Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (2): 266-280.doi: 10.3864/j.issn.0578-1752.2025.02.005

• PLANT PROTECTION • Previous Articles     Next Articles

Evaluation of the Effectiveness of Two High-Throughput Sequencing Techniques in Identifying Apple Viruses and Identification of Two Novel Viruses

PAN Yuan(), WANG De, LIU Nan, MENG XiangLong, DAI PengBo, LI Bo, HU TongLe, WANG ShuTong, CAO KeQiang, WANG YaNan()   

  1. College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
  • Received:2024-08-28 Accepted:2024-10-12 Online:2025-01-21 Published:2025-01-21
  • Contact: WANG YaNan

Abstract:

【Objective】Macro-transcriptome sequencing and small RNA sequencing are commonly used high-throughput sequencing techniques in virus identification. The objective of this study is to explore the application efficiency of macro-transcriptome sequencing and small RNA sequencing in the identification of emerging viruses in apples, analyze the impact of different tissue types on the identification results, and to provide a basis for the accurate diagnosis of apple virus diseases.【Method】The samples of apple peel and branch bark were collected from ‘Luli’ apple trees exhibiting novel viral symptoms in Shenzhou County of Hengshui City in August 2022. Total RNA was extracted, and macro-transcriptome libraries and small RNA libraries were constructed for high-throughput sequencing. Bioinformatic techniques and software were utilized to analyze and evaluate the sequencing data. Initially, the indicators from the high-throughput sequencing technique results were compared. Subsequently, a comprehensive evaluation of the effectiveness of each sequencing method was conducted using the analytic hierarchy process (AHP) and a 5-level grading system to calculate the weighted values of these indicators. Finally, RT-PCR was employed to validate the high-throughput sequencing results, and the genomic characteristics and phylogenetic relationships of the emerging viruses were analyzed.【Result】In terms of splicing effect, using the same tissue material, the macro-transcriptome sequencing outperformed small RNA sequencing. When the same technique was applied, the splicing effect for fruit peel tissue was better than that of branch bark. In terms of the number of virus species detected, macro-transcriptome sequencing identified the highest number of virus species in branch bark, including eight viruses: apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple necrotic mosaic virus (ApNMV), apple rubbery wood virus 2 (ARWV-2), apple green crinkle associated virus (AGCaV), citrus concave gum-associated virus (CCGaV), and citrus tatter leaf virus (CTLV). In contrast, small RNA sequencing technique detected the fewest virus types in branch bark. There were differences in virus types between fruit peels and branch barks detected through small RNA sequencing technique. When fruit peels were used as the detection target, both methods identified the same number of virus types. After comprehensively comparing the synthesis score of various indicators, the macro-transcriptome sequencing of bark samples scored the highest. The results of high-throughput sequencing were consistent with those obtained through RT-PCR. ARWV-2 and CCGaV were discovered for the first time in Hebei Province, and were designated as ARWV-2-HB and CCGaV-HB. The GenBank accession numbers for the coat protein (CP) gene of ARWV-2-HB and the movement protein (MP) and CP genes of CCGaV-HB are PQ095583, PQ095581, and PQ095582. The genomic sequences of both viruses showed over 96% identity to their respective representative isolates. Phylogenetic trees constructed based on the CP amino acid sequences of ARWV-2 and CCGaV revealed that ARWV-2-HB was most closely related to LYXS (MZ819711), while CCGaV-HB exhibited relatively close relationships with Mishima (MK940543), Gala (MK940542), Gala-BJ (OP820577), Fuji-BJ (OP556109), and AC1 (MH038043).【Conclusion】Using macro-transcriptome sequencing and small RNA sequencing techniques, the fruit peel and branch bark of the same ‘Luli’ apple tree were sequenced separately. Among two sequencing methods, the macro-transcriptome sequencing of branch bark showed the best sequencing effect, discovered the highest number of viruses and relatively complete viral genome sequences. When using small RNA sequencing, only a portion of virus types could be detected in both fruit peels and branch barks. Due to the differences in virus types detected from different tissue materials, it is recommended to test both tissue materials simultaneously. ARWV-2 and CCGaV were reported in Hebei Province in this study, and partial genomic sequences of ARWV-2-HB and CCGaV-HB were revealed, which enriching the genomic sequence information of ARWV-2 and CCGaV. Furthermore, the phylogenetic relationships of these two viruses with other representative isolates have been clarified.

