Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (22): 4627-4635.doi: 10.3864/j.issn.0578-1752.2011.22.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of Elevated Atmospheric CO2 and N Fertilization on Soil Nematode Community in a Rice-Wheat Rotation System

 BAO  Xue-Lian, LI  Qi, LIANG  Wen-Ju, ZHU  Jian-Guo   

  1. 1.中国科学院沈阳应用生态研究所森林与土壤生态国家重点实验室,沈阳 110164
    2.中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,南京 210008
    3.中国科学院研究生院,北京 100039
  • Received:2010-07-26 Online:2011-11-15 Published:2010-11-23

Abstract: 【Objective】 The effect of elevated CO2 and N fertilization on the below-ground ecosystem was studied. 【Method】 A study was conducted in the rice-wheat rotational FACE platform in China to quantify the effect of elevated CO2 and N fertilization on soil nematode community.【Result】Thirty-five genera and 15 functional guilds were observed in this system, and Acrobeloides, Eucephalobus, Filenchus and Hirschmanniella were dominant genera. Filenchus and Eucephalobus were sensitive to the treatment of elevated CO2 and N fertilization, respectively. Under the FACE condition, the abundance of total nematodes, functional guilds of Fu2 and Om4 increased significantly. The interactive treatment of elevated CO2 and N fertilization influenced the abundance of Fu2. 【Conclusion】Elevated CO2 and N fertilization resulted in the changes of soil nematode community structure and decomposition pathways. Under the high N conditions (HN), elevated CO2 decreased the channel index (CI), and bacteria dominated decomposition pathway was found in the FACE (HN) treatments in the wheat season. Different N fertilization managements influenced the values of structural index (SI), and the higher SI was observed under the low N condition (LN), which suggested a stable ecologically successional status with less disturbance.

Key words: soil nematodes, FACE, N fertilization, rice-wheat rotation system

[1]IPCC, Climate Change 2007 : Synthesis Report: Summary for Policymakers. http://www.ipcc.ch November 2007.

[2]Ma H L, Zhu J G, Xie Z B, Liu G, Zeng Q, Han Y. Responses of rice and winter wheat to free-air CO2 enrichment (China FACE) at rice/wheat rotation system. Plant and Soil, 2007, 294: 137-146.

[3]Wardle D A, Bardgett R D, Klironomos J N, Setala H, van der Putten W H, Wall D H. Ecological linkages between aboveground and belowground biota. Science, 2004, 304: 1629-1633.

[4]Ritz K, Trudgill D L. Utility of nematode community analysis as an integrated measure of the functional state of soils: perspectives and challenges. Plant and Soil, 1999, 212: 1-11.

[5]Hungate B A, Jaeger C H, Ⅲ, Gamara G, Stuart C F, Ⅲ, Field C B. Soil microbiota in two annual grasslands: responses to elevated atmospheric CO2. Oecologia, 2000, 124: 589-598.

[6]Niklaus P A, Alphei J, Ebersberger D, Kampichler C, Kandeler E, Tscherko D. Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland. Global Change Biology, 2003, 9: 585-600.

[7]Yeates G W, Newton P C D, Ross D J. Significant changes in soil microfauna in grazed pasture under elevated carbon dioxide. Biology and Fertility of Soils, 2003, 38: 319-326.

[8]Haimi J, Laamanen J, Penttinen R, Räty M, Koponen S, Kellomäki S, Niemelä P. Impacts of elevated CO2 and temperature on the soil fauna of boreal forests. Applied Soil Ecology, 2005, 30: 104-112.

[9]Phillips D A, Fox T C, Ferris H, Moore J C. Increases in atmospheric [CO2] and the soil food web. Ecological Studies, 2006, 187: 413-428.

[10]Ayres E, Wall D H, Simmons B L, Field C B, Milchunas D G, Morgan J A, Roy J. Belowground nematode herbivores are resistant to elevated atmospheric CO2 concentrations in grassland ecosystems. Soil Biology and Biochemistry, 2008, 40: 978-985.

[11]Sticht C, Schrader S, Giesemann A, Weigel H J. Sensitivity of nematode feeding types in arable soil to free air CO2 enrichment (FACE) is crop specific. Pedobiologia, 2009, 52: 337-349.

