Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (16): 3314-3323.doi: 10.3864/j.issn.0578-1752.2013.16.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Ting-Zhang, HU Wang-Xiong, XU Jian-Hong, XUE Qing-Zhong
[1]Luo Z, Sachs M S. Role of an upstream open reading frame in mediating arginine-specific translational control in Neurospora crassa. Journal of Bacteriology, 1996, 178: 2172-2177.[2]Ruan H, Shantz L M, Pegg A E, Morris D R. The upstream open reading frame of the mRNA encoding S-adenosylmethionine decarboxylase is a polyamine-responsive translational control element. The Journal of Biological Chemistry, 1996, 271: 29576-29582.[3]Mize G J, Morris D R. A mammalian sequence-dependent upstream open reading frame mediates polyamine-regulated translation in yeast. RNA-A Publication of the RNA Society, 2001, 7: 374-381.[4]Gopfert U, Kullmann M, Hengst L. Cell cycle-dependent translation of p27 involves a responsive element in its 5'-UTR that overlaps with a uORF. Human Molecular Genetics, 2003, 12: 1767-1779.[5]Morris D R, Geballe A P. Upstream open reading frames as regulators of mRNA translation. Molecular and Cellular Biology, 2000, 20: 8635-8642.[6]Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene, 1999, 234: 187-208.[7]Hood H M, Neafsey D E, Galagan J, Sachs M S. Evolutionary roles of upstream open reading frames in mediating gene regulation in fungi. Annual Review of Microbiology, 2009, 63: 385-409.[8]Grant C M, Miller P F, Hinnebusch A G. Requirements for intercistronic distance and level of eukaryotic initiation factor 2 activity in reinitiation on GCN4 mRNA vary with the downstream cistron. Molecular and Cellular Biology, 1994, 14: 2616-2628.[9]Jackson R J, Hellen C U, Pestova T V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology, 2010, 11: 113-127.[10]Hayden C A, Jorgensen R A. Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes. BMC Biology, 2007, 5: 32.[11]Tran M K, Schultz C J, Baumann U. Conserved upstream open reading frames in higher plants. BMC Genomics, 2008, 9: 361.[12]Hayden C A, Bosco G. Comparative genomic analysis of novel conserved peptide upstream open reading frames in Drosophila melanogaster and other dipteran species. BMC Genomics, 2008, 9: 61.[13]Crowe M L, Wang X Q, Rothnagel J A. Evidence for conservation and selection of upstream open reading frames suggests probable encoding of bioactive peptides. BMC Genomics, 2006, 7: 16.[14]Jorgensen R A, Dorantes-Acosta A E. Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms. Frontiers in Plant Science, 2012, 3: 191.[15]Hanfrey C, Franceschetti M, Mayer M J, Illingworth C, Michael A J. Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. The Journal of Biological Chemistry, 2002, 277: 44131-44139.[16]Hinnebusch A G. Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. The Journal of Biological Chemistry, 1997, 272: 21661-21664.[17]Werner M, Feller A, Messenguy F, Pierard A. The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression. Cell, 1987, 49: 805-813.[18]Wiese A, Elzinga N, Wobbes B, Smeekens S. A conserved upstream open reading frame mediates sucrose-induced repression of translation. The Plant Cell, 2004, 16: 1717-1729.[19]Chang Y F, Imam J S, Wilkinson M F. The nonsense-mediated decay RNA surveillance pathway. Annual Review of Biochemistry, 2007, 76: 51-74.[20]Occhi G, Regazzo D, Trivellin G, Boaretto F, Ciato D, Bobisse S, Ferasin S, Cetani F, Pardi E, Korbonits M, Pellegata N S, Sidarovich V, Quattrone A, Opocher G, Mantero F, Scaroni C. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genetics, 2013, 9: e1003350.[21]Calvo S E, Pagliarini D J, Mootha V K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 7507-7512.[22]Wen Y, Liu Y, Xu Y, Zhao Y, Hua R, Wang K, Sun M, Li Y, Yang S, Zhang X J, Kruse R, Cichon S, Betz R C, Nothen M M, van Steensel M A, van Geel M, Steijlen P M, Hohl D, Huber M, Dunnill G S, Kennedy C, Messenger A, Munro C S, Terrinoni A, Hovnanian A, Bodemer C, de Prost Y, Paller A S, Irvine A D, Sinclair R, Green J, Shang D, Liu Q, Luo Y, Jiang L, Chen H D, Lo W H, McLean W H, He C D, Zhang X. Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis. Nature Genetics, 2009, 41: 228-233.[23]Olson S A. EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite. Briefings in Bioinformatics, 2002, 3: 87-91.[24]Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215: 403-410.