Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (9): 1864-1872.doi: 10.3864/j.issn.0578-1752.2015.09.20

• RESEARCH NOTES • Previous Articles    

Expression Analysis of Key Enzyme Genes in Lignin Synthesis of Culm Among Different Lodging Resistances of Common Buckwheat (Fagopyrum esculentum Moench)

HU Dan, LIU Xing-bei, WANG Can, YANG Hao, LI He-xin, RUAN Ren-wu, YUAN Xiao-hui, YI Ze-lin   

  1. College of Agronomy and Biotechnology, Southwest University/The Southern Mountain Agricultural Engineering Research Center of the Ministry of Education/Chongqing Buckwheat Industry System Innovation Team, Chongqing 400716
  • Received:2014-10-23 Online:2015-05-01 Published:2015-05-01

Abstract: 【Objective】The objective of this study is to explore the critical period and key enzyme genes in lignin synthesis of stem in common buckwheat and to provide a theoretical basis for common lodging resistance breeding cultivation by determining the lignin content and related genes expression characteristics at different stages of different lodging resistance cultivars. 【Method】Degenerate primers were designed to amplify part of the CDS sequences of CAD, CCR, F5H, COMT and CCOAOMT genes and blast was conducted in the NCBI database. The lignin content at the 2nd internode from the bottom were analyzed at branching stage, full bloom stage and milk ripe stage among four different lodging resistances of common buckwheat by UV spectrophotometry. Quantitative real-time polymerase chain reaction was used to analyze the expression characteristics of nine related genes (PAL, 4CL, C4H, C3H, CAD, CCR, F5H, COMT, and CCOAOMT), and the relative expression level was defined as 2-△△CT. Microsoft Excel 2003 and SPSS 19 were used for sorting data, drawing and analysis of variance, correlation analysis, respectively.【Result】Amplified CAD, CCR, F5H, COMT and CCOAOMT genes sequences were used to design the subsequent qRT-PCR primers. Lignin content of stem gradually increased from branching stage to milk ripe stage among different lodging resistances of common buckwheat, and lodging resistance cultivar was significantly higher than that of lodging susceptible cultivar. The expression levels of four genes (PAL, 4CL, C4H, CCR) varied significantly or extremely significantly among different cultivars and stages, CCOAOMT, F5H varied significantly among stages and cultivars, respectively. The remaining three genes (C3H, CAD, COMT) showed no significant difference among the cultivars and stages. The expressions of genes PAL, 4CL, C4H, CAD, CCOAOMT, F5H and CCR increased and then decreased, and the maximum appeared at full bloom stage, and lodging resistance cultivar was significantly higher than that of lodging susceptible cultivar. For COMT, the expression level decreased gradually from branching stage to full bloom stage, compared with the front seven genes, it showed an opposite expression pattern between lodging resistance and lodging susceptible cultivars at the first two stages. There was no obvious changing rule in gene C3H from branching stage to milk ripe stage. The lignin content was significantly and positively correlated with expressions of genes PAL, 4CL, C4H, CCOAOMT, CAD, and CCR, negatively correlated with C3H, and negatively correlated at branching stage and full bloom stage with COMT, while positively correlated at milk ripe stage with COMT.【Conclusion】The common buckwheat cultivar with lodging resistance showed high lignin content in the stem. The PAL, 4CL, C4H, CAD, CCOAOMT and CCR genes play a crucial role in the pathway of lignin synthesis. Full bloom stage is the critical period in lignin synthesis of stem in common buckwheat.

