Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (9): 1715-1724.doi: 10.3864/j.issn.0578-1752.2014.09.006

• PLANT PROTECTION • Previous Articles     Next Articles

Genome-Wide Identification MAPK Superfamily and Establishment of the Model of MAPK Cascade Pathway in Setosphaeria turcica

 GONG  Xiao-Dong-1, ZHANG  Xiao-Yu-1, TIAN  Lan-1, WANG  Xing-Yi-1, LI  Po-2, ZHANG  Pan-1, WANG  Yue-1, FAN  Yong-Shan-3, HAN  Jian-Min-1, GU  Shou-Qin-1, DONG  Jin-Gao-1   

  1. 1、Mycotoxin and Molecular Plant Pathology Laboratory, Agricultural University of Hebei, Baoding 071001, Hebei;
    2、Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, Hebei;
    3、Faculty of Life Science, Tangshan Normal University, Tangshan 063000, Hebei
  • Received:2013-09-29 Online:2014-05-01 Published:2014-01-03

Abstract: 【Objective】 Identification of MAPK superfamily genes from wide genome, and analysis of phylogeny, gene structure, multiple sequence alignment and conservative sites in Setosphaeria turcica will be useful for further research on the functions of MAPK cascade pathway in plant pathogenic fungus.【Method】Based on S. turcica genome database and genome searching with HMMER 3.0, MAPK superfamily genes were identified and their gene sequences, and genome location were obtained. The conservative protein kinase domains and sites were analyzed with ClustalX, MEME tools.【Result】Four MAPK genes, three MAPKK genes and three MAPKKK genes in S. turcica genome were found, and the MAPK was classified into Kss1/Fus3, Slt2, Hog1 and Ime2 four classes, MAPKK was classified into Pbs2, Ste7 and Mkk1 three classes, MAPKKK was classified into Ste11, Bck1 and Ssk2 three classes. Genome location and gene structure analysis showed that MAPK superfamily genes extensively distributed in the genome, and the structure of MAPK genes was the most complicated, MAPKK taken the second place, and MAPKKK structure was the simplest. Multiple sequence alignment and conservative sites analysis showed that the MAPK superfamily of kinase domain structure was highly conserved in S. turcica, and MAPK contained phosphorylation sites (-TxY-), MAPKK contained conservative phosphorylation sites (-SD[V/I]WS-), MAPKKK contained specificity conservative sites (-G[S/T] [V/P][F/M][W/Y]M[A/S]PEV-).【Conclusion】Genome-wide analysis showed that there were four MAPK genes, three MAPKK genes and three MAPKKK genes in S. turcica. Phylogenetic, gene structure, multiple sequence alignment and conservative site analysis showed that there were Fus3/Kss1-homolog, Slt2-homolog, Hog1-homolog and Ime2-homolog four MAPK cascade pathways, and Ime2 homolog may be a newly discovered MAPK cascade pathway in S. turcica. These results are helpful for the further functional research of MAPK superfamily in plant pathogenic fungus.

Key words: Setosphaeria turcica , MAPK superfamily , phylogenetic analysis , conservative motif

[1]Perkins J M, Pedersen W L. Disease development and yield losses associated with leaf northern blight on corn. Plant Disease, 1987, 71(10): 940-943.

[2]刘国胜, 董金皋, 邓福友, 郭爱国, 张凤国, 臧漫辉. 中国玉米大斑病菌生理分化及新命名法的初步研究. 植物病理学报, 1996, 26(4): 305-310.

Liu G S, Dong J G, Deng F Y, Guo A G, Zhang F G, Zang M H. Preliminary study on physiology specialization and new nomenclature for Exserohilum turcicum of corn in China. Acta Phytopathologica Sinica, 1996, 26(4): 305-310. (in Chinese)

[3]Romeis T. Protein kinases in the plant defence response. Current Opinion in Plant Biology, 2001, 4: 407-414.

[4]Yang S H, Sharrocks A D, Whitmarsh A J. Transcriptional regulation by the MAP kinase signaling cascades. Gene, 2003, 320: 3-21.

[5]Chen R E, Thorner J. Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 2007, 1773(8): 1311-1340.

[6]范永山, 刘颖超, 谷守芹, 桂秀梅, 董金皋. 植物病原真菌的MAPK基因及其功能. 微生物学报, 2004, 44(4): 547-551.

Fan Y S, Liu Y C, Gu S Q, Gui X M, Dong J G. Mitogen activated protein kinase genes and its functions in phytopathogenic fungus. Acta Microbiologica Sinica, 2004, 44(4): 547-551. (in Chinese)

[7]Herskowitz I. MAP kinase pathways in yeast: For mating and more. Cell, 1995, 80(2): 187-197.

