Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (20): 4179-4188.doi: 10.3864/j.issn.0578-1752.2013.20.001
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
GUAN Ming-Li, DOU Shi-Juan, LI Xue-Jiao, JIA Lin, SHI Jia-Nan, ZENG Xiang-Ran, JIA Meng, GUO Mei-Cen, LIU Li-Juan, LI Li-Yun, LIU Guo-Zhen
[1]Datta S K, Muthukrishnan S. Pathogenesis-Related Proteins in Plants. CRC. 1999.[2]Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science-AAAS-Weekly Paper Edition, 1995, 270(5243): 1804-1806.[3]Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences of the USA, 1998, 95(4): 1663-1668.[4]Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. The Plant Journal, 2003, 37(4): 517-527.[5]Jiang G H, Xia Z H, Zhou Y L, Wan J, Li D Y, Chen R S, Zhai W X, Zhu L H. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1. Molecular Genetics and Genomics, 2006, 275(4): 354-366.[6]Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G L, White F F. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 2005, 435(7045): 1122-1125.[7]Chu Z, Fu B, Yang H, Xu C, Li Z, Sanchez A, Park Y, Bennetzen J, Zhang Q, Wang S. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theoretical and Applied Genetics, 2006, 112(3): 455-461.[8]Lee S W, Han S W, Sririyanum M, Park C J, Seo Y S, Ronald P C. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science Signalling, 2009, 326(5954): 850-853.[9]Park C J, Ronald P C. Cleavage and nuclear localization of the rice XA21 immune receptor. Nature Communications, 2012, 3: 920-925.[10]Wang Y S, Pi L Y, Chen X, Chakrabarty P K, Jiang J, De Leon A L, Liu G Z, Li L, Benny U, Oard J. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. The Plant Cell, 2006, 18(12): 3635-3646.[11]Peng Y, Bartley L E, Chen X, Dardick C, Chern M, Ruan R, Canlas P E, Ronald P C. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Molecular Plant, 2008, 1(3): 446-458.[12]Park C J, Peng Y, Chen X, Dardick C, Ruan D L, Bart R, Canlas P E, Ronald P C. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biology, 2008, 6(9): 1910-1926.[13]Chen X, Chern M, Canlas P E, Ruan D, Jiang C, Ronald P C. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Science Signalling, 2010, 107(17): 8029-8034.[14]Park C J, Bart R, Chern M, Canlas P E, Bai W, Ronald P C. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS One, 2010, 5(2): 1-12.[15]Van Loon L, Rep M, Pieterse C. Significance of inducible defense- related proteins in infected plants. Annual Review of Phytopathology, 2006, 44: 135-162.[16]窦世娟, 关明俐, 李莉云, 刘国振. 水稻的病程相关基因. 科学通报, 2013, 58(1): 1-14.Dou S J, Guan M L, Li L Y, Liu G Z. The pathogenesis-related genes of rice. Chinese ScienceBulletin, 2013, 58(1): 1-14. (in Chinese)[17]Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H Y, Hunt M D. Systemic acquired resistance. The Plant Cell, 1996, 8(10): 1809-1819.[18]Ponciano G, Yoshikawa M, Lee J L, Ronald P C, Whalen M C. Pathogenesis-related gene expression in rice is correlated with developmentally controlled Xa21-mediated resistance against Xanthomonas oryzae pv. oryzae. Physiological and Molecular Plant Pathology, 2006, 69(4): 131-139.[19]Ganapathi S, Chidambaram P, Natarajan S, Vengoji R, Karuppannan V. Combined expression of chitinase and β-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Science, 2008, 175(3): 283-290.[20]Hwang H, Kim S, Kim S, Kang K. Comprehensive analysis of the expression of twenty-seven β-1, 3-glucanase genes in rice (Oryza sativa L.). Molecules and Cells, 2007, 23(2): 207-214.[21]Wang N, Xiao B, Xiong L. Identification of a cluster of PR4-like genes involved in stress responses in rice. Journal of Plant Physiology, 2011, 168(2011): 2212-2224.[22]Wu Q, Hou M, Li L, Liu L, Hou Y, Liu G. Induction of pathogenesis- related proteins in rice bacterial blight resistant gene XA21-mediated interactions with Xanthomonas oryzae pv. oryzae. Journal of Plant Pathology, 2011, 93(2): 455-459.[23]Hou M, Xu W, Bai H, Liu Y, Li L, Liu L, Liu B, Liu G. Characteristic expression of rice pathogenesis-related proteins in rice leaves during interactions with Xanthomonas oryzae pv. oryzae. Plant Cell and Reports, 2012, 31(5): 895-904.[24]徐文静, 缪刘杨, 李莉云, 刘钊, 刘雨萌, 江光怀, 杨凤环, 何晨 阳, 刘国振. 五个WRKY转录因子在水稻叶片生长和抗性反应中的表达研究. 生物化学与生物物理进展, 2013, 40(4): 356-364.Xu W J, Miao L Y, Li L Y, Liu Z, Liu Y M, Jiang G H, Yang F H, He C Y, Liu G Z. Characteristic expression analysis of five WRKY transcriptional factors in rice leaf growth and interaction with Xanthomonas oryzae pv. oryzae. Progress in Biochemistry and Biophysics, 2013, 40(4): 356-364. (in Chinese)[25]Gan Q, Bai H, Zhao X, Tao Y, Zeng H, Han Y, Song W, Zhu L, Liu G. Transcriptional Characteristics of Xa21-mediated defense responses in rice. Journal of Integrative Plant Biology, 2011, 53(4): 300-311.