[12]Li Q, Xu C G, Liang W J, Zhong S, Zheng X H, Zhu J G. Residue incorporation and N fertilization affect the response of soil nematodes to the elevated CO2 in a Chinese wheat field. Soil Biology and Biochemistry, 2009, 41: 1497-1503.

[13]Li Q, Liang W J, Jiang Y, Shi Y, Zhu J G, Neher D A. Effect of elevated CO2 and N fertilisation on soil nematode abundance and diversity in a wheat field. Applied Soil Ecology, 2007, 36: 63-69.

[14]徐国强, 李  扬, 史  奕, 黄国宏. 开放式空气CO2浓度增高(FACE)对稻田土壤微生物的影响. 应用生态学报, 2002, 13(10): 1358-1359.

Xu G Q, Li Y, Shi Y, Huang G H. Effect of free-air CO2 enrichment on soil microbe in paddy field. Chinese Journal of Applied Ecology, 2002, 13(10): 1358-1359. (in Chinese)

[15]刘  刚, 韩  勇, 朱建国, 冈田益已, 中村浩史, 吉本真由美. 稻田轮作FACE系统平台I. 系统结构与控制. 应用生态学报, 2002, 13(10) : 1253-1258.

Liu G, Han Y, Zhu J G, Okada M, Nakamura H, Yoshimoto M. Rice-wheat rotational FACE platform I.System structure and control. Chinese Journal of Applied Ecology, 2002, 13(10): 1253-1258. (in Chinese)

[16]Bongers T. De Nematoden Van Nederland. Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht, 1988. (in Dutch)

[17]Bongers T. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 1990, 83: 14-19.

[18]Bongers T, Bongers M. Functional diversity of nematodes. Applied Soil Ecology, 1998, 10: 239-251.

[19]Yeates G W, Bongers T, De Goede R G M, Freckman D W, Georgieva S S. Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 1993, 25(3): 315-331.

[20]Ferris H, Bongers T, de Goede R G M. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 2001, 18: 13-29.

[21]Liang W J, Li Q, Jiang Y, Neher D A. Nematode faunal analysis in an aquic brown soil fertilised with slow-release urea, Northeast China. Applied Soil Ecology, 2005, 29(2): 185-192.

[22]Loya W M, Pregitzer K S, Karberg N J, King J S, Giardina C P. Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature, 2003, 425: 705-707.

[23]任书杰, 曹明奎, 陶  波, 李克让. 陆地生态系统氮状态对碳循环的限制作用研究进展. 地理科学进展, 2006, 25(4): 58-67.

Ren S J, Cao M K, Tao B, Li K R. The effects of nitrogen limitation on terrestrial ecosystem carbon cycle: a review. Progress in Geography, 2006, 25(4): 58-67. (in Chinese)

[24]Neher D A, Weicht T R, Moorhead D L, Sinsabaugh R L. Elevated CO2 alters functional attributes of nematode communities in forest soils. Functional Ecology, 2004, 18: 584-591.

[25]De Deyn G B, Raaijamakers C E, van Ruijven J, Berendse F, van der Putten W H. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos, 2004, 106: 576-586.

[26]Runion G B, Curl E A, Rogers H H, Backman P A, Rodriguez-Kábana R, Helms B E. Effects of CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agricultural and Forest Meteorology, 1994, 70: 117-130.

[27]马红亮, 朱建国, 谢祖彬, 张雅丽, 曾  青, 刘  钢. 不同氮水平下CO2浓度升高对小麦土壤可溶性C、N和P的影响. 土壤, 2005, 37(3): 284-289.

Ma H L, Zhu J G, Xie Z B, Zhang Y L, Zeng Q, Liu G. Effect of FACE (Free air carbon-dioxide enrichment) on available C, N and P in soil under wheat treated with different N levels. Soils, 2005, 37(3):284-289. (in Chinese)

[28]武  术, 林先贵, 尹  睿, 毛婷婷, 胡君利, 冯有智, 朱建国. 大气CO2浓度升高对稻季土壤中麦秸降解及氮素分趋的影响. 生态学报, 2009, 29(5): 2535-2540.

Wu S, Lin X G, Yin R, Mao T T, Hu J L, Feng Y Z, Zhu J G. The effects of elevated atmospheric CO2 concentration on wheat straw decomposition and nitrogen distribution in paddy soil. Acta Ecologica Sinica, 2009, 29(5): 2535-2540. ( in Chinese)

[29]马红亮, 朱建国, 谢祖彬, 刘  钢, 张雅丽, 曾  青. 开放式空气CO2浓度升高对冬小麦生长和N吸收的影响. 作物学报, 2005, 31(12): 1634-1639.