[8]Hamel L P, Nicole M C, Duplessis S, Ellis B E. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. The Plant Cell, 2012, 24: 1327-1351.

[9]Xu J R. MAP kinases in fungal pathogens. Fungal Genetics and Biology, 2000, 31: 137-152.

[10]Banuett F, Herskowitz I. Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes & Development, 1994, 8: 1367-1378.

[11]Carbó N, Pérez-Martín J. Activation of the cell wall integrity pathway promotes escape from G2 in the fungus Ustilago maydis. PLoS Genetics, 2010, 6(7): e1001009.

[12]Belén Sanz A, García R, Rodríguez-Peña J M, Díez-Muñiz S, Nombela C, Peterson C L, Arroyo J. Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway. Molecular Biology of the Cell, 2012, 23: 2805-2817.

[13]Segmüller N, Ellendorf U, Tudzynski B, Tudzynski P. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryotic Cell, 2007, 6(2): 211-221.

[14]Park S M, Choi E S, Kim M J, Cha B J, Yang M S, Kim D H. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Molecular Microbiology, 2004, 51(5): 1267-1277.

[15]王宁, 谷守芹, 范永山, 李坡, 王文秀, 董金皋. 玉米大斑病菌STK1原核表达载体的构建及其表达. 中国农业科学, 2010, 43(18): 3876-3881.

Wang N, Gu S Q, Fan Y S, Li P, Wang W X, Dong J G. Construction and expression of prokaryotic expression vector of STK1 from Setosphaeria turcica. Scientia Agricultura Sinica, 2010, 43(18): 3876-3881. (in Chinese)

[16]巩校东, 范钰, 李坡, 杨阳, 张长志, 田兰, 张晓玉, 范永山, 韩建民, 谷守芹, 董金皋. 玉米大斑病菌STK2的基因组定位、蛋白质结构预测及其表达. 中国农业科学, 2013, 46(12): 2599-2606.

Gong X D, Fan Y, Li P, Yang Y, Zhang C Z, Tian L, Zhang X Y, Fan Y S, Han J M, Gu S Q, Dong J G. Localization of STK2 of Setosphaeria turcica in the genome, characterization of its protein structure and expression in eukaryotic cells. Scientia Agricultura Sinica, 2013, 46(12): 2599-2606. (in Chinese)

[17]Ohm R A, Feau N, Henrissat B, Schoch C L, Horwitz B A, Barry K W, Condon B J, Copeland A C, Dhillon B, Glaser F, Hesse C N, Kosti I, LaButti K, Lindquist E A, Lucas S, Salamov A A, Bradshaw R E, Ciuffetti L, Hamelin R C, Kema G H, Lawrence C, Scott J A, Spatafora J W, Turgeon B G, de Wit P J, Zhong S, Goodwin S B, Grigoriev I V. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathogens, 2012, 8(12): e1003037.

[18]Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis B E. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends in Plant Science, 2006, 11(4): 192-198.

[19]郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29(8): 1023-1026.

Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29(8): 1023-1026. (in Chinese)

[20]Liang W, Yang B, Yu B J, Zhou Z, Li C, Jia M, Sun Y, Zhang Y, Wu F, Zhang H, Wang B, Deyholos M K, Jiang Y Q. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). BMC Genomics, 2013, 14: 392.

[21]Chen L, Hu W, Tan S, Wang M, Ma Z, Zhou S, Deng X, Zhang Y, Huang C, Yang G, He G. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon. PLoS One, 2012, 7(10): e46744.

[22]Rao K P, Richa T, Kumar K, Raghuram B, Sinha A K. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase genefamily in rice. DNA Research, 2010, 17(3): 139-153.

[23]Kong X, Lv W, Zhang D, Jiang S, Zhang S, Li D. Genome-wide identification and analysis of expression profiles of maize mitogen- activated protein kinase kinase kinase. PLoS One, 2013, 8(2): e57714.

[24]Zhao X H, Kim Y, Park G, Xu J R. A Mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. The Plant Cell, 2005, 17: 1317-1329.

[25]Hou Z, Xue C, Peng Y, Katan T, Kistler H C, Xu J R. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Molecular Plant-Microbe Interactions, 2002, 15(11): 1119-1127.

[26]Jeon J, Goh J, Yoo S, Chi M H, Choi J, Rho H S, Park J, Han S S, Kim B R, Park S Y, Kim S, Lee Y H. A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryza. Molecular Plant-Microbe Interactions, 2008, 21(5): 525-534.

[27]Guttmann-Raviv N, Martin S, Kassir Y. Ime2, a meiosis-specific kinase in yeast, is required for destabilization of its transcriptional activator, Ime1. Molecular and Cellular Biology, 2002, 22(7): 2047-2056.

