Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (8): 1736-1744.doi: 10.3864/j.issn.0578-1752.2013.08.024

• RESEARCH NOTES • Previous Articles    

二斑叶螨乙酰辅酶A羧化酶基因全长cDNA克隆及其生物信息学分析

 LU Juan-Juan , WANG  Jin-Jun, GAO  Xin-Ju, SHEN  Hui-Min   

  1. 1.College of Prataculture, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem Education Ministy/The Sino-U.S. Centers for Grazingland Ecosystem Sustainability, Lanzhou 730070
    2.Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716
  • Received:2012-09-09 Online:2013-04-15 Published:2013-01-22

Abstract: 【Objective】The objective of this study is to clone full-length cDNA sequence of the Acetyl-CoA carboxylase (ACCase) gene from Tetranychus urticae and analyze its expression in different strains. 【Method】 The full length cDNA of ACCase gene from T. urticae was cloned by using RT-PCR, and the bioinformatics software was employed to analyze the characteristics of the coded protein. Expression profiles of ACCase gene between susceptible strain (S) and spirodiclofen resistant strain (Sp-R) of T. urticae were performed by the quantitative real-time PCR. 【Result】The full-length cDNA of ACCase gene (GenBank accessin number JX424763) contained 7 068 bp encoding 2 235 amino acids. The putative protein of ACCase gene showed predicted molecular weight of 266.35 kD with a theoretical pI of 6.38. The ACCase contained three function domains, including the biotin carboxylase (BC), the biotin carboxyl carrier protein (BCCP) and the carboxyltransferase (CT). The phylogenetic tree of nine ACCase amino acid sequences from different species were constructed by MEGA5.0.The results showed a close relationship with Pediculus humanus corporis. Quantitative real-time PCR showed that the transcripts of ACCase gene were 2-fold higher in spirodiclofen (Sp-R) resistant strain compared with susceptible strain.【Conclusion】The ACCase gene was cloned from T. urticae by using the RT-PCR. The higher expression of ACCase gene was probably related with the development of resistance to spirodiclofen, which may provide a basis for the management of pesticide resistance of T. urticae.

Key words: Tetranychus urticae (Koch) , spirodeclofen , Acetyl-CoA carboxylase , cDNA cloning , real-time PCR

[1]李隆术. 农业螨类研究进展. 中国农业科学, 1990, 23(1): 22-30.

Li L S. Resent progress in the study on agricultural mites. Scientia Agricultura Sinica, 1990, 23(1): 22-30. (in Chinese)

[2]Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochemistry and Molecular Biology, 2010, 40(8): 563-572.

[3]Stumpf N, Nauen R. Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesiticide Biochemistry and Physiology, 2002, 72(2): 111-121.

[4]Ay R, Gürkan M O. Resistance to bifenthrin and resistance mechanisms of different strains of the two-spotted spider mite (Tetranychus urticae) from Turkey. Phytoparasitica, 2005, 33(3): 237-244.

[5]涂洪涛, 张金勇, 陈汉杰, 郭小辉, 李元朝. 12种杀螨剂对山楂叶螨防效评价及其对天敌塔六点蓟马的影响. 环境昆虫学报, 2009, 31(3): 213-218.

Tu H T, Zhang J Y, Chen H J, Guo X H, Li Y Z. The effect of 12 acaricides on Tetranychus viennensis and its natural enemy Scolothrips takahashii in apple orchard. Journal of Environmental Entomology, 2009, 31(3): 213-218. (in Chinese)

[6]Sinilnikoval O M, Ginolhac S M. Acetyl-CoA carboxylase α gene and breast cancer susceptibility. Carcinogenesis, 2004, 25(12): 2417-2424.                   

[7]Van Pottelberge S, Van Leeuwen T, Khajehali J, Tirry L. Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Management Science, 2009, 65(5): 358-366.

[8]Van Leeuwen T, Van Pottelberge S, Tirry L. Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Management Science, 2005, 61(5): 499-507.

[9]Rauch N, Nauen R. Spirodiclofen resistance risk assessment in Tetranychus urticae. Pesticide Biochemistry and Physiology, 2003, 74(2): 91-101.

[10]段辛乐, 张志刚, 高新菊, 沈慧敏. 二斑叶螨对甲氰菊酯和螺螨酯的抗性选育及增效剂的增效作用. 植物保护, 2011, 37(5): 106-109.

Duan X L, Zhang Z G, Gao X J, Shen H M. Selection of Tetranychus urticae resistant to fenpropathrin and spirodiclofen and the synergistic action of the synergists to the resistant population. Plant Protection, 2011, 37(5): 106-109. (in Chinese)

[11]符海波, 张志刚, 沈慧敏, 杨顺义. 二斑叶螨对螺螨酯抗性和敏感种群相对适合度的研究. 植物保护, 2011, 37(5): 115-117.

Fu H B, Zhang Z G, Shen H M, Yang S Y. Biological fitness of the spirodiclofen-resistant and sensitive populations of Tetranychus urticae. Plant Protection, 2011, 37(5):115-117. (in Chinese)

[12]Grbic M, Van Leeuwen T, Clark R M, Rombauts S, Rouze P, Grbic V, Osborne E J , Dermauw W, Ngoc P C, Ortego F, Hernandez-Crespo P, Diaz I, Martinez M, Navajas M, Sucena E, Magalhaes S, Nagy L, Pace R M, Djuranovic S, Smagghe G, Iga M, Christiaens O, Veenstra J A, Ewer J, Villalobos R M, Hutter J L, Hudson S D, Velez M, Yi S V, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett J A, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz S R, Gregory T R, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 2011, 479: 487-492.

