deng X W, Xie Z Q, Huang L, Huang J l, Zeng T T. Establishment of nested RT-PCR for detection of H4 subtype of Avian influenza virus. Progress in Veterinary Medicine, 2015, 36(2): 11-15. (in Chinese)
[22]   王婧, 毕阳, 朱艳, 韩舜愈, 祝霞, 盛文军, 李敏. 巢式PCR快速检测西瓜细菌性果斑病菌. 中国农业科学, 2014, 47(2): 284-291.
Wang J, Bi Y, Zhu Y, Han S Y, Zhu X, ShenG W J, Li M. Nested-PCR rapidly detecte Acidovorax avenae subsp. citrulli from watermelon seeds. Scientia Agricultura Sinica, 2014, 47(2): 284-291. (in Chinese)
[23]   Uppal B, Singh O, Chadha S, Jha A K. A comparison of nested PCR assay with conventional techniques for diagnosis of intestinal cryptosporidiosis in AIDS cases from northern India. Journal of Parasitology Research, 2014, 2014: Article ID 706105.
[24]   高文辉, 白昌明, 蔡生力, 王崇明. 基于牡蛎疱疹病毒DNA聚合酶基因的巢式PCR检测方法的建立及应用. 水产学报, 2016, 40(3): 326-333.
Gao W H, Bai C M, Cai S L, Wang C M. The development and application of nested PCR detection method for Ostreid herpesvirus-1 based on DNA polymerase gene. Journal of Fisheries of China, 2016, 40(3): 326-333. (in Chinese)
[25]   王见杨, 黄可威, 陆长德. 家蚕微粒子病原虫 (Nosema bombycis)小亚基核糖体RNA全基因的克隆及其二级结构的构建. 昆虫学报, 2002, 45(3): 290-295.
Wang J Y, Huang K W, Lu C D. Analyses of small subunit ribosomal RNA sequence of the microsporidium, Nosema bombycis and its secondary structure. Acta Entomologica Sinica, 2002, 45(3): 290-295. (in Chinese)
[26]   王林玲, 陈克平, 姚勤, 高贵田, 赵远. 柞蚕微孢子核糖体基因和转录间隔区的序列及系统进化分析. 中国农业科学, 2006, 39(8): 1674-1679.
Wang L L, Chen K P, Yao Q, Gao G T, Zhao Y. The sequence and phylogenetic analysis of the ribosomal RNA gene and the ITS region of Nosema antheraeae. Scientia Agricultura Sinica, 2006, 39(8): 1674-1679. (in Chinese)
[27]   Stentiford G D, Bateman K S, Feist S W, Chambers E, Stone D M. Plastic parasites: extreme dimorphism creates a taxonomic conundrum in the phylum Microsporidia. International Journal for Parasitology, 2013, 43(5): 339-352.
[28]   Gillett A K, Ploeg R, O'Donoghue P J, Chapman P A, Webb R I, Flint M, Mills P C. Ultrastructural and molecular characterisation of an Heterosporis-like microsporidian in Australian sea snakes (Hydrophiinae). PLoS One, 2016, 11(3): e0150724.
,2001, 46: 667-702.
[1] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[2] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[3] CUI JiangKuan,REN HaoHao,CAO MengYuan,CHEN KunYuan,ZHOU Bo,JIANG ShiJun,TANG JiHua. SCAR-PCR Rapid Molecular Detection Technology of Heterodera zeae [J]. Scientia Agricultura Sinica, 2022, 55(17): 3334-3342.
[4] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[5] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[6] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
[7] Xue BAI,Teng HUI,ZhenYu WANG,YunGang CAO,DeQuan ZHANG. Determination of 5 Nitropolycyclic Aromatic Hydrocarbons in Roasted Meat Products by High Performance Liquid Chromatography- Fluorescence Detection [J]. Scientia Agricultura Sinica, 2021, 54(5): 1055-1062.
[8] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[9] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[10] MA ZhiMin,XU JianJian,DUAN Yu,WANG ChunQing,SU Yue,ZHANG Qi,BIN Yu,ZHOU ChangYong,SONG Zhen. Establishment of RT-RPA for Citrus Yellow Vein Clearing Virus (CYVCV) Detection [J]. Scientia Agricultura Sinica, 2021, 54(15): 3241-3249.
[11] CHEN PengFei,MA Xiao. Research Status and Trends of Automatic Detection of Crop Planting Rows [J]. Scientia Agricultura Sinica, 2021, 54(13): 2737-2745.
[12] HUI YuanYuan,PENG HaiShuai,WANG BiNi,ZHANG FuXin,LIU YuFang,JIA Rong,REN Rong. Research Progress of Food-Borne Pathogen Detection Based on Electrochemical and Optical Aptasensors [J]. Scientia Agricultura Sinica, 2021, 54(11): 2419-2433.
[13] ZHANG QingAn,CHEN BoYu. Research Progress of Four Sulfur Compounds Related to Red Wine Flavor [J]. Scientia Agricultura Sinica, 2020, 53(5): 1029-1045.
[14] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[15] GUAN FangNian,LONG Li,YAO FangJie,WANG YuQi,JIANG QianTao,KANG HouYang,JIANG YunFeng,LI Wei,DENG Mei,LI Hao,CHEN GuoYue. Evaluation of Resistance to Stripe Rust and Molecular Detection of Important Known Yr Gene(s) of 152 Chinese Wheat Landraces from the Huang-huai-hai [J]. Scientia Agricultura Sinica, 2020, 53(18): 3629-3637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!