[28]Irniger S. The Ime2 protein kinase family in fungi: more duties than just meiosis. Molecular Microbiology, 2011, 80(1): 1-13.

[29]Schindler K, Benjamin K R, Martin A, Boglioli A, Herskowitz I, Winter E. The Cdk-activating kinase Cak1p promotes meiotic S phase through Ime2p. Molecular and Cellular Biology, 2003, 23(23): 8718-8728.

[30]Garrido E, Voss U, Müller P, Castillo-Lluva S, Kahmann R, Pérez-Martín J. The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes & Development, 2004, 18: 3117-3130.
[1] HAO YuBin,LI HaiXiao,ZHANG Sai,LIU Ning,LIU YingZi,CAO ZhiYan,DONG JinGao. Identification and Functional Analysis of StSCD Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2022, 55(16): 3134-3143.
[2] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[3] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[4] LONG Feng,WANG Qing,ZHU Hang,WANG JianXia,SHEN Shen,LIU Ning,HAO ZhiMin,DONG JinGao. Identification and Expression Pattern Analysis of Septin Gene Family of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2020, 53(24): 5017-5026.
[5] XIE HaiKun, JIAO Jian, FAN XiuCai, ZHANG Ying, JIANG JianFu, SUN HaiSheng, LIU ChongHuai. Assembling and Characteristic Analysis of the Complete Chloroplast Genome of Vitis vinifera cv. Cabernet Sauvignon from High-Throughput Sequencing Data [J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.
[6] FENG ShengZe, LIU XingChen, WANG HaiXiang, ZHAO Jie, ZHAO LiQing, ZHENG YaNan, GONG XiaoDong, HAN JianMin, GU ShouQin, DONG JinGao. Influencing Factors of Conidiospore and Expression Analysis of GATA Transcription Factor Gene Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2017, 50(7): 1234-1241.
[7] ZHAO Jie, ZHAO LiQing, GONG XiaoDong, FENG ShengZe, LIU XingChen, ZHENG YaNan, LI ZhiYong, SUN HaiYue, WANG DongXue, HAN JianMin, GU ShouQin, DONG JinGao. Identification of Homeobox Transcription Factor Family in Genome-Wide and Expression Pattern Analysis of the Members in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2017, 50(4): 669-678.
[8] SHEN Shen, LI ZhenYang, ZHAO YuLan, LI Pan, HAN JianMin, HAO ZhiMin, DONG JinGao. Cloning and Expression Pattern Analysis of cAMP Phosphodiesterase Coding Genes in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2017, 50(16): 3135-3144.
[9] ZHANG YunFeng, ZHANG ShuHong, WU QiuYing, FAN YongShan. Effects of STK1 on Glycogen and Lipid Accumulation During the Appressorium Development of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2017, 50(15): 2928-2935.
[10] WANG Lin, LI XinFeng, XU YuMei, CHANG YinDong, WANG JianMing. Analysis of Population Distribution and Genetic Variation of Plant Pathogenic Fusarium in Shanxi Province [J]. Scientia Agricultura Sinica, 2017, 50(10): 1802-1816.
[11] WANG Ye, HAN Lei, DONG Jie, HUANG JiaXing, WU Jie. Identification and Characteristics of Odorant Receptors in Bumblebee, Bombus lantschouensis [J]. Scientia Agricultura Sinica, 2017, 50(10): 1904-1913.
[12] GONG XiaoDong, LIU XingChen, ZHAO LiQing, ZHENG YaNan, FAN YongShan, HAN JianMin, GU ShouQin, DONG JinGao. Effect of Hyperosmotic Stress on Growth and Development of Setosphaeria turcica and Determination of Osmolytes in the Mycelium Cells of the Pathogen [J]. Scientia Agricultura Sinica, 2017, 50(10): 1922-1929.
[13] SUN Ming-yue, ZHOU Jun, TAN Qiu-ping, FU Xi-ling, CHEN Xiu-de, LI Ling, GAO Dong-sheng. Analysis of Basic Leucine Zipper Genes and Their Expression During Bud Dormancy in Apple (Malus×domestica) [J]. Scientia Agricultura Sinica, 2016, 49(7): 1325-1345.
[14] MA Shuang-xin, LIU Ning, JIA Hui, DAI Dong-qing, XU Miao-miao, CAO Zhi-yan, DONG Jin-gao. Analysis and Expression of Laccase Gene Stlac2 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2016, 49(21): 4130-4139.
[15] WU Xiang-yang, CHENG Chao-ze, Lü Gao-qiang, WANG Xin-yu. Identification and Characterization of the AQP Gene Family in Sesame [J]. Scientia Agricultura Sinica, 2016, 49(10): 1844-1858.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!