Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (24): 5248-5260.doi: 10.3864/j.issn.0578-1752.2013.24.019

• RESEARCH NOTES • Previous Articles    

Cloning and Expression Analysis of A Soluble Acid Invertase Gene (SoSAI1) of Sugarcane

 NIU  Jun-Qi-1, WANG  Ai-Qin-1, HUANG  Jing-Li-1, ZHU  Hui-1, LI  Yang-Rui-1, 2 , YANG  Li-Tao-1, 2   

  1. 1.Agricultural College, Guangxi University/State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Nanning 530005;
    2.Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007
  • Received:2013-07-12 Online:2013-12-16 Published:2013-09-27

Abstract: 【Objective】 The objective of this study is to clone the soluble acid invertase gene (SoSAI1) and 5' promoter sequence from sugarcane, to analyze its sequence and expression patterns. 【Method】 The full-length cDNA sequence of SoSAI1 gene was amplified from the leaves of sugarcane by the technology of rapid amplification of cDNA ends (RACE). The cDNA sequence and the deduced amino acid sequence were analyzed by bioinformatics method. The promoter sequence of SoSAI1 gene was cloned by genome walking. The spatial-specific expressions of SoSAI1 were determined by real-time fluorescent quantitative PCR (qRT-PCR) in leaves and stems at different growth stages of sugarcane, and in roots and leaves under treatment of PEG6000, 100 mmol•L-1 NaCl or 6℃ stress conditions. 【Result】 The cloned full length of SoSAI1 cDNA sequence was 2 387 bp, containing a 2 055 bp open reading frame (ORF) which encodes 685 amino acids with a theoretical molecular mass of 74.44 kD. The 5’ promoter sequence length DNA sequence was 417 bp, which contained endosperm specific expression of cis-acting elements and participate in the drought induced MYB binding sites. The result of real time PCR exhibited that SoSAI1 was the highest abundance in inflorescence and the lowest in old and matured internodes of stems. The conditions of 15% PEG or 6℃ could induce the expression of SoSAI1 gene in leaves, while 15% PEG or NaCl could induce the expression of SoSAI1 gene in roots. 【Conclusion】 The full length of SoSAI1 and part of the promoter were cloned from sugarcane. The analysis by qRT-PCR suggested that SoSAI1 played an important role in sugarcane for growth and development, sucrose accumulation and response to environmental stress.

Key words: sugarcane , soluble acid invertase , gene cloning , expression

[1]Lakshmanan P, Geijskes R J, Aitken K S, Grof C P L, Bonnett G D, Smith G R. Sugarcane biotechnology the challenges and opportunities. In Vitro Cellular and Developmental Biology-Plant, 2005, 41: 345-363.

[2]李杨瑞, 杨丽涛. 20世纪90年代以来我国甘蔗产业和科技的新发展. 西南农业学报, 2009, 22(5): 1469-1475.

Li Y R, Yang L T. New developments in sugarcane industry and technologies in China since 1990s. Southwest China Journal of Agricultual Sciences, 2009, 22(5): 1469-1475. (in Chinese)

[3]Sachdeva M, Bhatia S, Batta S K. Sucrose accumulation in sugarcane: A potential target for crop improvement. Acta Physiology Plant, 2011, 33: 1571-1583.

[4]潘秋红, 张大鹏. 植物转化酶的种类、特性与功能. 植物生理学通讯, 2004, 40(3): 275-280.

Pan Q H, Zhang D P. Isoforms,characteristics and roles of plant invertases. Plant Physiology Communications, 2004, 40(3): 275-280. (in Chinese)

[5]Carson D L, Botha F C. Genes expressed in sugarcane maturing internodal tissue. Plant Cell and Reports, 2002, 20: 1075-1081.

[6]Sturm A. Invertases: Primary structures, functions and roles in plant development and sucrose partitioning. Plant Physiology, 1999, l2l: l-7.

[7]Yamada Y, Kojima T, Bantog N, Shimoda T, Mori H, Shiratake K, Yamaki S. Cloning of two isoforms of soluble acid invertase of Japanese pear and their expression during fruit development. Journal of Plant Physiology, 2007, 164: 746-755.

[8]Tian H M, Kong Q G, Feng Y Q, Yu X Y. Cloning and characterization of a soluble acid invertase-encoding gene from muskmelon. Molecular Biology Reports, 2009, 36: 611-617.

[9]Zhu Y J, Albert H H, Moore P H. Differential expression of soluble acid invertase genes in the shoots of high-sucrose and low-sucrose species of Saccharum and their hybrids. Australian Journal of Plant Physiology, 2000, 27: 193-199.

