Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (17): 3584-3593.doi: 10.3864/j.issn.0578-1752.2011.17.011

• HORTICULTURE • Previous Articles     Next Articles

QTL Mapping of Resistance Genes to Powdery Mildew in Cucumber (Cucumis sativus L.)

ZHANG  Sheng-Ping, LIU  Miao-Miao, MIAO  Han, ZHANG  Su-Qin, YANG  Yu-Hong, XIE  Bing-Yan, GU  Xing-Fang   

  1. 1. 中国农业科学院蔬菜花卉研究所
    2. 贵州大学农学院
  • Received:2011-03-03 Revised:2011-05-31 Online:2011-09-01 Published:2011-06-30
  • Contact: Sheng-Ping ZHANG E-mail:guxf@mail.caas.net.cn

Abstract: 【Objective】 The cucumber inbred line K8 with high resistance to powdery mildew was used as materials to study.the inheritance of resistance gene to powdery mildew in K8 and to conduct QTL mapping for these genes so as to provide a theoretical basis for the resistance mechanism and molecular assistant selection (MAS) breeding. 【Method】 An artificial inoculation method was adopted to test the degree of resistance to Podosphaera xanthii (syn. Sphaerotheca fuliginea) for the F2:3 family lines derived from the cross of K8×K18 (susceptible lines). SSR analysis, combined with bulked segregation analysis (BSA), was done on the DNA of F2 and F2:3 population using 2 360 pairs of SSR primers. JoinMap 4.0 and MapInspect software were used to construct SSR linkages and to make sure the corresponding relations between these SSR linkages and cucumber chromosome. QTL analysis on powdery mildew resistance genes was conducted by MapQTL4.0 software. 【Result】 The inheritance of the resistance gene to powdery mildew in K8 fit to the inheritance law of quantitative trait. Four QTLs named pm5.1, pm5.2, pm5.3 and pm6.1 for the resistance gene to powdery mildew were detected in this study. pm5.1, pm5.2 and pm5.3 were detected repeatedly in two years and the location for pm5.1, pm5.2 and pm5.3 was consistent. The QTL of pm5.2 accounted for the highest phenotypic variation. Four NBS resistance genes were found in the region of pm5.2. The QTL of pm6.1 located on Chr.6 was a minor QTL. 【Conclusion】 The QTL of pm5.2 located on Chr.5 was the major QTL. This resistance gene may belong to NBS resistance gene. The results in this study will be of great benefit to fine mapping and gene cloning for the major QTL of powdery mildew resistance gene, also the results will lay a good foundation for cucumber MAS resistance breeding.

Key words: Cucumber, powdery mildew, SSR marker, QTL mapping

[1]刘苗苗, 刘宏宇, 顾兴芳, 张圣平, 苗晗. 黄瓜白粉病抗性遗传规律及分子标记研究进展. 中国蔬菜, 2009(24): 7-12.

Liu M M, Liu H Y, Gu X F, Zhang S P, Miao H. Research Progress on Inheritance and Molecular Markers of Resistance to Powdery Mildew in Cucumber. China Vegetables, 2009(24): 7-12. (in Chinese)

[2]Block C C, Reitsma K R. Powdery mildew resistance in the U. S. National plant germplasm system cucumber collection. HortScience, 2005, 40(2): 416-420.

[3]曹清河, 万红建, 陈劲枫. 黄瓜霜霉病抗性研究进展. 中国瓜菜, 2007(1): 27-30.

Cao Q H, Wan J H, Chen J F. Progress on downy mildew resistance in cucumber. China Cucurbits and Vegetables, 2007(1): 27-30. (in Chinese)

[4]罗晶晶, 齐晓花, 陈学好. 瓜类作物白粉病抗性遗传机制. 分子植物育种, 2010, 8(3): 556-562.

