Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (10): 2168-2175.doi: 10.3864/j.issn.0578-1752.2011.10.023

• VETERINARY SCIENCE • Previous Articles     Next Articles

Progress in Research of Animal Transgenic Technology

 CHEN  Qing, CAO  Wen-Guang   

  1. 1.中国农业科学院北京畜牧兽医研究所,北京100193
  • Received:2010-09-01 Online:2011-05-15 Published:2011-03-15

Abstract: Animal transgenic technology refers to the transfer of an exogenous gene into animal genome by random or site-specific integration and the foreign gene can be expressed and inherited to the offspring. Various technologies in animal transgenesis have now been widely applied to areas such as animal husbandry, medical industry, environmental protection and new biological materials production. This article reviews the recently developed technologies based on lentivectors, spermatogonial stem cells, zinc finger nucleases and RNA interference.

Key words: transgenic technology, animal, lentivectors, spermatogonial stem cells, zinc-finger nucleases, RNA interference

[1] Clark J, Whitelaw B. A future for transgenic livestock. Nature Reviews Genetics, 2003, 4: 825-833.

[2] Hofmann A, Zakhartchenko V, Weppert M, Sebald H, Wenigerkind H, Brem G, Wolf E, Pfeifer A. Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biology of Reproduction, 2004, 71: 405-409.

[3] Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A. Efficient transgenesis in farm animals by lentiviral vectors. EMBO Reports, 2003, 4: 1054-1060.

[4] Hunter C V, Tiley L S, Sang H M. Developments in transgenic technology: applications for medicine. Trends in Molecular Medicine, 2005, 11: 293-298.

[5] Whitelaw C B. Transgenic livestock made easy. Trends in Biotechnology, 2004, 22: 157-159.

[6] Olive V, Cuzin F. The spermatogonial stem cell: from basic knowledge to transgenic technology. The International Journal of Biochemistry and Cell Biology, 2005, 37: 246-250.

[7] Kubota H, Brinster R L. Technology insight: In vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2: 99-108.

[8] Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biology of Reproduction, 2003, 69: 612-616.

[9] Kubota H, Avarbock M R, Brinster R L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 16489-16494.

[10] Kubota H, Avarbock M R, Brinster R L. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biology of Reproduction, 2004, 71: 722-731.

[11] Brinster R L, Zimmermann J W. Spermatogenesis following male germ-cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91: 11298-11302.

[12] Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91: 11303-11307.

[13] Kanatsu-Shinohara M, Kato M, Takehashi M, Morimoto H, Takashima S, Chuma S, Nakatsuji N, Hirabayashi M, Shinohara T. Production of transgenic rats via lentiviral transduction and xenogeneic transplantation of spermatogonial stem cells. Biology of Reproduction, 2008, 79: 1121-1128.

[14] Ogawa T, Arechaga J M, Avarbock M R, Brinster R L. Transplantation of testis germinal cells into mouse seminiferous tubules. International Journal of Developmental Biology, 1997, 41: 111-122.

[15] Schlatt S, Rosiepen G, Weinbauer G F, Rolf C, Brook P F, Nieschlag E. Germ cell transfer into rat, bovine, monkey and human testes. Human Reproduction, 1999, 14: 144-150.

[16] Honaramooz A, Megee S O, Dobrinski I. Germ cell transplantation in pigs. Biology of Reproduction, 2002, 66: 21-28.

[17] Izadyar F, Den Ouden K, Stout T A, Stout J, Coret J, Lankveld D P, Spoormakers T J, Colenbrander B, Oldenbroek J K, Van der Ploeg K D, Woelders H, Kal H B, De Rooij D G. Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction, 2003, 126: 765-774.

[18] Nagano M, Shinohara T, Avarbock M R, Brinster R L. Retrovirus-mediated gene delivery into male germ line stem cells. FEBS Letters, 2000, 475: 7-10.

[19] Nagano M, Brinster C J, Orwig K E, Ryu B Y, Avarbock M R, Brinster R L. Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 13090-13095.

[20] Orwig K E, Avarbock M R, Brinster R L. Retrovirus-mediated modification of male germline stem cells in rats. Biology of Reproduction, 2002, 67: 874-879.

[21] Ryu B Y, Orwig K E, Oatley J M, Lin C C, Chang L J, Avarbock M R, Brinster R L. Efficient generation of transgenic rats through the male germline using lentiviral transduction and transplantation of spermatogonial stem cells. Journal of Andrology, 2007, 28: 353-360.

