Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (5): 868-882.doi: 10.3864/j.issn.0578-1752.2018.05.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Drought Stress on Root and Physiological Responses of Different Drought-Tolerant Alfalfa Varieties

ZHANG CuiMei, SHI ShangLi, WU Fang   

  1. College of Grassland Science, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem, Ministry of Education/Pratacultural Engineering Laboratory of Gansu Province/Sino-US Centers for Grazingland Ecosystem Sustainability, Lanzhou 730070
  • Received:2017-07-14 Online:2018-03-01 Published:2018-03-01

Abstract: 【Objective】This study aimed to understand the differential growth and physiological response in roots of different drought-tolerant alfalfa varieties to drought stress, and to provide theoretical basis for further clarifying the molecular mechanism of alfalfa against drought and for improving drought tolerance and water use efficiency in alfalfa.【Method】In a sand culture experiment, three different drought-tolerant alfalfa varieties, including Medicago sativa L. cv. Longzhong (strong drought-tolerant), Medicago sativa L. cv. Longdong (moderate drought-tolerant), and Medicago sativa L. cv. Gannong No.3 (drought-susceptible), were treated with drought stress induced by polyethylene glycol-6000 (PEG-6000) solutions of different osmotic potentials (0.0, -0.4, -0.8, -1.2, -1.6 and -2.0 MPa). The root growth characters of total root length, total root surface area, average root diameter, root volume, root tip number and root dry weight, root activity, the contents of free proline, soluble protein, and soluble sugar, relative permeability of plasma (RPP), the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and reduced ascobate (AsA) and reduced glutathione (GSH) contents were measured at seedling stage. Moreover, stepwise regression analysis was used to establish the optimal regression equation that could select the influential indices for drought-tolerance of the alfalfa varieties under different drought stress levels.【Result】Drought stress has an obvious effect on growth and physiological traits of the alfalfa varieties. With increasing drought stress, the free proline contents, the levels of MDA, RPP and ROS (H2O2, OH· and O2•-), and CAT activity in roots of three alfalfa varieties were significantly increased, while root dry weight, root activity, and the contents of soluble sugar and GSH were firstly increased and then decreased. Additionally, as the osmotic potentials of solutions decreased, average root diameter, root volume, root tip number, POD and SOD activities of Longzhong increased first and then decreased, whereas the above first four indicators and total root surface area of Longdong and Gannong No.3 decreased continuously. Moreover, with the increase of stress, the AsA content of Longzhong continuously increased but that of the other two varieties increased first and then decreased. Overall, total root length, total root surface area and root dry weight in roots of Longzhong were significantly greater than those of Longdong and Gannong No.3, while the H2O2 and OH· levels in roots of Longzhong were significantly lower than those of Gannong No.3. The contents of soluble protein, soluble sugar and MDA in roots of Longzhong and Longdong were obviously lower than those of Gannong No.3. Under the drought stress from -1.2 to -2.0 MPa, the H2O2 and OH· contents in roots of Longzhong were significantly lower than those of Longdong. Under -2.0 MPa, the AsA and GSH contents and POD activity in roots of Longzhong were significantly higher than those of Gannong No.3. The result of stepwise regression analysis showed that root activity, root volume, total root length, MDA and AsA were the most influential indices for drought-tolerance of Longzhong; Root tip number, average root diameter, total root surface area, root dry weight, O2•-, GSH and CAT were the most influential indices for drought-tolerance of Longdong; and root activity, root tip number, free proline, soluble sugar, MDA, RPP and GSH were the most influential indices for drought-tolerance of Gannong No.3.【Conclusion】The alfalfa varieties with different drought-tolerance exhibit common and divergent responses to drought stress at the morphological and physiological levels. Under light and mild drought stress conditions (osmotic potentials decreased from 0 MPa to -1.2 MPa), drought-tolerant alfalfa varieties mainly adapted to drought by increasing the root length, root volume and root tip number and reducing the degree of membrane lipid peroxidation, while drought-susceptible alfalfa varieties adapted to drought by changing cell membrane stability, root activity and osmotic adjustment. Under severe drought stress (osmotic potentials declined from -1.2 MPa to -2.0 MPa), the alteration of root growth and activation of antioxidant system were common response mechanisms of tested alfalfa varieties. Furthermore, strong drought-tolerant alfalfa variety increased total root length and AsA content against drought stress, while moderate drought-tolerant and drought-susceptible alfalfa varieties increased root tip number and GSH content in response to drought stress.

