Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (9): 1689-1701.doi: 10.3864/j.issn.0578-1752.2015.09.03

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Response of Alfalfa Root Traits to Fall Dormancy and Its Effect on Winter Hardiness

LIU Zhi-ying1,2, LI Xi-liang1,2, LI Feng1, TAO Ya1, LIU Lei1, WANG Zong-li1,3, SUN Qi-zhong1   

  1. 1 Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010
    2 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081
    3 Department of Animal Husbandry, Ministry of Agriculture, Beijing 100125
  • Received:2014-11-17 Online:2015-05-01 Published:2015-05-01

Abstract: 【Objective】Fall dormancy of alfalfa (Medicago sativa L.) is an adaptive strategy in response to change of temperature and lighting in the growth environment in late autumn. Roots, as the main functional organ of alfalfa, play a vital role in surviving the winter. Although previous studies have shown that there are significant correlations between fall dormancy and cold resistance, the overwintering characteristics of alfalfa roots on cold resistance are not clearly understood. The aim of this study was to determine the role of fall dormancy on winter hardiness in consideration of aspects of root traits.【Method】 Eleven alfalfa standard check cultivars were chosen and grown in semi-arid temperate regions, which is an appropriate area for alfalfa cultivation in China. Using the standardized major axis (SMA) method, the allometric scaling of different root traits in response to fall dormancy in the process of overwintering was studied. Furthermore, using partial least square regression (PLSR) and other methods, the master regulators of the effects of alfalfa with different fall dormancy types on cold resistance in root phenotypic traits were analyzed.【Result】The results showed that with increasing fall dormancy rating, from one to 11, the collar diameter and lateral root number of wintering alfalfa significantly decreased (P<0.05). More dormant alfalfa was accompanied with enhanced storage phenotypic characteristics. However, taproot diameter and lateral root diameter significantly increased (P<0.05) as alfalfa became more non-dormant. Tradeoffs were found between lateral root number and other lateral root traits (P<0.05). Affected by fall dormancy ratings, root traits performed notable allometric scaling of different parts, mainly in collar depth, lateral root position, and lateral root number. Significant differences (P<0.05) existed between allometric scopes and one (P<0.05). Therefore, different root traits had differentiation strategies during the overwintering process. There were significantly negative correlations between the alfalfa winter survival rate and fall dormancy rating. The negative correlation could be fitted by logistic curve but not by a linear equation. Alfalfa cultivars with a fall dormancy (FD) rating of 1-5 tended to have a higher winter survival rate (>95%), 6-8 FD tended to have a sharply decreased winter survival rate (50%-70%), and 9-11 rarely survived in winter (<5%). Collar diameter and lateral root number were positive contribution factors in the alfalfa winter survival rate (P<0.05), but the taproot diameter and lateral root diameter, negative contribution factors, were not main factors that decided the winter hardiness in alfalfa (P<0.05). 【Conclusion】Root traits of alfalfa with different fall dormancy ratings performed differentiation strategies in response to low-temperature stress in winter, followed by allometric relationships among different traits. Alfalfa enhanced its winter survival rate mainly through increasing collar diameter and lateral root number, and did not depend on the absolute size of other root phenotypic traits. Overall, during wintering, adaptive changes of root traits of alfalfa with different fall dormancy ratings are a primary pathway to improve winter survival.

Key words: alfalfa, fall dormancy, root traits, allometric scaling, cold hardiness

[1]    Ventroni L M, Volenec J J, Cangiano C A. Fall dormancy and cutting frequency impact on alfalfa yield and yield components. Field Crops Research, 2010, 119: 252-259.
[2]    Brummer E C, Shah M M, Luth D. Reexamining the relationship between fall dormancy and winter hardiness in alfalfa. Crop Science, 2000, 40: 971-977.
[3]    Pembleton K G, Sathish P. Giving drought the cold shoulder: A relationship between drought tolerance and fall dormancy in an agriculturally important crop. AoB Plants, 2014, 6: 1-17.
[4]    徐斌, 杨秀春, 白可喻, 陈仲新, 覃志豪, 邱建军. 中国苜蓿综合气候区划研究. 草地学报, 2007, 15: 316-321.
Xu B, Yang X C, Bai K Y, Chen Z X, Qin Z H, Qiu J J. Alfalfa climatic subdivisions in China. Acta Agrestia Sinica, 2007, 15: 316-321. (in Chinese)
[5]    孙启忠, 陶雅, 徐丽君. 刍议苜蓿产业中的风险及其应对策略. 草业科学, 2013, 30: 1676-1684.