[25]Jaeger L H, Brandao A. The composition of upstream open reading frames (uORF) in four genes from Trypanosoma cruzi typical strains. Parasitology Research, 2011, 109: 1205-1208.[26]Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23: 2947-2948.[27]Schranz M E, Mitchell-Olds T. Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. The Plant Cell, 2006, 18: 1152-1165.[28]Blanc G, Hokamp K, Wolfe K H. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Research, 2003, 13: 137-144.[29]Blanc G, Wolfe K H. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. The Plant Cell, 2004, 16: 1679-1691.[30]Fütterer J, Hohn T. Role of an upstream open reading frame in the translation of polycistronic mRNAs in plant cells. Nucleic Acids Research, 1992, 20: 3851-3857.[31]Wang L, Wessler S R. Role of mRNA secondary structure in translational repression of the maize transcriptional activator Lc(1,2). Plant Physiology, 2001, 125: 1380-1387.[32]Franceschetti M, Hanfrey C, Scaramagli S, Torrigiani P, Bagni N, Burtin D, Michael A J. Characterization of monocot and dicot plant S-adenosyl-l-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames. The Biochemical Journal, 2001, 353: 403-409.[33]Wang L, Wessler S R. Inefficient reinitiation is responsible for upstream open reading frame-mediated translational repression of the maize R gene. The Plant Cell, 1998, 10(10): 1733-1746.[34]Locatelli F, Magnani E, Vighi C, Lanzanova C, Coraggio I. Inhibitory effect of myb7 uORF on downstream gene expression in homologous (rice) and heterologous (tobacco) systems. Plant Molecular Biology, 2002, 48: 309-318.[35]Lohmer S, Maddaloni M, Motto M, Salamini F, Thompson R D. Translation of the mRNA of the maize transcriptional activator Opaque-2 is inhibited by upstream open reading frames present in the leader sequence. The Plant Cell, 1993, 5: 65-73.[36]骆迎峰, 丁文超, 陈辰, 薛庆中. 分子进化遗传分析工具(MEGA5)// 薛庆中等编著. DNA和蛋白质序列数据分析工具: 第三版. 北京: 科学出版社, 2012: 51-70.Luo Y F, Ding W C, Chen C, Xue Q Z. Tools for molecular evolutionary genetics analysis (MEGA5)//Edited by Xue Q Z. et al.. Tools for Analysis of DNA and Protein Sequence Data: Third Edition. Bejing: Science Press, 2012: 51-70. (in Chinese)[37]Yang Z. PAML: A program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences, 1997, 13: 555-556.[38]Neafsey D E, Galagan J E. Dual modes of natural selection on upstream open reading frames. Molecular Biology and Evolution, 2007, 24: 1744-1751.[39]Rahmani F, Hummel M, Schuurmans J, Wiese-Klinkenberg A, Smeekens S, HansonJ. Sucrose control of translation mediated by an upstream open reading frame-encoded peptide. Plant Physiology, 2009, 150: 1356-1367.[40]Ivanov I P, Atkins J F, Michael A J. A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Research, 2010, 38: 353-359.[41]Alatorre-Cobos F, Cruz-Ramirez A, Hayden C A, Perez-Torres C A., Chauvin A L, Ibarra-Laclette E, Alva-Cortes E, Jorgensen R A, Herrera-Estrella L. Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30. Journal of Experimental Botany, 2012, 63: 5203-5221.[42]Shen W, Reyes M I, Hanley-Bowdoin L. Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiology, 2009, 150: 996-1005.[43]Zhang Z, Dietrich F S. Identification and characterization of upstream open reading frames (uORF) in the 5' untranslated regions (UTR) of genes in Saccharomyces cerevisiae. Current Genetics, 2005, 48: 77-87.[44]Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. Trends in Plant Science, 2002, 7: 106-111.[45]Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schutze K, Wang X, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Droge-Laser W. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: Availability of heterodimerization partners controls gene expression during stress response and development. Plant Molecular Biology, 2009, 69 107-119.[46]Yao C W, Hsu B D, ChenB S. Constructing gene regulatory networks for long term photosynthetic light acclimation in Arabidopsis thaliana. BMC Bioinformatics, 2011, 12: 335.[47]Jennings M D, Pavitt G D. eIF5 is a dual function GAP and GDI for eukaryotic translational control. Small GTPases, 2010, 1: 118-123.[48]Takahashi T, Kakehi J. Polyamines: Ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 2010, 105: 1-6.[49]Vera-Sirera F, Minguet E G, Singh S K, Ljung K, Tuominen H, Blazquez M A, Carbonell J. Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 2010, 48: 534-539.