Scientia Agricultura Sinica ›› 2005, Vol. 38 ›› Issue (10): 2053-2060 .

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION • Previous Articles     Next Articles

Nitrous Oxide Emission from Cropland and Its Driving Factors Under Different Crop Rotations

,,,   

  1. 南京农业大学资源于环境科学学院
  • Received:2005-04-22 Revised:1900-01-01 Online:2005-10-10 Published:2005-10-10

Abstract: Field experiments were carried out from June 2003 to May 2004. Three crops of maize, soybean and rice were planted in summer season of 2003 followed by winter wheat. A static opaque chamber-GC technique was used to detect the emissions of N2O and CO2 in situ. Soil temperature, moisture and relevant crop parameters were measured. Results showed that there was a significant difference in the annual N2O emissions from different rotation plots. Higher N2O emission was observed in the plot of maize-wheat rotation with an annual amount of (18.5±0.7) kgN·ha-1. Lower N2O emissions were found in the plots of rice-wheat and soybean-wheat rotation with the annual amounts of (11.7±0.7) kgN·ha-1 and (13.2±0.4) kgN·ha-1, respectively. The soybean-growing season did not receive any additional fertilizer in the soybean-wheat rotation. In the rice-wheat plot, no-plowing practice before wheat sowing enhanced N2O emission significantly (P<0.001) in wheat-growing season from sowing to the winter as compared with that from the plowing plot, while no significant increase was observed over the wheat-growing season. A further investigation suggests that a stepwise regression function of y=a·W+b·T+c·L+d can be employed to quantify the influence of soil moisture (W), temperature (T) and leave area index (L) on N2O emission. The y is expressed as ln (FLUXN2O). The function did not show significant correlation between y and L for the maize plot, and thus c=0. The y did not correlate with W and T for the soybean plot, and thus a=0 and b=0. In the irrigated rice paddy, the y did not correlate with L. In addition, N2O emission was generally correlated to ecosystem respiratory rate for the plots of soybean, rice and wheat, while no significant correlation was found for the maize plot.

Key words: Nitrous oxide, Rotation method, Soil temperature, Soil moisture, LAI

[1] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[2] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[3] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[4] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[5] CHEN Yang,WANG Lei,BAI YouLu,LU YanLi,NI Lu,WANG YuHong,XU MengZe. Quantitative Relationship Between Effective Accumulated Temperature and Plant Height & Leaf Area Index of Summer Maize Under Different Nitrogen, Phosphorus and Potassium Levels [J]. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777.
[6] CHENG Bin,LIU WeiGuo,WANG Li,XU Mei,QIN SiSi,LU JunJi,GAO Yang,LI ShuXian,Ali RAZA,ZHANG Yi,Irshan AHMAD,JING ShuZhong,LIU RanJin,YANG WenYu. Effects of Planting Density on Photosynthetic Characteristics, Yield and Stem Lodging Resistance of Soybean in Maize-Soybean Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096.
[7] WANG GuoLi,CHANG FangDi,ZHANG HongYuan,LU Chuang,SONG JiaShen,WANG Jing,PANG HuanCheng,LI YuYi. Effects of Straw Interlayer with Different Thickness on Saline-Alkali Soil Temperature, Water Content, and Sunflower Yield in Hetao Irrigation Area [J]. Scientia Agricultura Sinica, 2021, 54(19): 4155-4168.
[8] WEN Ming, LI MingHua, JIANG JiaLe, MA XueHua, LI RongWang, ZHAO WenQing, CUI Jing, LIU Yang, MA FuYu. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487.
[9] XueKe PU,ChunHua WU,YouMing MIAN,FangFang MIAO,XianQing HOU,Rong LI. Effects of Different Mulching Patterns on Growth of Potato and Characteristics of Soil Water and Temperature in Dry Farmland [J]. Scientia Agricultura Sinica, 2020, 53(4): 734-747.
[10] DONG ZhiQiang,LI ManHua,LI Nan,XUE XiaoPing,CHEN Chen,ZHANG JiBo,ZHAO Hong,HOU YingYu,PAN ZhiHua. The Thresholds of Soil Drought and Its Impacts on Summer Maize in Shandong Province [J]. Scientia Agricultura Sinica, 2020, 53(21): 4376-4387.
[11] DENG HaoLiang,ZHANG HengJia,XIAO Rang,ZHANG YongLing,TIAN JianLiang,LI FuQiang,WANG YuCai,ZHOU Hong,LI Xuan. Effects of Different Covering Planting Patterns on Soil Moisture, Temperature Characteristics and Maize Yield in Semi-Arid Region of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(2): 273-287.
[12] ZHAO XinZhou,ZHANG ShiChun,LI Ying,ZHENG YiMin,ZHAO HongLiang,XIE LiYong. The Characteristics of Soil Ammonia Volatilization Under Different Fertilizer Application Measures in Corn Field of Liaohe Plain [J]. Scientia Agricultura Sinica, 2020, 53(18): 3741-3751.
[13] MA Ning,WANG HeTong,FANG DongLu,ZHAO LiYan,YANG WenJian,PEI Fei,HU QiuHui. Nano-Packaging Preservative Mechanism of Flammulina filiformis After Harvest Based on Mitochondrial Energy Status Pathways [J]. Scientia Agricultura Sinica, 2020, 53(16): 3356-3371.
[14] SiYang REN,QingSong ZHANG,TingYu LI,FuSuo ZHANG. Spatiotemporal Variation of Winter Wheat Yield and Nitrogen Management in Five Provinces of North China Plain [J]. Scientia Agricultura Sinica, 2019, 52(24): 4527-4539.
[15] ZHANG JianHua,GUO RuiFeng,CAO ChangLin,BAI WenBin. Effects of Black Full Film Mulching on Soil Temperature and Humidity and Weed Control in Root Zone of Sorghum [J]. Scientia Agricultura Sinica, 2019, 52(22): 4129-4138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!