Sun Q Z, Tao Y, Xu L J. Study on the risk of alfalfa industry and its countermeasures. Pratacultural Science, 2013, 30: 1676-1684. (in Chinese)
[6]    李向林, 万里强. 苜蓿秋眠性及其与抗寒性和产量的关系. 草业学报, 2004, 13: 57-61.
Li X L, Wan L Q. Alfalfa fall dormancy and its relationship to winter hardiness and yield. Acta Prataculturae Sinica, 2004, 13: 57-61. (in Chinese)
[7]    卢欣石, 申玉龙. 苜蓿秋眠性研究与利用. 草原与草坪, 1991, 4: 1-4.
Lu X S, Shen Y L. Alfalfa fall dormancy research and utilization. Grassland and Turf, 1991, 4: 1-4. (in Chinese)
[8]    高菲, 卢欣石. 气象因子对北京不同秋眠等级苜蓿秋季刈割后再生高度的影响. 中国农学通报, 2012, 28: 17-22.
Gao F, Lu X S. Effect of meteorological factors on fall mowing height of alfalfa with different fall dormancy in Beijing. Chinese Agricultural Science Bulletin, 2012, 28: 17-22. (in Chinese)
[9]    王成章, 韩锦峰, 胡喜峰, 张春梅, 何云, 刘圈炜. 不同光周期条件下PhyB和ABA对不同苜蓿品种的秋眠性调控. 草业学报, 2006, 15(6): 56-63.
Wang C Z, Han J F, Hu X F, Zhang C M, He Y, Liu Q W. Regulation of PhyB and ABA on fall dormancy of different Medicago sativa varieties in photoperiod treatments. Acta Prataculturae Sinica, 2006, 15(6): 56-63. (in Chinese)
[10]   Wang C, Ma B, Han J, Wang Y, Gao Y, Hu X, Zhang C. Photoperiod effect on phytochrome and abscisic acid in alfalfa varieties differing in fall dormancy. Journal of Plant Nutrition, 2008, 31: 1257-1269.
[11]   樊文娜, 孙晓格, 倪俊霞, 杜红旗, 史莹华, 严学兵, 王成章. 光周期对不同秋眠型苜蓿光敏色素和内源激素的影响. 草业学报, 2014, 23(1): 177-184.
Fan W N, Sun X G, Ni J X, Du H Q, Shi Y H, Yan X B, Wang C Z. Effect of photoperiod on phytochromes and endogenous hormones of alfalfa with different fall-dormancies. Acta Prataculturae Sinica, 2014, 23(1): 177-184. (in Chinese)
[12]   Cunningham S, Volenec J, Teuber L. Plant survival and root and bud composition of alfalfa populations selected for contrasting fall dormancy. Crop Science, 1998, 38: 962-969.
[13]   刘磊. 晚秋刈割对不同秋眠类型苜蓿抗寒性的影响[D]. 北京: 中国农业科学院, 2007.
Liu L. The effeet of cold resistance for different fall dormancy alfalfa by late autumn cutting[D]. Beijing: Chinese Academy of Agricultral Sciences, 2007. (in Chinese)
[14] Castonguay Y, Bertrand A, Michaud R, Laerge S. Cold-induced biochemical and molecular changes in alfalfa populations selectively improved for freezing tolerance. Crop Science, 2011, 51(5): 2132-2144.
[15]   Duke S H, Doehlert D C. Root respiration, nodulation, and enzyme activities in alfalfa during cold acclimation. Crop Science, 1981, 21: 489-495.
[16]   Cunningham S M, Gana J A, Volenec J J, Teuber L R. Winter hardiness, root physiology, and gene expression in successive fall dormancy selections from ‘mesilla’and ‘cuf 101’alfalfa. Crop Science, 2001, 41: 1091-1098.
[17]   Croux C, Dehon C. Influence functions of the spearman and kendall correlation measures. Statistical Methods & Applications, 2010, 19: 497-515.
[18]   Warton D I, Duursma R A, Falster D S, Taskinen S. Smatr 3-an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 2012, 3(2): 257-259.
[19]   Dixon P. Vegan, a package of R functions for community ecology. Journal of Vegetation Science, 2003, 14(6): 927-930.
[20]   Yin P Y, Zhao X J, Li Q R, Wang J S, Li J S, Xu G W. Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q- TOF MS). Journal of Proteome Research, 2006, 5(9): 2135-2143.