Key words: alfalfa (Medicago sativa L.), root system, PEG stress, root characteristics, physiological traits, differentiated response strategy

[1]    ANJUM S A, ASHRAF U, ZOHAIB A, TANVEER M, NAEEM M, ALI I, TABASSUM T, NAZIR U. Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste- Agriculture, 2017, 104(3): 267-276.
[2]    FANG Y, XIONG L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689.
[3]    潘晓迪, 张颖, 邵萌, 马黎明, 郭新宇. 作物根系结构对干旱胁迫的适应性研究进展. 中国农业科技导报, 2017, 19(2): 51-58.
PAN X D, ZHANG Y, SHAO M, MA L M, GUO X Y. Research progress on adaptive response of crop root structure to drought stress. Journal of Agricultural Science and Technology, 2017, 19(2): 51-58. (in Chinese)
[4]    MORAN J F, BECANA M, ITURBE-ORMAETXE I, FRECHILLA S, KLUCAS R V, APARICIO-TEJO P. Drought induces oxidative stress in pea plants. Planta, 1994, 194(3): 346-352.
[5]    郭正刚, 张自和, 王锁民, 田福平. 不同紫花苜蓿品种在黄土高原丘陵区适应性的研究. 草业学报, 2003, 12(4): 45-50.
GUO Z G, ZHANG Z H, WANG S M, TIAN F P. Study on adaptability of nine lucerne varieties in hills and valleys of Loess Plateau. Acta Prataculturae Sinica, 2003, 12(4): 45-50. (in Chinese)
[6]    BOYER J S. Plant productivity and environment. Science, 1982, 218(4571): 443-448.
[7]    BASBAG M, AYDIN A, SAKIROGLU M. Evaluating agronomic performance and investigating molecular structure of drought and heat tolerant wild alfalfa (Medicago sativa L.) collection from the southeastern Turkey. Biochemical Genetics, 2017, 55(1): 1-14.
[8]    刘海臣, 杨文军, 张春兰, 霍红雁, 王澜, 张继星. 非生物胁迫下植物根系的蛋白质组学研究进展. 河南农业科学, 2016, 45(1): 8-14.
LIU H C, YANG W J, ZHANG C L, HUO H Y, WANG L, ZHANG J X. Advance in proteomics of plant roots under abiotic stress. Journal of Henan Agricultural Sciences, 2016, 45(1):8-14. (in Chinese)
[9]    胡承伟, 张学昆, 邹锡玲, 程勇, 曾柳, 陆光远. PEG 模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报, 2013, 35(1): 48-53.
HU C W, ZHANG X K, ZOU X L, CHENG Y, ZENG L, LU G Y. Root structure and drought tolerance of rapeseed under PEG imposed drought. Chinese Journal of Oil Crop Sciences, 2013, 35(1): 48-53. (in Chinese)
[10]   厉广辉, 万勇善, 刘风珍, 张昆. 不同抗旱性花生品种根系形态及生理特性. 作物学报, 2014, 40(3): 531-541.
LI G H, WAN Y S, LIU F Z, ZHANG K. Morphological and physiological traits of root in different drought resistant peanut cultivars. Acta Agronomica Sinica, 2014, 40(3): 531-541. (in Chinese)
[11]   WANG J P, BUGHRARA S S, NELSON C J. Morpho-physiological responses of several fescue grasses to drought stress. Hortscience, 2008, 43(3): 161-173.
[12]   SHAHIDI R, YOSHIDA J, COUGNON M, REHEUL D, LABEKE M C V. Morpho-physiological responses to dehydration stress of perennial ryegrass and tall fescue genotypes. Functional Plant Biology, 2017, 44(6): 612-623.