[22] Hamra F K, Gatlin J, Chapman K M, Grellhesl D M, Garcia J V, Hammer R E, Garbers D L. Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 14931-14936.

[23] Honaramooz A, Megee S, Zeng W, Destrempes M M, Overton S A, Luo J, Galantino-Homer H, Modelski M, Chen F, Blash S, Melican D T, Gavin W G, Ayres S, Yang F, Wang P J, Echelard Y, Dobrinski I. Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. The FASEB Journal, 2008, 22: 374-382.

[24] Clouthier D E, Avarbock M R, Maika S D, Hammer R E, Brinster R L. Rat spermatogenesis in mouse testis. Nature, 1996, 381: 418-421.

[25] Kim H J, Lee H J, Kim H, Cho S W, Kim J S. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Research, 2009, 19: 1279-1288.

[26] Wu J, Kandavelou K, Chandrasegaran S. Custom-designed zinc finger nucleases: what is next? Cellular and Molecular Life Sciences, 2007, 64: 2933-2944.

[27] Doyon Y, McCammon J M, Miller J C, Faraji F, Ngo C, Katibah G E, Amora R, Hocking T D, Zhang L, Rebar E J, Gregory P D, Urnov F D, Amacher S L. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26: 702-708.

[28] Geurts A M, Cost G J, Freyvert Y, Zeitler B, Miller J C, Choi V M, Jenkins S S, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar E J, Gregory P D, Urnov F D, Jacob H J, Buelow R. Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 2009, 325(5939): 433.

[29] Remy S, Tesson L, Menoret S, Usal C, Scharenberg A M, Anegon I. Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Research, 2010, 19:363-371.

[30] Lee H J, Kim E, Kim J S. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Research, 2010; 20: 81-89.

[31] Cathomen T, Joung J K. Zinc-finger nucleases: the next generation emerges. Molecular Therapy, 2008; 16: 1200-1207.

[32] Moehle E A, Rock J M, Lee Y L, Jouvenot Y, DeKelver R C, Gregory P D, Urnov F D, Holmes M C. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 3055-3060.

[33] Urnov F D, Miller J C, Lee Y L, Beausejour C M, Rock J M, Augustus S, Jamieson A C, Porteus M H, Gregory P D, Holmes M C. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 2005, 435: 646-651.

[34] Geurts A M, Cost G J, Remy S, Cui X, Tesson L, Usal C, Menoret S, Jacob H J, Anegon I, Buelow R. Generation of gene-specific mutated rats using zinc-finger nucleases. Methods in Molecular Biology, 2010, 597: 211-225.

[35] Santiago Y, Chan E, Liu P Q, Orlando S, Zhang L, Urnov F D, Holmes M C, Guschin D, Waite A, Miller J C, Rebar E J, Gregory P D, Klug A, Collingwood T N. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 5809-5814.

[36] Mohr S, Bakal C, Perrimon N. Genomic screening with RNAi: results and challenges. Annual Review of Biochemistry, 2010, 79: 37-64.

[37] Paddison P J, Caudy A A, Bernstein E, Hannon G J, Conklin D S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes and Development, 2002, 16: 948-958.

[38] Brummelkamp T R, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002, 296: 550-553.

[39] Stewart C K, Li J, Golovan S P. Adverse effects induced by short hairpin RNA expression in porcine fetal fibroblasts. Biochemical and Biophysical Research Communications, 2008, 370: 113-117.

[40] Hasuwa H, Kaseda K, Einarsdottir T, Okabe M. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Letters,2002, 532: 227-230.

[41] Dann C T, Alvarado A L, Hammer R E, Garbers D L. Heritable and stable gene knockdown in rats. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 11246-11251.

[42] Chen W, Liu M, Jiao Y, Yan W, Wei X, Chen J, Fei L, Liu Y, Zuo X, Yang F, Lu Y, Zheng Z. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo. The Journal of Virology, 2006, 80: 3559-3566.

[43] Golding M C, Long C R, Carmell M A, Hannon G J, Westhusin M E. Suppression of prion protein in livestock by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 5285-5290.

[44] Rubinson D A, Dillon C P, Kwiatkowski A V, Sievers C, Yang L, Kopinja J, Rooney D L, Zhang M, Ihrig M M, McManus M T, Gertler F B, Scott M L, Van Parijs L. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics, 2003, 33: 401-406.