Key words: macro-transcriptome sequencing, small RNA sequencing, apple virus, identification, Hebei Province

Table 1

Weight values of various indicators for sequencing data and splicing results"

指标
Index
病毒contigs数量
Viral contigs number
病毒contigs长度
Viral contigs length
N50值
N50 value
N90值
N90 value
完整性
Completeness
病毒种类
Viral type
权重Weight 0.0740 0.0740 0.1316 0.1316 0.2273 0.3615

Table 2

Scoring criteria of various indicators for sequencing data and splicing results"

指标
Index
分值Score
2 4 6 8 10
病毒contigs数量Viral contigs number 0-12 12-24 24-36 36-48 48-50
病毒contigs长度Viral contigs length (bp) 1-1500 1500-3000 3000-4500 4500-6000 6000-7500
N50值N50 value (bp) 0-600 600-1200 1200-1800 1800-2400 2400-3000
N90值N90 value (bp) 0-100 100-200 200-300 300-400 400-500
完整性Completeness (%) 0-20 20-40 40-60 60-80 80-100
病毒种类Viral type 0-1 2-3 4-5 6-7 8

Table 3

Primers information used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
产物大小
Product size (bp)
用途
Purpose
参考文献
Reference
ASPV-F TGGAACCTCATGCTGCA 360 ASPV鉴定
ASPV identification
[26]
ASPV-R TTGGGATCAACTTTACTAAAAAGCATAA
ARWV-F ACAAGGCAGTAGTTATTATCAGCAA 484 ARWV-2鉴定
ARWV-2 identification
[19]
ARWV-R TTCTGCAACTAACTTCAAGGCTG
ASGV-F CCCGCTGTTGGATTTGATACACCTC 525 ASGV鉴定
ASGV identification
[12]
ASGV-R CTGCAAGACCGCGACCAAGTTT
ACLSV-F GAGAGTTTCAGTTTGCTAGACA 566 ACLSV鉴定
ACLSV identification
[27]
ACLSV-R GCAAATTCAGTCTGTAAAAG
AGCaV-F TCGGAAAGACTGTCCCGTTG 647 AGCaV鉴定
AGCaV identification
[4]
AGCaV-R ACTCTTGCCCCCGATTCTTG
ApNMV-F ATGGTGTGCAATCGCTGTCA 657 ApNMV鉴定
ApNMV identification
[28]
ApNMV-R CATCGACCATAAGGATATCA
CTLV-F CCCTCTCAGCTAGAATTGAA 889 CTLV鉴定
CTLV identification
[29]
CTLV-R AGAGTGGACAAACTCTAGAC
CCGaV-F TGCCCATCCTTCTAACCTG 954 CCGaV鉴定
CCGaV identification
[21]
CCGaV-R TTCCCATACAGTTTGCCG

Table 4

Information on representative isolates for ARWV-2 sequence identity analysis"

分离物
Isolate
登录号
Accession number
寄主
Host
国家
Country
Fuji-BJ OP547336 苹果Apple 巴西Brazil
R12 MF062141 苹果Apple 德国Germany
LYXS MZ819711 梨Pear 中国China
982-11 MF062129 苹果Apple 加拿大Canada
982-11 MF062127 苹果Apple 加拿大Canada

Table 5

Information on representative isolates for CCGaV sequence identity analysis"

分离物
Isolate
登录号
Accession number
寄主
Host
国家
Country
分离物
Isolate
登录号
Accession number
寄主
Host
国家
Country
Mishima MK940543 苹果Apple 巴西Brazil HU_Reglindis ON593790 苹果Apple 匈牙利Hungary
Gala MK940542 苹果Apple 巴西Brazil HU_Jonagold ON593789 苹果Apple 匈牙利Hungary
Fuji-BJ OP556109 苹果Apple 巴西Brazil CGW2 NC_035454 柑橘Citrus 意大利Italy
Weihai MZ926714 苹果Apple 中国China UN7 MH137741 柑橘Citrus 中国China
Gala-BJ OP820577 苹果Apple 巴西Brazil LR3 MG764564 柑橘Citrus 意大利Italy
AC1 MH038043 苹果Apple 美国USA HU_Florina ON593791 苹果Apple 匈牙利Hungary
CCGaV_RNA2_T OR640154 苹果Apple 土耳其Turkey CGW2 KX960111 柑橘Citrus 意大利Italy
CE-c3 OK495691 苹果Apple 意大利Italy