[21]   Marquez-Ortiz J J, Johnson L D, Barnes D K, Basigatup D H. Crown morphology relationships among alfalfa plant introductions and cultivars. Crop Science, 1996, 36(3): 766-770.
[22]   Marquez-Ortiz J J, Lamb J F S, Johnson L D, Barnes D K, Stucker R E. Heritability of crown traits in alfalfa. Crop Science, 1999, 39(1): 38-43.
[23]   徐大伟. 11个秋眠级苜蓿 (medicago sativa) 标准对照品种生长适应性研究[D]. 北京: 北京林业大学, 2011.
Xu D W. Study on the adaptabilityof eleven fall dormaney standard cheek alfalfa (Medicagosativa) varieties[D]. Beijing: Beijing Forestry University, 2011. (in Chinese)
[24]   韩清芳, 吴新卫, 贾志宽, 刘玉华. 不同秋眠级数苜蓿品种根颈变化特征分析. 草业学报, 2008, 17(4): 85-91.
Han Q F, Wu X W, Jia Z K, Liu Y H. Analysis on dynamic variety of crown characteristics of different fall dormancy Medicago sativa cultivars. Acta Prataculturae Sinica, 2008, 17(4): 85-91. (in Chinese)
[25]   Rimi F, Macolino S, Leinauer B, Lauriault L M, Ziliotto U. Fall dormancy and harvest stage effects on alfalfa nutritive value in a subtropical climate. Agronomy Journal, 2012, 104: 415-422.
[26]   Wang C Z, Ma B L, Yan X B, Han J F, Guo Y X, Wang Y H, Li P. Yields of alfalfa varieties with different fall-dormancy levels in a temperate environment. Agronomy Journal, 2009, 101: 1146-1152.
[27]   Johnson L D, Marquez-Ortiz J J, Lamb J F S, Barnes D K. Root morphology of alfalfa plant introductions and cultivars. Crop Science, 1998, 38: 497-502.
[28]   Bélanger G, Castonguay Y, Bertrand A, Dhont C, Rochette P, Couture L, Drapeau R, Mongrain D, Chalifour F P, Michaud R. Winter damage to perennial forage crops in eastern Canada: Causes, mitigation, and prediction. Canadian Journal of Plant Science, 2006, 86(1): 33-47.
[29]   张宝田, 穆春生, 李志坚, 周道玮. 紫花苜蓿受冻害后促进根颈枝条再生方法的研究. 中国草地, 2003, 25(5): 48-51.
Zhang B T, Mu C S, Li Z J, Zhou D W. The approach to promote regrowth of root tap after winter injury for alfalfa. Grassland of China, 2003, 25(5): 48-51. (in Chinese)
[30]   王月胜. 不同苜蓿品种根系特征及其抗寒性关系的研究[D]. 兰州: 甘肃农业大学, 2008.
Wang Y S. Research of root system characteristics and the relationship between roots and cold tolerance in alfalfa cultivars[D]. Lanzhou: Gansu Agricultural University, 2008. (in Chinese)
[31]   Smith D. Root branching of alfalfa varieties and strains. Agronomy Journal, 1951, 43(11): 573-575.
[32]   Johnson L D, Marquez-Ortiz J J, Barnes D K, Lamb J F S. Inheritance of root traits in alfalfa. Crop Science, 1996, 36: 1482-1487.
[33]   Bertrand A, Prévost D, Bigras F J, Castonguay Y. Elevated atmospheric CO2 and strain of rhizobium alter freezing tolerance and cold-induced molecular changes in alfalfa (Medicago sativa). Annals of Botany, 2007, 99(2): 275-284.
[34]   强海平, 余国辉, 刘海泉, 高洪文, 刘贵波, 赵海明, 王赞. 基于SSR标记的中美紫花苜蓿品种遗传多样性研究. 中国农业科学, 2014, 47(14): 2853-2862.
Qiang H P, Yu G H, Liu H Q, Gao H W, Liu G B, Zhao H M, Wang Z. Genetic diversity and population structure of Chinese and American alfalfa (Medicago Sativa L.) germplasm assessed by SSR markers. Scientia Agricultura Sinica, 2014, 47(14): 2853-2862. (in Chinese)
[35]   Brummer E C, Moore K J, Bjork N C. Agronomic consequences of dormant-nondormant alfalfa mixtures. Agronomy Journal, 2002, 94: 782-785.