Luo J j, Qi X H, Chen X H. Advances on Genetic Mechanisms of Powdery Mildew Resistance in Cucurbit Crops. Molecular Plant Breeding, 2010, 8(3): 556-562 (in Chinese)

[5]Pierce L K, Wehner T C. Review of genes and linkage groups in cucumber. HortScience, 1990, 25: 605-615.

[6]HuJieda K, Akiya R. Genetic study of powdery mildew resistance and spine color on fruit in cucumber. Journal of the Japanese Society for Horticultural Science, 1962, 31: 30-32.

[7]Kooistra E. Powdery mildew resistance in cucumber. Euphytica, 1968, 17(2): 236-244.

[8]Sakata Y, Kubo N, Morishita M, Kitadani E, Sugiyama M, Hirai    M. QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L. ). Theoretical and Applied Genetics, 2006, 112(2): 243-250.

[9]张素勤, 顾兴芳, 张圣平, 邹志荣. 黄瓜白粉病抗性遗传机制的研究. 园艺学报, 2005, 32(5): 899-901.

Zhang S Q, Gu X F, Zhang S P, Zou Z R. The genetic mechanism of resistance to powdery mildew in cucumber. Acta Horticulturae Sinica, 2005, 32(5): 899-901. (in Chinese)

[10]张桂华, 杜胜利, 王  鸣, 马德华. 与黄瓜抗白粉病相关基因连锁的AFLP标记的获得. 园艺学报, 2004, 31(2): 189-192.

Zhang G H, Du S L, Wang M, Ma D H. AFLP markers of cucumber powdery mildew resistance-related gene. Acta Horticulturae Sinica, 2004, 31(2): 189-192.

[11]刘龙洲, 何欢乐, 潘俊松. 黄瓜种质R17对白粉病抗性的遗传测验. 资源与利用, 2008, 27(3): 46-48.

Liu L Z, He H L, Pan J S. Genetic test of resistance to powdery mildew for cucumber germplasm R17. Resource and Utilization, 2008, 27(3): 46-48. (in Chinese)

[12]Shanmugasundarum S, Williams P H, Peterson C E. Inheritance of resistance to powdery mildew in cucumber. Phytopathology, 1971, 61(10): 1218-1221.

[13]毛爱军, 张  峰, 张海英, 张丽蓉, 王永健. 两个黄瓜品种对白粉病的抗性遗传分析. 中国农学通报, 2005, 21(6): 302-305.

Mao A J, Zhang F, Zhang H Y, Zhang L R, Wang Y J. Inheritance of resistance to powdery mildew in two cucumber varieties. Chinese Agricultural Science Bulletin, 2005, 21(6): 302-305.

[14]Morishita M, Sugiyam K, Saito T, Sakata Y. Powdery mildew resistance in cucumber. Japan Agricultural Research Quarterly, 2003, 37(1): 7-14

[15]张海英, 王振国, 毛爱军, 张  峰, 王永健, 许  勇. 与黄瓜白粉病抗病基因紧密连锁的SSR分子标记. 华北农学报, 2008, 23(6): 77-80.

Zhang H Y, Wang Z G, Mao A J, Zhang F, Wang Y J, Xu Y. SSR markers linked to the resistance genes of cucumber powdery mildew. Acta Agriculturae Boreali-Sinica, 2008, 23(6): 77-80. (in Chinese)

[16]Zhang S Q, Gu X F, Zhang S P, Zou Z R. Inheritance of powdery mildew resistance in cucumber and development of an AFLP marker for the resistance detection. Agricultural Sciences in China, 2007, (6)11: 1336-1342.

[17]张海英. 黄瓜重要抗病基因的分子标记研究及遗传图谱的构建[D]. 北京: 中国农业科学院. 2006.

Zhang H Y. Identification of molecular markers linked to important resistant genes and construction of genetic map in cucumber[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. (in Chinese)

[18]刘龙洲, 蔡 润, 袁晓君, 何欢乐, 潘俊松. 黄瓜抗白粉病QTL分子标记定位. 中国科学, 2008, 38(9): 851-856.