[50]Fincato P, Moschou P N, Spedaletti V, Tavazza R, Angelini R, Federico R, Roubelakis-Angelakis K A, Tavladoraki P. Functional diversity inside the Arabidopsis polyamine oxidase gene family. Journal of Experimental Botany, 2011, 62: 1155-1168.[51]Imai A, Hanzawa Y, Komura M, Yamamoto K T, Komeda Y, Takahashi T. The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 2006, 133: 3575-3585.[52]Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemical and Biophysical Research Communications, 2004, 313: 369-375.[53]Cruz-Ramirez A, Lopez-Bucio J, Ramirez-Pimentel G, Zurita-Silva A, Sanchez-Calderon L, Ramirez-Chavez E, Gonzalez-Ortega E, Herrera-Estrella L. The xipotl mutant of Arabidopsis reveals a critical role for phospholipid metabolism in root system development and epidermal cell integrity. The Plant Cell, 2004, 16: 2020-2034.[54]Pajerowska-Mukhtar K M, Wang W, Tada Y, Oka N, Tucker C L, Fonseca J P, DongX. The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Current Biology, 2012, 22: 103-112. [55]Kozak M. Pushing the limits of the scanning mechanism for initiation of translation. Gene, 2002, 299: 1-34.[56]Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Molecular and Cellular Biology, 1987, 7: 3438-3445.[57]Isken O, Maquat L E. Quality control of eukaryotic mRNA: Safeguarding cells from abnormal mRNA function. Genes and Development, 2007, 21: 1833-1856.[58]Silva A L, Romao L. The mammalian nonsense-mediated mRNA decay pathway: To decay or not to decay! Which players make the decision? FEBS Letters, 2009, 583: 499-505.[59]Saul H, Elharrar E, Gaash R, Eliaz D, Valenci M, Akua T, Avramov M, Frankel N, Berezin I, Gottlieb D, Elazar M, David-Assael O, Tcherkas V, Mizrachi K, Shaul O. The upstream open reading frame of the Arabidopsis AtMHX gene has a strong impact on transcript accumulation through the nonsense-mediated mRNA decay pathway. The Plant Journal, 2009, 60: 1031-1042.[60]Nyikó T, Sonkoly B, Mérai Z, Benkovics A H, Silhavy D. Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner. Plant Molecular Biology, 2009, 71: 367-378.[61] Bashaw G J, Baker B S. The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development, 1995, 121: 3245-3258.[62] Medenbach J, Seiler M, Hentze M W. Translational control via protein-regulated upstream open reading frames. Cell, 2011, 145: 902-913.[63]Hu W W, Gong H, Pua E C. The pivotal roles of the plant S-adenosylmethionine decarboxylase 5' untranslated leader sequence in regulation of gene expression at the transcriptional and posttranscriptional levels. Plant Physiology, 2005, 138: 276-286.[64] 金勇丰, 边腾飞, 周萍. 高等植物基因上游可译框架(uORF)的分析. 农业生物技术学报, 2004, 12(5): 493-499.Jin Y F, Bian T F, Zhou P. Upstream open reading frames (uORF) analysis of plant mRNAs. Journal of Agricultural Biotechnology, 2004, 12(5): 493-499. (in Chinese)[65]Fermin D, Allen B B, Blackwell T W, Menon R, Adamski M, Xu Y, Ulintz P, Omenn G S, States D J. Novel gene and gene model detection using a whole genome open reading frame analysis in proteomics. Genome Biology, 2006, 7: R35. |
[1] | WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16. |
[2] | ZHANG Rui,ZHANG TianLiu,FAN TingTing,ZHU Bo,ZHANG LuPei,XU LingYang,GAO HuiJiang,LI JunYa,CHEN Yan,GAO Xue. Evolutionary Relationship Between Transposable Elements and Tandem Repeats in Bovinae Species [J]. Scientia Agricultura Sinica, 2022, 55(9): 1859-1867. |
[3] | HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398. |
[4] | YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911. |
[5] | ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639. |
[6] | WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090. |
[7] | PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696. |
[8] | YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223. |
[9] | XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612. |
[10] | YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226. |
[11] | LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890. |
[12] | MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25. |
[13] | LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727. |
[14] | YE FangTing,PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai. Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata [J]. Scientia Agricultura Sinica, 2021, 54(21): 4694-4708. |
[15] | ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513. |
|