Key words: common buckwheat, lignin, key enzyme gene, qRT-PCR, lodging resistance

[1]    王健胜,柴岩, 赵喜特, 吉万全. 中国荞麦栽培品种的核型比较分析. 西北植物学报, 2005, 25(6): 1114-1117.
Wang J S, Chai Y, Zhao X T, Ji W Q. Karyotype analysis of Chinese buckwheat cultivars.  Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(6): 1114-1117. (in Chinese)
[2]    Chai Y, Zhang Z W. Advances in Buckwheat Research. Yangling: Northwest A&F University Press, 2007.
[3]    Griffith J Q, Couch J F, Lindauer A.Effect of rutin on increased capillary fragility in man. Experimental Biology and Medicine, 1944, 55(3): 228-229.
[4]    Awatsuhara R, Harada K, Maeda T, Nomura T, Nagao K. Antioxidative activity of the buckwheat polyphenol rutin in combination with ovalbumin. Molecular Medicine Reports, 2010, 3(1): 121-125.
[5]    Jiang P, Burczynski F, Campbell C, Pierce G, Austria J A, Briggs C J. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Research International, 2007, 40(3): 356-364.
[6]    Li Y Q, Zhou F C, Gao F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. Journal of Agricultural and Food Chemistry, 2009, 57(24): 11463-11468.
[7]    Morishita T, Yamaguchi H, Degi K. The contribution of polyphenols to antioxidative activity in common buckwheat and tartary buckwheat grain. Plant Production Science, 2007, 10(1): 99-104.
[8]    Wieslander G, Fabjan N, Vogrincic M, Kreft I, Janson C, Spetz- Nyström U, Vombergar B, Tagesson C, Leanderson P, Norbäck D. Eating buckwheat cookies is associated with the reduction in serum levels of myeloperoxidase and cholesterol: A double blind crossover study in day-care center staffs. Tohoku Journal of Experimental Medicine, 2011, 225(2): 123-130.
[9]    郭志利, 孙常青. 北方旱地荞麦抗倒栽培技术研究. 杂粮作物, 2007, 27(5): 364-366.
Guo Z L, Sun C Q. Resistance to lodging cultivation techniques of buckwheat in dry land of northern China. Rain Fed Crops, 2007, 27(5): 364-366. (in Chinese)
[10]   Hagiwara M, Izusawa H, Inoue N, Matano T. Varietal differences of shoot growth characters related to lodging in tartary buckwheat. Fagopyrum, 1999, 16: 67-72.
[11]   Jones L, Ennos A R, Turner S R. Cloning and characterization of irregular xylem4 (irx4): A severely lignin-deficient mutant of Arabidopsis. The Plant Journal, 2001, 26(2): 205-216.
[12]   Baucher M, Monties B, Montagu M V, Boerjan W. Biosynthesis and genetic engineer in lignin. Critical Reviews in Pant Sciences, 1998, 17(2): 125-197.
[13]   Lewis N G, Yamamoto E. Lignin: Occurrence, biogenesis and biodegradation. Annual Review of Plant Physiology and Plant Molecular Biology, 1990, 41: 455-496.
[14]   范丽. 桑树木质素合成基因的生物信息和功能分析[D]. 重庆: 西南大学, 2013.
Fan L. Bioinformatic and functional analysis of mulberry genes involved in lignin biosynthesis [D]. Chongqing: Southwest University, 2013. (in Chinese)
[15]   Li X H, Park N I, Xu H, Woo S H, Park C H, Park S U. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum). Journal of Agricultural and Food Chemistry, 2010, 58(23): 12176-12181.
[16]   Fellenberg C, Milkowski C, Hause B, Lange P, Bottcger C, Schmidt J, Vogt T. Tapetum-specific location of a cationdependent O- methyltransferase in Arabidopsis thaliana. The Plant Journal, 2008, 56(1): 132-145.
[17]   Ruegger M, Meyer K, Cusumano J C, Chapple C. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiology, 1999, 119(1): 101-110.