Liu L Z, Cai R, Yuan X J,, He H L, Pan J S. Quantitative trait loci for resistance to powdery mildew in cucumber. Science in China, 2008, 38(9): 851-856. (in Chinese)

[19]张圣平, 顾兴芳, 王 烨, 苗 晗. “十一五”我国黄瓜遗传育种研究进展. 中国蔬菜, 2010(22): 1-10.

Zhang S P, Gu X F, Wang Y, Miao H. Research progress on cucumber genetics and breeding during China’s ‘The Eleventh Five-years Plan’. China Vegetables, 2010(22): 1-10. (in Chinese)

[20]Ren Y, Zhang Z H, Liu J H, Staub J E, Han Y H, Cheng Z C, Li X F, Lu J Y, Miao H, Kang H X, Xie B Y, Gu X F, Wang X W, Du Y C, Jin W W, Huang S W. An integrated genetic and cytogenetic map of the cucumber genome. PloS One, 2009, 4: e5795.

[21]穆生奇, 顾兴芳, 张圣平, 王晓武, 王  烨. 栽培黄瓜种质遗传多样性的SSR鉴定. 园艺学报, 2008, 35(9): 1323-1330.

Mu S Q, Gu X F, Zhang S P, Wang X W, Wang Y. Studies on the genetic diversity of cucumber (Cucumis sativus L.) germplasm by SSR. Acta Horticulturae Sinica, 2008, 35(9): 1323-1330. (in Chinese)

[22]Huang S W, Li R Q, Zhang Z H, Li L, Gu X F, Fan W, Lucas W J, Wang X W, Xie B Y, Ni P X, Ren Y, Zhu H M, Li J, Lin K, Jin W W, Fei Z J, Li G C, Staub J B, Kilian A, van der Vossen E A G, Wu Y, Guo J, He J, Jia Z Q, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M W, Huang Q F, Li B, Xuan Z L, Cao J J, San A, Wu Z G, Zhang J B, Cai Q L, Bai Y Q, Zhao B W, Han Y H, Li Y, Li X F, Wang S H, Shi Q X, Liu SQ, Cho W K, Kim J Y, Xu Y, Heller-Uszynska K, Miao H, Cheng Z C, Zhang S P, Wu J, Yang Y H, Kang H X, Li M, Liang H Q, Ren X L, Shi Z B, Wen M, Jian M, Yang H L, Zhang G J, Yang Z T, Chen R, Liu S F, Li J W, Ma L J, Liu H, Zhou Y, Zhao J, Fang X D, Li G Q, Fang L, Li Y G, Liu D Y, Zheng H K, Zhang Y, Qin N, Li Z, Yang G H, Yang S, Bolund L, Kristiansen K, Zheng H C, Li S C, Zhang X Q, Yang H M, Wang J, Sun R F, Zhang B X, Jiang S Z, Wang J, Du Y C, Li S G. The genome of the cucumber, Cucumis sativus L. Nature Genetics, 2009, 41: 1275-1281.

[23]Miao H, Zhang S P, Wang X W, Zhang Z H, Li M, Mu S Q, Cheng   Z C, Zhang R W, Huang S W, Xie B Y, Fang Z Y, Zhang Z X, Weng  Y Q, Gu X F. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticultural important traits. Euphytica, 2011, DOI: 10. 1007/ S10681-011-0410-5.

[24]Li H, Hearne S, Bänziger M, Li Z, Wang J. Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity, 2010, 105: 257-267.

[25]李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36(6): 918-931.

Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agronomica Sinica, 2010, 36(6): 918-931. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[3] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[4] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[5] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[6] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[7] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[8] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[9] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[10] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[11] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[12] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[13] DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323.
[14] QU KeXin,HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan,QI ZhaoMing. Mapping QTL for Soybean Fatty Acid Composition Based on RIL and CSSL Population [J]. Scientia Agricultura Sinica, 2021, 54(15): 3168-3182.
[15] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!