[10]Sachdeva M, Mann A P S, Batta S K. Sucrose metabolism and expression enzyme activities in low and high storing sugarcane  genotypes of key sucrose. Sugar Technology, 2003, 5(4): 265-271.

[11]潘有强, 罗海玲, 李杨瑞. 甘蔗节间蔗糖含量与蔗糖代谢相关的4种酶活性之间的关系剖析. 植物生理学通讯, 2007, 43(5): 861-864.

Pan Y Q, Luo H L, Li Y R. Correlating annlysis between sucrose content and the activities of four enzymes related to sucrose metabolism in sugarcane(Saccharum officinarum L.) internodes. Plant Physiology Communications, 2007, 43(5): 861-864. (in Chinese)

[12]Pan Y Q, Lou H L, Li Y R. soluble acid invertase and sucrose phosphate synthase: Key enzymes in regulating sucrose accumulation in sugarcane stalk. Sugar Technology, 2009, 11(1): 28-33.

[13]Wang A Q, Huang W J, Niu J Q, Liu M, Yang L T, Li Y R. Effects of ethephon on key enzymes of sucrose metabolism in relation to sucrose accumulation in sugarcane. Sugar Tech, 2013, 15(2): 177-186.

[14]Amin F, Bhatti H N, Asgher M. Partial purification and characterization of an acid invertase from Saccharum Officinarum L.. Pakistan Journal of Botany, 2010, 42(4): 2531-2540.

[15]Hussain A, Rashid M H, Perveen R, Ashraf M. Purification, kinetic and thermodynamic characterization of soluble acid invertase from sugarcane (Saccharum officinarum L.). Plant Physiology and Biochemistry, 2009, 47: 188-194.

[16]Rae A L, Casu R E, Perroux J M, Jackson M A, Grof C P L. A soluble acid invertase is directed to the vacuole by a signal anchor mechanism. Journal of Plant Physiology, 2011, 168: 983-989.

[17]郑月霞, 许玉林, 张积森, 叶冰莹, 陈由强, 陈如凯. 甘蔗可溶性酸性转化酶基因的克隆及序列分析. 热带作物学报, 2012, 33(11): 2007-2011.

Zheng Y X, Xu Y L, Zhang J S, Ye B Y, Chen Y Q, Chen R K. Cloning and sequence analysis of soluble acid invertase from Saccharum officenarum. Chinese Journal of Tropical Crops, 2012, 33(11): 2007-2011. (in Chinese)

[18]刘海斌, 何红, 邓展云, 张革民, 李杨瑞, 方锋学, 贤武, 刘晓静, 方位宽, 闭少玲, 容凤玉, 唐红琴. 特高糖抗寒甘蔗新品种桂糖28的选育. 中国糖料, 2010, 1: 13-15.

Liu H B, He H, Deng Z Y, Zhang G M, Li Y R, Fang F X, Xian B, Liu X J, Fang W K, Bi S L, Rong F Y, Tang H Q. Breeding of new sugarcane variety Guitang 28. Sugar Crops of China, 2010, 1: 13-15. (in Chinese)

[19]应雄美, 蔡青, 毕艳, 刘新龙, 马丽, 毛钧, 陆鑫. 两种不同甘蔗基因组DNA提取方法的比较. 中国糖料, 2009(4): 22-23.

Ying X M, Cai Q, Bi Y, Liu X L, Ma L, Mao J, Lu X. Comparison between two sugarcane genome DNA extraction method. Sugar Crops of China, 2009(4): 22-23. (in Chinese)

[20]阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量PCR分析中内参基因的选择. 热带作物报, 2009, 30(3): 274-278.

Que Y X, Xu L P, Xu J S, Zhang J S, Zhang M Q, Chen R K. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane. Chinese Journal of Tropical Crops, 2009, 30(3): 274-278. (in Chinese)

[21]Iskandar H M, Simpson R S, Casu R E, Bonnett G D, Maclean D J, Manners J M. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Molecular Biology Reporter, 2004, 22: 325-337.

[22]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt. method. Methods, 2001, 25: 402-408.

[23]Musso M, Bocciardi R, Parodi S, Ravazzolo R, Ceccherini I. Betaine, Dimethyl Sulfoxide, and 7-Deaza-dGTP,a powerful mixture for ampli?cation of GC-rich DNA sequences. Journal of Molecular Diagnostics, 2006, 8: 544-550.

[24]Mammedov T G, Pienaar E, Whitney S E, TerMaat J R, Carvill G, Goliath R, Subramanian A, Viljoen H J. A fundamental study of the PCR amplification of GC-rich DNA templates. Computational Biology and Chemistry, 2008, 32(6): 452-457.