[45] Acosta J, Carpio Y, Borroto I, Gonzalez O, Estrada M P. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. Journal of Biotechnology, 2005, 119: 324-331.

[46] Magee T R, Artaza J N, Ferrini M G, Vernet D, Zuniga F I, Cantini L, Reisz-Porszasz S, Rajfer J, Gonzalez-Cadavid N F. Myostatin short interfering hairpin RNA gene transfer increases skeletal muscle mass. The Journal of Gene Medicine, 2006, 8: 1171-1181.

[47] Jain H, Singh S, Kadam M, Sarkhel B C. Knockdown of the myostatin gene by RNA interference in caprine fibroblast cells. Journal of Biotechnology, 2010, 145: 99-102.

[48] Pfeifer A, Eigenbrod S, Al Khadra S, Hofmann A, Mitteregger G, Moser M, Bertsch U, Kretzschmar H. Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. The Journal of Clinical Investigation, 2006, 116: 3204-3210.

[49] Golding M C, Long C R, Carmell M A, Hannon G J, Westhusin M E. Suppression of prion protein in livestock by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 5285-5290.

[50] Dieckhoff B, Karlas A, Hofmann A, Kues WA, Petersen B, Pfeifer A, Niemann H, Kurth R, Denner J. Inhibition of porcine endogenous retroviruses (PERVs) in primary porcine cells by RNA interference using lentiviral vectors. Archives of Virology, 2007, 152: 629-634.

[51] Dickins R A, McJunkin K, Hernando E, Premsrirut P K, Krizhanovsky V, Burgess D J, Kim S Y, Cordon-Cardo C, Zender L, Hannon G J, Lowe S W. Tissue-specific and reversible RNA interference in transgenic mice. Nature Genetics, 2007, 39: 914-921.

[52] Singer O, Verma I M. Applications of lentiviral vectors for shRNA delivery and transgenesis. Current Gene Therapy, 2008, 8: 483-488.

[53] Miskey C, Izsvak Z, Kawakami K, Ivics Z. DNA transposons in vertebrate functional genomics. Cellular and Molecular Life Sciences, 2005, 62: 629-641.

[54] Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos L S, Yusa K, Banerjee R, Li M A, de la R J, Strong A, Lu D, Ellis P, Conte N, Yang F T, Liu P, Bradley A. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science, 2010, 330: 1104-1107.

[55] Stewart C K, Li J, Golovan S P. Adverse effects induced by short hairpin RNA expression in porcine fetal fibroblasts. Biochemical and Biophysical Research Communications, 2008, 370: 113-117.

[56] Yang X, Tian X C, Kubota C, Page R, Xu J, Cibelli J, Seidel G, Jr. Risk assessment of meat and milk from cloned animals. Nature Biotechnology, 2007, 25: 77-83.

[57] Laible G, Brophy B, Knighton D, Wells D N. Compositional analysis of dairy products derived from clones and cloned transgenic cattle. Theriogenology, 2007, 67: 166-177.
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[3] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[4] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[5] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[6] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[7] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[8] DING Shang,FU Yang,GUO HaoHao,SONG ChenYang,LI BoLing,ZHAO HongWei. Nitrogen and Phosphorus Loads and Their Environmental Effects of Animal Manure in Hainan Island from 1988 to 2018 [J]. Scientia Agricultura Sinica, 2020, 53(18): 3752-3763.
[9] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[10] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[11] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[12] JIANG MingHong, LIU XinChao, TANG HuaJun, XIN XiaoPing, CHEN JiQuan, DONG Gang, WU RuQun, SHAO ChangLiang. Research Progress and Prospect of Life Cycle Assessment in Animal Husbandry [J]. Scientia Agricultura Sinica, 2019, 52(9): 1635-1645.
[13] LI ShuMin, FANG LiangXing, LI Liang, ZHAO Meng, LU Xiao, GU WeiQi, LIAO XiaoPing, SUN Jian, XIONG YanQiong, LIU YaHong. Investigation on the Antibiotic Resistance of Staphylococcus Methicillin-Resistant MLSB from Food Animals in Six Provinces of China [J]. Scientia Agricultura Sinica, 2019, 52(9): 1646-1656.
[14] MA Wen,LIU Jiao,ZHANG XueYao,SHEN GuoHua,QIN XueMei,ZHANG JianQin. Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(8): 1389-1399.
[15] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!