[36]   Sheaffer C C, Barnes D K, Warnes D D, Lueschen W E, Ford H J, Swanson D R. Seeding-year cutting affects winter survival and its association with fall growth score in alfalfa. Crop Science, 1992, 32(1): 225-231.
[37]   Rimi F, Macolino S, Leinauer B, Lauriault L M, Ziliotto U. Fall dormancy and harvest stage impact on alfalfa persistence in a subtropical climate. Agronomy Journal, 2014, 106: 1258-1266.
[38]   Busbice T, Wilsie C. Fall growth, winterhardiness, recovery after cutting and wilt resistance in F2 progenies of vernal×dupuits alfalfa crosses. Crop Science, 1965, 5(5): 429-432.
[39]   Schwab P M, Barnes D K, Sheaffer C C. The relationship between field winter injury and fall growth score for 251 alfalfa cultivars. Crop Science, 1996, 36(2): 418-426.
[40]   Brouwer D J, Duke S H, Osborn T C. Mapping genetic factors associated with winter hardiness, fall growth, and freezing injury in autotetraploid alfalfa. Crop Science, 2000, 40(5): 1387-1396.
[41]   Santillano-Cázares J, Carmona-Victoria M, Contreras-Govea F E, Ldowu O J, Albrecht K A. Applicability of predictive equations for alfalfa quality to southwestern United States and northern Mexico. Crop Science, 2014, 54: 2880-2886.
[1] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[2] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[3] MA Lin,WEN HongYu,WANG XueMin,GAO HongWen,PANG YongZhen. Cloning and Function Analysis of MsMAX2 Gene in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4061-4069.
[4] ZeMin LI,Chen ZHANG,ChongYu ZHANG,GuiGuo ZHANG. The Relationship Between Nutrients and Biological Yield of Different Varieties of Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(6): 1269-1277.
[5] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[6] JIANG Xu,CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei. Cloning and Function Analysis of MsNST in Lignin and Cellulose Biosynthesis Pathway from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3818-3832.
[7] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[8] GONG Hao,YANG Liu,LI DanDan,LIU GuoFu,XIAO ZhiXin,WU QingYing,CUI GuoWen. Response of Alfalfa Production and Quality to Fertilization and Cutting Frequency and Benefit Analysis in Mollisol Agricultural Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2657-2667.
[9] XIAO ZhiXin,WANG Yang,LIU GuoFu,GONG Hao,LI DanDan,GONG Lin,BAI ZhenJian,CUI GuoWen. Effects of Fertilizing Time in Early Spring on Alfalfa (Medicago sativa) Production Performance and Nutritional Quality in Mollisol Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677.
[10] XiaoDong LI,YiShun SHANG,ShiGe LI,GuangJi CHEN,ChengJiang PEI,Fang SUN,XianQin XIONG. The Mechanism of Ectopic Expression of Brassica juncea Multidrug and Toxic Compound Extrusion (BjMATE) to Enhance the Resistance to Acid and Aluminum Stress in Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(1): 18-28.
[11] SUN YanMei,ZHANG QianBing,MIAO XiaoRong,LIU JunYing,YU Lei,MA ChunHui. Effects of Phosphorus-Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Production Performance and Root Biomass of Alfalfa [J]. Scientia Agricultura Sinica, 2019, 52(13): 2230-2242.
[12] SUN JuanJuan, A LaMuSi, ZHAO JinMei, XUE YanLin, YU LinQing, YU Zhu, ZHANG YingJun. Analysis of Amino Acid Composition and Six Native Alfalfa Cultivars [J]. Scientia Agricultura Sinica, 2019, 52(13): 2359-2367.
[13] ZHANG CuiMei, SHI ShangLi, WU Fang. Effects of Drought Stress on Root and Physiological Responses of Different Drought-Tolerant Alfalfa Varieties [J]. Scientia Agricultura Sinica, 2018, 51(5): 868-882.
[14] WEI ZhiBiao, BAI ZhaoHai, MA Lin, ZHANG FuSuo. Yield Gap of Alfalfa, Ryegrass and Oat Grass and Their Influence Factors in China [J]. Scientia Agricultura Sinica, 2018, 51(3): 507-522.
[15] LIU Song, WANG XiaoQin, HU JiPing, LI Qiang, CUI LiLi, DUAN XueQin, GUO Liang. Effects of Fertilization and Irrigation on the Carbon Footprint of Alfalfa in Gansu Province [J]. Scientia Agricultura Sinica, 2018, 51(3): 556-565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!