[13]   FAROOQ M, WAHID A, KOBAYASHI N, FUJITA D, BASRA S M A. Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 2009, 29(1): 185-212.
[14]   李文娆, 张岁岐, 山仑. 苜蓿叶片及根系对水分亏缺的生理生化响应. 草地学报, 2007, 15(4): 299-305.
LI W R, ZHANG S Q, SHAN L. Physiological and biochemical responses of leaves and roots of alfalfa (Medicago sativa L.) to water stress. Acta Agrestia Sinica, 2007, 15(4): 299-305. (in Chinese)
[15]   郭正刚, 张自和, 肖金玉, 侯扶江, 陆妮. 黄土高原丘陵沟壑区紫花苜蓿品种间根系发育能力的初步研究. 应用生态学报, 2002, 13(8):1007-1012. 
GUO Z G, ZHANG Z H, XIAO J Y, HOU F J, LU N. Root system development ability of several alfalfa cultivars in the hilly and valley regions of Loess Plateau. Chinese Journal of Applied Ecology,2002, 13(8): 1007-1012. (in Chinese)
[16]   ERICE G, LOUAHLIA S, IRIGOYEN J J, SANCHEZDIAZ M, AVICE J C. Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Journal of Plant Physiology, 2010, 167(2): 114-120.
[17]   陈积山, 李锦华, 常根柱. 不同苜蓿品种根系形态结构的抗旱性分析. 内蒙古草业, 2008, 20(2): 41-44.
CHEN J S, LI J H, CHANG G Z. Drought resistance analysis of root morphology and structure of different alfalfa cultivars. Inner Mongolia Prataculture, 2008, 20(2): 41-44. (in Chinese)
[18]   王富贵, 于林清, 田自华, 苏东, 孙娟娟. 18个苜蓿品种根系特征及与地上生物量关系的研究. 中国草地学报, 2011, 33(4): 51-57.
WANG F G, YU L Q, TIAN Z H, SU D, SUN J J. Root characteristics and the relationship with yield of 18 alfalfa cultivars. Chinese Journal of Grassland, 2011, 33(4): 51-57. (in Chinese)
[19]   HAMIDI H, SAFARNEJAD A. Effect of drought stress on alfalfa cultivars (Medicago sativa L.) in germination stage. American- Eurasian Journal of Agricultural and Environmental Science, 2010, 8(6):705-709.
[20]   QUAN W L, LIU X, WANG H Q, CHAN Z L. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Frontiers in Plant Science, 2015, 6: 1-16.
[21]   韩瑞宏, 田华, 高桂娟, 卢欣石. 干旱胁迫下紫花苜蓿叶片水分代谢与两种渗透调节物质的变化. 华北农学报, 2008, 23(4): 140-144.
HAN R H, TIAN H, GAO G J, LU X S. Change of water metabolism and two osmotic adjustment substances in the leaves of alfalfa under drought stress. Acta Agriculturae Boreali-Sinica, 2008, 23(4): 140-144. (in Chinese)
[22]   BOLDAJI S A H, SAJEDI R H, FAHIMI H, SAADATMAND S. Water availability effects on antioxidant enzyme activities, lipid peroxidation, and reducing sugar contents of alfalfa ( Medicago sativa L.). Acta Physiologiae Plantarum, 2012, 34(3): 1177-1186.
[23]   TANG L, CAI H, ZHAI H, BAI X. Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tissue & Organ Culture, 2014, 118(1): 77-86.
[24]   MA Q L, KANG J M, LONG R C, CUI Y J, ZHANG T J, XIONG J B, YANG Q C, SUN Y. Proteomic analysis of salt and osmotic-drought stress in alfalfa seedlings. Journal of Integrative Agriculture, 2016, 15(10): 2266-2278.
[25]   李文娆, 张岁岐, 丁圣彦, 山仑. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系. 生态学报, 2010, 30(19): 5140-5150.