[13]高新菊. 二斑叶螨对甲氰菊酯的抗性分子机理研究[D]. 兰州: 甘肃农业大学, 2012.

Gao X J. Research on resistance molecular mechanism of Tetranychus urticae Koch to fenpropathrin[D]. Lanzhou: Gansu Agricultural University, 2012. (in Chinese)

[14]Tong L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cellular and Molecular Life Sciences, 2005, 62(16): 1784-1803.

[15]杨雪莹. 不同种类除草剂的作用方式研究及ACCase CT 功能域模型的建立[D]. 长春: 吉林大学, 2008.

Yang X Y. The research of different herbicides’ modes of action and modelling of ACCase CT domain[D]. Changchun: Jilin University, 2008. (in Chinese)

[16]Yang X, Guschina I A, Hurst S, Wood S, Langford M, Hawkes T, Harwood J L. The action of herbicides on fatty acid biosynthesis and elongation in barley and cucumber. Pest Management Dcience, 2010, 66(7): 794-800.

[17]Tal A, Rubin B. Molecular characterization and inheritance of resistance to ACCase-inhibiting herbicides in Lolium rigidum. Pest Management Science, 2004, 60: 1013-1018.

[18]Focks N, Benning C. Wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiology, 1998, 118: 91-101.

[19]楚敏, 赵虎基, 郑明刚, 刘红玲, 乐锦华. 谷子乙酰辅酶A羧化酶BC功能域的克隆及原核表达载体的构建. 石河子大学学报: 自然科学版, 2004, 22(5): 408-410.

Chu M, Zhao H J, Zheng M G, Liu H L, Le J H. Cloning and construction of prokaryotic expression vector of BC subunit from Acetyl-coA carboxylase in mille. Journal of Shihezi University: Natural Science, 2004, 22(5): 408-410. (in Chinese)

[20]Ohlrogge J B, Roesler K R, Shorrosh B S. Methods of Increasing Oil Content of Seeds. United States Patent, 1999: 5925805.

[21]Sellwood C, Slabas A R, Rawsthorne S. Effects of manipulating expression of acetyl-CoA carboxylase I in Brassica napus L. embryos. Biochemical Society Transactions, 2000, 28: 598-600.

[22]Bretschneider T, Fischer R, Nauen R. Inhibitors of lipid     synthesis (Acetyl-CoA-carboxylase inhibitors)//Krämer W, Schirmer U. Modern Crop Protection Compounds. Wiley, Weinheim, 2007: 909-925.

[23]Dekeyser M A. Acaricide mode of action. Pest Maagement Science, 2005, 61: 103-110.

[24]Wachendorff U, Nauen R, Schnorbach H J, Rauch N, Elbert A.    The biological profile of spirodiclofen (Envidor®)-A new selective tetronic acid acaricide. Pflanzenschutz-Nachrichten Bayer, 2002, 55: 149-176.
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[3] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[4] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[5] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[6] LI WenXue, XIAO RuiGang, LÜ MiaoMiao, DING Ning, SHI HuaRong, GU PeiWen. Establishment and Application of Real-Time PCR for Quantitatively Detecting Plasmopara viticola in Vitis vinifera [J]. Scientia Agricultura Sinica, 2019, 52(9): 1529-1540.
[7] BAI HuiYang, LU Geng, LU JunXing, GUAN Li, TANG Xin, ZHANG Tao. Cloning and Expression Analysis of Jasmonic Acid Carboxyl Methyltransferase Gene from Perilla frutescens [J]. Scientia Agricultura Sinica, 2019, 52(9): 1657-1666.
[8] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[9] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[10] BAI Hui, SONG ZhenJun, WANG YongFang, QUAN JianZhang, MA JiFang, LIU Lei, LI ZhiYong, DONG ZhiPing. Identification and Expression Analysis of MYB Transcription Factors Related to Rust Resistance in Foxtail Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4016-4026.
[11] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[12] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[13] XIE Jie,WANG Ming,DING HongYing,LI Qing,WANG WanXing,XIONG XingYao,QIN YuZhi. Expression and Structural Analysis of SC MI390-5p and Its Target Genes in Potato Response to Low Temperature [J]. Scientia Agricultura Sinica, 2019, 52(13): 2295-2308.
[14] ZHANG ShuangNa, LI ZhengNan, FAN XuDong, ZHANG ZunPing, REN Fang, HU GuoJun, DONG YaFeng. Establishment of RT-LAMP Assay for Detection of Apple chlorotic leaf spot virus (ACLSV) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1706-1716.
[15] SUN BingXue,SHI YanXia,ZHU FaDI,XIE XueWen,CHAI ALi,LI BaoJu. Establishment of AS-real-time PCR for Quantitatively Detecting the H278R Allele in the SdhB Associated with Corynespora cassiicola in Cucumber [J]. Scientia Agricultura Sinica, 2018, 51(24): 4647-4658.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!