[26]da Silva F G, Shen Y, Dardick C, Burdman S, Yadav R C, de Leon A L, Ronald P C. Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Molecular Plant-Microbe Interactions, 2004, 17(6): 593-601.[27]Odorico M, Pellequer J L. BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. Journal of Molecular Recognition, 2003, 16(1): 20-22.[28]兰金苹, 李莉云, 贾霖, 曹英豪, 白辉, 陈浩, 刘胜南, 吴琳, 刘国振. 叶绿体基因编码蛋白质在水稻叶片生长过程中的表达研究. 生物化学与生物物理进展, 2011, 38(7): 652-660.Lan J P, Li L Y, Jia L, Cao Y H, Bai H, Chen H, Liu S N, Wu L, Liu G Z. Expression profiling of chloroplast-encoded proteins in rice leaves at different growth stages. Progress in Biochemistry and Biophysics, 2011, 38(7): 652-660. (in Chinese)[29]Li X, Bai H, Wang X, Li L, Cao Y, Wei J, Liu Y, Liu L, Gong X, Wu L. Identification and validation of rice reference proteins for western blotting. Journal of Experimental Botany, 2011, 62(14): 4763-4772.[30]Rombauts S, Déhais P, Van Montagu M, Rouzé P. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Research, 1999, 27(1): 295-296.[31]Liu H H, Tian X, Li Y J, Wu C A, Zheng C C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. Rna, 2008, 14(5): 836-843.[32]Zhou J. Signal Transduction and Pathogenesis-induced PR Gene Expression. Pathogenesis-Related Proteins in Plants. CRC Press LLC, Boca Raton, 1999: 195-207.[33]Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T. Characterization of transgenic rice plants over-expressing the stress-inducible beta-glucanase gene Gns1. Plant Molecular Biology, 2003, 51(1): 143-152.[34]Trudel J, Grenier J, Potvin C, Asselin A. Several thaumatin-like proteins bind to β-1, 3-glucans. Plant Physiology, 1998, 118(4): 1431-1438.[35]Wang X, Zafian P, Choudhary M, Lawton M. The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins. Proceedings of the National Academy of Sciences of the USA, 1996, 93(6): 2598-2602.[36]Schweizer P, Buchala A, Silverman P, Seskar M, Raskin I, Metraux J P. Jasmonate-inducible genes are activated in rice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiology, 1997, 114(1): 79-88.[37]Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush G, Muthukrishnan S, Datta S. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theoretical and Applied Genetics, 1999, 98: 1138-1145.[38]Velazhahan R, Chen-Cole K, Anuratha C S, Muthukrishnan S. Induction of thaumatin-like proteins (TLPs) in Rhizoctonia solani-infected rice and characterization of two new cDNA clones. Physiologia Plantarum, 1998, 102(1): 21-28.[39]Kim S T, Cho K S, Yu S, Kim S G, Hong J C, Han C d, Bae D W, Nam M H, Kang K Y. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension- cultured rice cells. Proteomics, 2003, 3(12): 2368-2378.[40]Kim S T, Kim S G, Hwang D H, Kang S Y, Kim H J, Lee B H, Lee J J, Kang K Y. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics, 2004, 4(11): 3569-3578.[41]Moons A, Prinsen E, Bauw G, Van Montagu M. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. The Plant Cell, 1997, 9(12): 2243-2259.[42]McGee J D, Hamer J E, Hodges T K. Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2001, 14(7): 877-886.[43]Jwa N S, Kumar Agrawal G, Rakwal R, Park C H, Prasad Agrawal V. Molecular cloning and characterization of a novel jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochemical and Biophysical Research Communications, 2001, 286(5): 973-983.[44]Kim S T, Yu S, Kang Y H, Kim S G, Kim J Y, Kim S H, Kang K Y. The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell and Reports, 2008, 27(3): 593-603.[45]Liu G, Liu S, Wu L, Xu N. Antibody-based rice proteomics-the beginning and perspectives. Scientia Sinica Vitae, 2011, 41(3): 173-177. |
[1] | XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248. |
[2] | ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263. |
[3] | ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45. |
[4] | FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63. |
[5] | SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491. |
[6] | GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545. |
[7] | LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556. |
[8] | HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567. |
[9] | GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588. |
[10] | ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. |
[11] | LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478. |
[12] | GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148. |
[13] | YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158. |
[14] | WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240. |
[15] | ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836. |
|