LI W R, ZHANG S Q, DING S Y, SHAN L. Root morphological variation and water use in alfalfa under drought stress. Acta Ecologica Sinica, 2010, 30(19): 5140-5150. (in Chinese)
[26]   KANG Y, HAN Y, TORRES-JEREZ I, WANG M, TANG Y, MONTEROS M, UDVARDI M. System responses to long-term drought and re-watering of two contrasting alfalfa varieties. Plant Journal, 2011, 68(5): 871-889.
[27]   KANG Y, UDVARDI M. Global regulation of reactive oxygen species scavenging genes in alfalfa root and shoot under gradual drought stress and recovery. Plant Signaling & Behavior, 2012, 7(5): 539-543.
[28]   万素梅, 胡守林, 黄勤慧, 王龙昌,赵书珍,胡建宏. 不同紫花苜蓿品种根系发育能力的研究. 西北植物学报, 2004, 24(11): 2048-2052.
WAN S M, HU S L, HUANG Q H, WANG L C, ZHAO S Z, HU J H. Study on root system development ability of alfalfa cultivars. Acta Botanica Boreali-Occidentalia Sinica, 2004 , 24(11): 2048-2052. (in Chinese)
[29]   FAN J W, DU Y L, TURNER N C, WANG B R, FANG Y, XI Y, GUO X R, LI F M. Changes in root morphology and physiology to limited phosphorus and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa L. growing in alkaline soil. Plant & Soil, 2015, 392(1/2): 215-226.
[30]   李超, 王育青, 高丽, 闫志坚. 九个苜蓿品种叶绿素荧光参数与叶水势日变化研究. 中国草地学报, 2012, 34(2): 23-29.
LI C, WANG Y Q, GAO L, YAN Z J. Studies on chlorophyll fluorescence characters and leaf water potential in nine alfalfa varieties. Chinese Journal of Grassland, 2012, 34(2): 23-29. (in Chinese)
[31]   穆怀彬, 伏兵哲, 德英. PEG-6000胁迫下10个苜蓿品种幼苗期抗旱性比较. 草业科学, 2011, 28(10): 1809-1814.
MU H B, FU B Z, DE Y. Drought tolerance of alfalfa seedlings of 10 varieties under PEG-6000 stress. Pratacultural Science, 2011, 28(10): 1809-1814. (in Chinese)
[32]   NAGY Z, GALIBA G. Drought and salt tolerance are not necessarily linked: A study on wheat varieties differing in drought tolerance under consecutive water and salinity stresses. Journal of Plant Physiology, 1995, 145(1/2): 168-174.
[33]   MICHEL B E, KAUFMANN M R. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 1973, 51(5): 914-916.
[34]   邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2007.
ZOU Q. Plant Physiology Experiment Guidance. Beijing: China Agriculture Press, 2007. (in Chinese)
[35]   李锦树, 王洪春, 王文英, 朱亚芳. 干旱对玉米叶片细胞透性及膜脂的影响. 植物生理学报, 1983(3): 223-229.
LI J S, WANG H C, WANG W Y, ZHU Y F. Effect of drought on the permeability and membrane lipid composition from maize leaves. Acta Phytophysiologia Sinica, 1983(3): 223-229. (in Chinese)
[36]   WILLEKEN H, CHAMNONGPOL S, DAVEY M, SCHRAUDNER M, LANGEBARTELS C, VAN M M, INZE D, VAN C W. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. European Molecular Biology Organization Journal, 1997, 16(16): 4806-4816.
[37]   LIU Y J, ZHAO Z G, SI J, DI C X, HAN J, AN L Z. Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regulation, 2009, 59(3): 207-214.
[38]   ELSTNER E F, HEUPEL A. Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta, 1976, 130(2): 175-180.
[39]   DE AZEVEDO NETO A D, PRISCO J T, ENEAS-FILHO J, MEDEIROS J V, GOMES-FILHO E. Hydrogen peroxide pre- treatment induces salt-stress acclimation in maize plants. Journal of Plant Physiology, 2005, 162(10): 1114-1122.
[40]   GIANNOPOLITIS C N, RIES S K. Superoxide dismutases. I. Occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314.
[41]   BEERS R F, SIZER I W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 1952, 195(1): 133-140.