[25]Jensen M A, Fukushima F, Davis R W. DMSO and betaine greatly improve amplification of GC-rich constructs in De Novo synthesis. PLOS One, 2010, 5(6): 1-5.

[26] Hubé F, Reverdiau P, Iochmann S, Gruel Y. Improved PCR method for amplification of GC-Rich DNA sequences. Molecular Biotechnology, 2005, 31(1): 81-85.

[27]Schroeven L, Lammens W, Laere1 A V, Ende1 W V D. Transforming wheat vacuolar invertase into a high affinity sucrose: Sucrose 1-fructosyltransferase. New Phytologist, 2008, 180: 822-831.

[28]Roitsch T, González M C. Function and regulation of plant invertases: Sweet sensations. Trends in Plant Science, 2004, 9(2): 606-613.

[29]Tian H, Kong Q G, Feng Y Q, Yu X Y. Cloning and characterization of a soluble acid invertase-encoding gene from muskmelon. Molecular Biology Reports, 2009, 36: 611-617.

[30]王滕旭, 李正国, 杨迎伍, 邓伟. 哈姆林甜橙蔗糖合酶Ⅰ和酸性转化酶基因表达与果实糖积累的关系. 热带作物学报, 2010, 31(5): 745-749.

Wang T X, Li Z G, Yang Y W, Deng W. Expression of sucrose synthase Ⅰand acid invertase genes in relation to sugar accumulation in fruits of Hamlin sweet orange. Chinese Journal of Tropical Crops, 2010, 31(5): 745-749. (in Chinese)

[31]Verma A K, Upadhyay S K, Srivastava M K, Verma P C, Solomon S, Singh S B. Transcript expression and soluble acid invertase activity during sucrose accumulation in sugarcane. Acta Physiologiae Plantarum, 2011, 33: 1749-1757.

[32]  姚瑞亮, 李杨瑞, 黄玉辉, 杨丽涛, 张桂荣. 甘蔗生长后期乙烯利处理对节间转化酶活性的影响及与蔗糖分积累的关系. 广西农业科学, 2005, 36(2): 106-109.

Yao R L, Li Y R, Huang Y H, Yang L T, Zhang G R. Effects of ethephon on invertases activities inrelation to sucrose accumulation in sugarcane. Guangxi Agricultural Sciences, 2005, 36(2): 106-109. (in Chinese)

[33]Andersen M N, Asch F, Wu Y, Jensen C R, Naested H, Mogensen V O, Koch K E. Soluble invert as expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiology, 2002, 130: 591-604.

[34]Smith A H K, Walker R P, Pollock C J. Invertase in leaves: Conundrum or control point? Journal of Experimental Botany, 1999, 50(335): 735-743.

[35]黄诚梅, 杨翠芳, 潘有强, 魏源文, 邓智年, 吕维莉, 李杨瑞. 可溶性酸性转化酶SAI基因在不同甘蔗基因型中表达分析. 中国糖料, 2013, 2: 21-24.

Huang C M, Yang C F, Pan Y Q, Wei Y W, Deng Z N, Lü W L, Li Y R. Expression analysis of soluble acid invertase gene SAI in different sugarcane (Saccharum officinarum L.) varieties. Sugar Crops of China, 2013, 2: 21-24. (in Chinese)

[36]田晓艳, 刘延吉, 曹敏建. 低钾胁迫对玉米体内N、P、K、转化酶及可溶性糖分配的影响. 玉米科学, 2008, 16(5): 80-82.

Tian X Y, Liu Y J, Cao M J. The distribution of N, P, K, invertase and soluble sugar in maize under low potassium stress. Joumal of Maize Sciences, 2008, 16(5): 80-82. (in Chinese)

[37]姚远, 闵义, 胡新文, 李开绵, 郭建春. 低温胁迫对木薯幼苗叶片转化酶及可溶性糖含量的影响. 热带作物学报, 2010, 31(4): 557-560.

Yao Y, Min Y, Hu X W, Li K M, Guo J C. Effects of low temperature stress on the activity of invertase and soluble sugar content in leaves of cassava seedlings. Chinese Journal of Tropical Crops, 2010, 31(4): 557-560. (in Chinese)

[38]Menossi  M, Silva-Filho M C, Vincentz M, Van-Sluys M A, Souza G M. Sugarcane functional genomics gene discovery for agronomic trait development. International Journal of Plant Genomics, 2008: 1-11.
[1] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[4] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[5] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[6] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[7] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[8] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[9] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[10] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[11] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[12] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[13] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[14] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[15] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!