[18]   Martz F, Maury S, Pincon G, Legrand M. cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3-O- methyltransferase, a lignin biosynthetic enzyme. Plant Molecular Biology, 1998, 36(3): 427-437.
[19]   赵华燕, 沈庆喜, 吕世友, 王台, 宋艳茹. 水稻咖啡酰辅酶A-O甲基转移酶基因(CCoAOMT) 表达特性分析. 科学通报, 2004, 49(14): 1390-1394.
Zhao H Y, Shen Q X, Lü S Y, Wang T, Song Y R. Characterization of three rice CCoAOMT genes. Chinese Science Bulletin, 2004, 49(14): 1390-1394. (in Chinese)
[20]   黄杰恒. 干旱胁迫下油菜抗倒伏相关性状动态变化及木质素关键基因表达特性分析[D]. 重庆: 西南大学, 2013.
Huang J H. Lodging resistant traits and lignin related gene analysis in B.napus under drought stress [D]. Chongqing: Southwest University, 2013. (in Chinese)
[21]   王进, 陈信波, 高原, 张彦红, 龙松华, 邓欣, 何东锋, 王玉富. 亚麻木质素合成关键酶基因表达分析. 作物学报, 2009, 35(8): 1468-1473.
Wang J, Chen X B, Gao Y, Zhang Y H, Long S H, Deng X, He D F, Wang Y F. Expression of critical lignin metabolism genes inflax. Acta Agronomica Sinica, 2009, 35(8): 1468-1473. (in Chinese)
[22]   陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡 铁. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011, 37(9): 1616-1622.
Chen X G, Shi C Y, Yin Y P, Wang Z L, Shi Y H, Peng T L, Ni Y L, Cai T. Relationship of lignin metabolism with lodging resistance of culm in wheat. Acta Agronomica Sinica, 2011, 37(9): 1616-1622. (in Chinese)
[23]   汪灿, 阮仁武, 袁晓辉, 胡丹, 杨浩, 林婷婷, 何沛龙, 李燕, 易泽林. 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系. 作物学报, 2014, 40(10): 1846-1856.
Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Lin T T, He P L, Li Y, Yi Z L. Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat. Acta Agronomica Sinica, 2014, 40(10): 1846-1856. (in Chinese)
[24]   Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Li Y, Yi Z L. Relationship between lignin metabolism and lodging resistance of culm in buckwheat. Journal of Agricultural Science, 2014, 6(9): 29-36.
[25]   林葵, 黄祥辉, 王隆华, 李人圭, 颜季琼. 甜菜子叶不定芽分化过程中PAL活性和木质素含量变化研究. 华东师范大学学报, 1996(2): 92-97.
Lin K, Huang X H, Wang L H, Li R G, Yan J Q. The change of PAL activity and lignin content during adventitious buds formation of cotyledon in Cucumis melon L.. Journal of East China Normal University, 1996(2): 92-97. (in Chinese)
[26]   李玉英, 王转花, 张政. 从荞麦中提取总RNA 的有效方法. 生物技术, 2004, 14(3): 23-24.
Li Y Y, Wang Z H, Zhang Z. An efficient method of extracting total RNA from buckwheat. Biotechnology, 2004, 14(3): 23-24. (in Chinese)
[27]   Turner S R, Somerville C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. The Plant Cell, 1997, 9(5): 689-701.
[28]   陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 2011, 44(17): 3529-3536.
Chen X G, Shi Y H, Wang C Y, Yin Y P, Ning T Y, Shi C Y, Li Y, Wang Z L. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat. Scientia Agricultura Sinica, 2011, 44(17): 3529-3536. (in Chinese)
[29]   Berry P M, Spink J, Sterling M, Pickett A A. Methods for rapidly measuring the lodging resistance of wheat cultivars. Journal of Agronomy and Crop Science-zeitschrift fur Acker Und Pflanzenbau, 2003, 189(6): 390-401.
[30] Tripathi S C, Sayre K D, Kaul J N. Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: Effects of genotypes, N levels and ethephon. Field Crops Research, 2003, 84(3): 271-290.
[31]   杨向东. 木质素合成调控及其与甘蓝型油菜抗菌核病和抗倒伏性关系研究[D]. 北京: 中国农业科学院, 2006.