[42]   LAW M Y, CHARLES S A, HALLIWELL B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochemical Journal, 1983, 210(3): 899-903.
[43]   GRIFFITH O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 1980, 106(1): 207-212.
[44]   CHEN C W, YANG Y W, LUR H S, TSAI Y G, CHANG M C. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant and Cell Physiology, 2006, 47(1): 1-13.
[45]   丁红, 张智猛, 戴良香, 宋文武, 康涛, 慈敦伟. 不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应. 生态学报, 2013, 33(17): 5169-5176.
DING H, ZHANG Z M, DAI L X, SONG W W, KANG T, CI D W. Responses of root morphology of peanut varieties differing in drought tolerance to water-deficient stress. Acta Ecologica Sinica, 2013, 33(17): 5169-5176. (in Chinese)
[46]   PIRNAJMEDIN F, MAJIDI M M, GHEYSARI M. Root and physiological characteristics associated with drought tolerance in Iranian tall fescue. Euphytica, 2015, 202(1):141-155.
[47]   马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012, 23(3): 724-730.
MA F J, LI D D, CAI J, JIANG D, CAO W X, DAI T B. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. Chinese Journal of Applied Ecology, 2012, 23(3): 724-730. (in Chinese)
[48]   MORGAN J M, CONDON A G. Water use, grain yield, and osmoregulation in wheat. Functional Plant Biology, 1986, 13(4): 523-532.
[49]   BEN R K, ABDELLY C, SAVOURE A. How reactive oxygen species and proline face stress together. Plant Physiology & Biochemistry, 2014, 80: 278-284.
[50]   GRIFFITHS H, PARRY M A J. Plant responses to water stress. Annals of Botany, 2002, 89(7): 801-802.
[51]   MAJID M. Effect of salinity on sodium and chloride uptake, proline and soluble carbohydrate contents in three alfalfa varieties. IOSR Journal of Agriculture and Veterinary Science, 2012, 1(6): 1-6.
[52]   余玲, 王彦荣, Garnett T, Augicht G, 韩德梁. 紫花苜蓿不同品种对干旱胁迫的生理响应. 草业学报, 2006, 15(3): 75-85.
YU L, WANG Y R, GARNETT T, AUGICHT G, HAN D L. A study on physiological responses of varieties of Medicago sativa and their relationship with the drought resistance capacity under drought stress. Acta Prataculturae Sinica, 2006, 15(3): 75-85. (in Chinese)
[53]   MITTLER R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7(9): 405-410.
[54]   KARATAS I, ÖZTURK L, DEMIR Y, UNLUKARA A, KURUNC A, DUZDEMIR O. Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress. Toxicology & Industrial Health, 2014, 30(8): 693-700.
[55]   张新兰. 不同品种苜蓿叶片离体干旱胁迫过程中抗氧化酶活性动态. 草业科学, 2008, 25(2): 77-83.
ZHANG X L. Study on activity of antioxidative enzymes and drought resistance of alfalfa leaf under drought stress. Pratacultural Science, 2008, 25(2): 77-83. (in Chinese)
[56]   ABEDI T S U, PAKNIYAT H S U. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 2010, 46(1): 27-34.
[57]   HSIAO T C. Plant responses to water stress. Annual Review of Plant Physiology, 1973, 24: 519-570.
[58]   安玉艳, 梁宗锁. 植物应对干旱胁迫的阶段性策略. 应用生态学报, 2012, 23(10): 2907-2915.
AN Y Y, LIANG Z S. Staged strategy of plants in response to drought stress. Chinese Journal of Applied Ecology, 2012, 23(10): 2907-2915. (in Chinese)
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] CHEN XinXin2, DING QiShuo, LI YiNian, XUE JinLin, HE RuiYin. Three Dimensional Fractal Characteristics of Wheat Root System for Rice-Wheat Rotation in Southern China [J]. Scientia Agricultura Sinica, 2017, 50(3): 451-460.