Ma H L, Zhu J G, Xie Z B, Zhang Y L, Zeng Q, Liu G. Effects of free-air carbon dioxide enrichment on growth and uptake of nitrogen in winter wheat. Acta Agronomica Sinica, 2005, 31(12): 1634-1639. (in Chinese)

[30]Liang W J, Lou Y L, Li Q, Zhong S, Zhang X K, Wang J K. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 2009, 41: 883-89.
[1] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[2] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[3] SU YuanYuan,ZHANG DeQuan,GU MingHui,ZHANG ChunJuan,LI ShaoBo,ZHENG XiaoChun,CHEN Li. Characterization of Chilled Mutton by ATP from Different Sources [J]. Scientia Agricultura Sinica, 2022, 55(19): 3841-3853.
[4] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[5] WU TianQi,LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong. Effects of Basal Nitrogen and Foliar Zinc Application at the Early Filling Stage on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(10): 1971-1986.
[6] DU JinTing,ZHANG Yan,LI Yan,WANG JiaJia,LIAO Na,ZHONG LiHuang,LUO BiQun,LIN Jiang. Optimization and Mechanism of Ultrasonic-Assisted Two-Phase Extraction of Tea Saponin [J]. Scientia Agricultura Sinica, 2022, 55(1): 167-183.
[7] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[8] WANG LiFeng,ZHU Jie,XIONG WenFei,ZHAO Meng,YUAN Jian,JU XingRong. Insight into the Impact of Heat Treatment on the Foamability and Structure of Gliadin Colloidal Particles [J]. Scientia Agricultura Sinica, 2021, 54(4): 820-830.
[9] WANG XuanXuan,LIU ChunYu,XIE BeiYu,ZHANG ShuShu,WANG DanYang,ZHU ZhenYuan. Extraction Technology, Preliminary Structure and α-glucosidase Inhibition of Polysaccharide with Alkaline-Extracted from Sugarcane Peel [J]. Scientia Agricultura Sinica, 2021, 54(12): 2653-2665.
[10] GONG ChangWei,MA Yu,YANG Rui,RUAN YanWei,WANG XueGui,LIU Yue. Effect of Nozzle Type on the Spray Performance of Plant Protection Unmanned Aerial Vehicle (UAV) [J]. Scientia Agricultura Sinica, 2020, 53(12): 2385-2398.
[11] ZENG XiangYuan,ZHAO WuQi,LU Dan,WU Ni,MENG YongHong,GAO GuiTian,LEI YuShan. Effects of Ultrasound on the Sugar Permeability Effect, Drying Energy Consumption and Quality of Kiwifruit Slices [J]. Scientia Agricultura Sinica, 2019, 52(4): 725-737.
[12] ZHANG Ming,LI Peng,DENG Lie,HE ShaoLan,YI ShiLai,ZHENG YongQiang,XIE RangJin,MA YanYan,LÜ Qiang. Segmentation of Navel Orange Surface Defects Based on Mask and Brightness Correction Algorithm [J]. Scientia Agricultura Sinica, 2019, 52(2): 327-338.
[13] JIA MengKe,WU Zhong,ZHAO WuQi,LU Dan,ZHANG QingAn,ZHANG BaoShan,SONG ShuJie. Response Surface Design and Multi-Objective Optimization of Apple Slices Dried by Air-Impingement [J]. Scientia Agricultura Sinica, 2019, 52(15): 2695-2705.
[14] YANG TianGe, DENG Hong, LI Han, MENG YongHong, LEI JiaLei, MA Jing, GUO YuRong . Optimization of Ultra-High Pressure Sterilization Conditions on the Kiwi Fruit Pulp Produced by Cold Crushing Method and Its Sterilization Effect During Storage Period [J]. Scientia Agricultura Sinica, 2018, 51(7): 1368-1377.
[15] FENG XiaoJie, ZHENG ZiCheng, LI TingXuan, FAN Li. Characteristics of Nitrogen Loss in Sloping Cropland of Purple Soil During Maize Growth Stage Under Rainstorm [J]. Scientia Agricultura Sinica, 2018, 51(4): 738-749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!