Yang X D. The study on the relationship between lignin biosynthesis manipulation and Brassica napus resistanee to sclertinia sclerotiorum and lodging [D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. (in Chinese)
[32]   黄杰恒, 李威, 曲存民, 刘列钊, 徐新福, 王瑞, 李加纳. 甘蓝型油菜不同抗倒性材料中木质素代谢途径关键基因表达特点. 作物学报, 2013, 39(8): 1339-1344. 
Huang J H, Li W, Qu C M, Liu L Z, Xu X F, Wang R, Li J N. Expression characteristics of key genes in lignin pathway among different lodging resistance lines of Brassica napus L.. Acta Agronomica Sinica, 2013, 39(8): 1339-1344. (in Chinese)
[33]   王群瑛, 胡昌浩. 玉米茎秆抗倒特性的解剖研究. 作物学报, 1991, 17(1): 70-75.
Wang Q Y, Hu C H. Studies on the anatomical structures of the stalks of maize with different resistance to lodging. Acta Agronomica Sinica, 1991, 17(1): 70-75. (in Chinese)
[34]   高原, 陈信波, 张志扬. 木质素生物合成途径及其基因调控的研究进展. 生物技术通报, 2007(2): 47-51.
Gao Y, Chen X B, Zhang Z Y. Advances in research on lignin biosynthesis and its molecular regulation. Biotechnology Bulletin, 2007(2): 47-51. (in Chinese)
[35]   李扬, 顾慧, 戚存扣. 甘蓝型油菜木质素合成关键基因F5H、4CL和COMT的定量表达. 中国油料作物学报, 2013, 35(1): 024 -028.
Li Y, Gu H, Qi C K. Expression of lignin synthesis key genes of F5H, 4CL and COMT on lodging resistance of Brassica napus L.. Chinese Journal of Oil Crop Sciences, 2013, 35(1): 024 -028. (in Chinese)
[36]   Ma Q H. The expression of caffeic acid 3-O-methyltrans ferase in two wheat genotypes differing in lodging resistance. Journal of Experimental Botany, 2009, 60(9): 2763-2771.
[37]   Lu F C, Ralph J. Preliminary evidence for siapyl acetate as a lignin monomer in kenaf. Chemical Communications, 2002, 1: 90-91.
[38]   Heather D C, Ji Y P,Ramesh N, Clint C, Shawn D M. RNAi-mediated suppression of p-coumaroyl-CoA 3'-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11): 4501-4506.
[39]   Goujon T, Ferret V, Mila L. Down-regulation of the AtCCR1 gene in Arabidops thaliana: Effects on phenotype, lignin and cell wall degradability. Planta, 2003, 217(2): 218-228.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[3] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[4] YUAN Yuan,WANG Bo,ZHOU GuangSheng,LIU Fang,HUANG JunSheng,KUAI Jie. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626.
[5] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[6] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[7] LIU DongYao,YAN ZhenHua,CHEN YiBo,YANG Qin,JIA XuCun,LI HongPing,DONG PengFei,WANG Qun. Effects of Elevated Temperature on Maize Stem Growth, Lodging Resistance Characters and Yield [J]. Scientia Agricultura Sinica, 2021, 54(17): 3609-3622.
[8] DONG HeHe, LUO YongLi, LI WenQian, WANG YuanYuan, ZHANG QiuXia, CHEN Jin, JIN Min, LI Yong, WANG ZhenLin. Effects of Different Spring Nitrogen Topdressing Modes on Lodging Resistance and Lignin Accumulation of Winter Wheat [J]. Scientia Agricultura Sinica, 2020, 53(21): 4399-4414.
[9] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[10] JIANG Xu,CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei. Cloning and Function Analysis of MsNST in Lignin and Cellulose Biosynthesis Pathway from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3818-3832.
[11] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[12] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[13] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[14] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[15] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!