[3] BU HongYing, SONG WeiZhou, CAO CouGui, LI Ping. Root Growth Responses to Soil Water Deficit for a Water-Saving and Drought-Resistant Rice Genotype Hanyou113 [J]. Scientia Agricultura Sinica, 2017, 50(22): 4277-4289.
[4] PANG ChunHua, ZHANG ZiWei, ZHANG YongQing. Effects of Water and Phosphorus Coupling on Root Growth, Biomass Allocation and Yield of Quinoa [J]. Scientia Agricultura Sinica, 2017, 50(21): 4107-4117.
[5] DU Huan, MA TongTong, GUO Shuai, ZHANG Ying, BAI ZhiYing, LI CunDong. Response of Root Morphology and Leaf Osmoregulation Substances of Seedling in Barley Genotypes with Different Heights to PEG Stress [J]. Scientia Agricultura Sinica, 2017, 50(13): 2423-2432.
[6] REN Hao, CHENG Yi, LIU Peng, DONG ShuTing, ZHAO Jie, ZHANG JiWang, ZHAO Bin. Effects of Different Cultivation Patterns on Root Characteristics, Yield Formation and Nitrogen Utilization of Summer Maize [J]. Scientia Agricultura Sinica, 2017, 50(12): 2270-2281.
[7] SHI DeYang, LI YanHong, XIA DeJun, ZHANG JiWang, LIU Peng, ZHAO Bin, DONG ShuTing. Effects of Planting Density on Root Characteristics and Nitrogen Uptake in Summer Maize [J]. Scientia Agricultura Sinica, 2017, 50(11): 2006-2017.
[8] GAO Jia, SHI JianGuo, DONG ShuTing, LIU Peng, ZHAO Bin, ZHANG JiWang. Effect of Different Light Intensities on Root Characteristics and Grain Yield of Summer Maize (Zea Mays L.) [J]. Scientia Agricultura Sinica, 2017, 50(11): 2104-2113.
[9] GAO Fei, LI Xia, REN BaiZhao, DONG ShuTing, LIU Peng, ZHAO Bin, ZHANG JiWang. Root Characteristics and Grain Yield of Summer Maize Under Different Winter Wheat-Summer Maize Tillage Systems [J]. Scientia Agricultura Sinica, 2017, 50(11): 2141-2149.
[10] ZHANG Xiang-qian, CAO Cheng-fu, QIAO Yu-qiang, LI Wei, CHEN Huan. Response of Wheat Root Characteristics and Canopy Photosynthesis to Different Irrigation Methods in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2015, 48(8): 1506-1517.
[11] WEN Wei-liang, GUO Xin-yu, ZHAO Chun-jiang, WANG Chuan-yu, XIAO Bo-xiang. Crop Roots Configuration and Visualization: A Review [J]. Scientia Agricultura Sinica, 2015, 48(3): 436-448.
[12] CHEN Xin-Xin-1, DING Qi-Shuo-1, 2 , DING Wei-Min-1, TIAN Yong-Chao-2, ZHU Yan-2, CAO Wei-Xing-2. Measurement and Analysis of 3D Wheat Root System Architecture with a Virtual Plant Tool Kit [J]. Scientia Agricultura Sinica, 2014, 47(8): 1481-1488.
[13] GE Shao-Bin, LIU Min, CAI Kun-Zheng, CAI Yi-Xia, LUO Shi-Ming. Physiological Mechanism of Silicon-Enhanced Rice Blast Resistance [J]. Scientia Agricultura Sinica, 2014, 47(2): 240-251.
[14] WANG Jing-feng,LIU Peng,ZHAO Bing-qiang,DONG Shu-ting,ZHANG Ji-wang,ZHAO Ming,YANG Ji-shun,LI Geng
. Comparison of Root Characteristics and Nitrogen Uptake and Use Efficiency in Different Corn Genotypes
[J]. Scientia Agricultura Sinica, 2011, 44(4): 699-707 .
[15] YANG Li-wen1,ZHANG Yong-qing. Developing Patterns of Root Systems of Four Cereal Crops Planted in Dryland Areas [J]. Scientia Agricultura Sinica, 2011, 44(11): 2244-2251 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!