Fig. 1

The symptom of suspected apple virus sample for evaluation of high-throughput sequencing technique"

Table 6

Statistics of the sequencing data and assembly results of the macro-transcriptome sequencing and small RNA sequencing of apple fruit peel and branch bark"

样品种类
Sample type
测序方法
Sequencing method
Clean reads数量
Clean reads number
Contigs
数量
Contigs number
Contigs
长度
Contigs length (bp)
N50值N50 value (bp) N90值N90 value (bp) 病毒来源reads数量
Viral source reads number
病毒contigs数量
Viral contigs number
病毒contigs
长度
Viral contigs length (bp)
果皮
Fruit peel
宏转录组测序
Macro-transcriptome sequencing
5146706 9161 300-7543 2620 451 58188 31 319-7506
小RNA测序
Small RNA sequencing
9274079 2093 33-362 1150 282 144 12 213-2708
枝皮
Branch bark
宏转录组测序
Macro-transcriptome sequencing
7901932 12244 300-6470 1339 396 12738 60 304-6470
小RNA测序
Small RNA sequencing
9896385 793 300-460 738 232 526 10 205-2726

Table 7

Statistics of viruses detected by macro-transcriptome sequencing and small RNA sequencing using apple fruit peel as samples"

测序方法
Sequencing method
病毒名称
Virus name
Reads数量
Reads number
Contigs数量Contigs number 最长序列
Longest sequence (bp)
最短序列
Shortest sequence (bp)
覆盖深度
Sequencing depth
完整性
Completeness (%)
宏转录组测序
Macro-transcriptome sequencing
苹果坏死花叶病毒ApNMV 33754 3 3276 1882 770.00 98.95
苹果褪绿叶斑病毒ACLSV 17808 16 7506 319 48.00 99.40
苹果茎沟病毒ASGV 6926 6 6474 645 46.00 99.80
苹果茎痘病毒ASPV 150 6 944 321 7.00 97.20
小RNA测序
Small RNA sequencing
苹果坏死花叶病毒ApNMV 96 2 1150 494 52.00 25.20
苹果褪绿叶斑病毒ACLSV 23 6 2708 1885 37.00 7.20
苹果茎沟病毒ASGV 3 2 957 552 2.00 12.10
苹果茎痘病毒ASPV 22 2 282 213 10.00 12.65

Table 8

Statistics of viruses detected by macro-transcriptome sequencing and small RNA sequencing using apple branch bark as samples"

测序方法
Sequencing method
病毒名称
Virus name
Reads数量Reads number Contigs数量Contigs number 最长序列
Longest sequence (bp)
最短序列
Shortest sequence (bp)
覆盖深度
Sequencing depth
完整性
Completeness (%)
宏转录组测序
Macro-transcriptome sequencing
苹果茎痘病毒ASPV 1550 30 1445 304 13.70 96.90
苹果茎沟病毒ASGV 5403 6 6470 393 41.97 97.60
苹果坏死花叶病毒ApNMV 1908 2 2617 1886 69.04 98.95
苹果绿皱果相关病毒AGCaV 18 1 323 323 7.01 98.95
柑橘囊胶相关病毒CCGaV 1112 5 2262 336 25.20 98.95
柑橘碎叶病毒CTLV 31 1 355 355 12.70 93.50
苹果褪绿叶斑病毒ACLSV 934 8 2474 400 14.03 98.80
苹果胶质木病毒-2 ARWV-2 1326 3 1339 371 49.74 98.95
小RNA测序
Small RNA sequencing
苹果褪绿叶斑病毒ACLSV 40 6 1850 2300 3.63 1.32
苹果胶质木病毒-2 ARWV-2 301 2 1342 368 0.62 0.21
苹果坏死花叶病毒ApNMV 185 2 2726 2726 0.26 0.08

Table 9

Types of virus detected by macro-transcriptome sequencing using apple fruit peel and branch bark as samples"

检出病毒Virus 组织部位Tissue type 检出病毒Virus 组织部位Tissue type
苹果坏死花叶病毒ApNMV 果皮、枝皮Fruit peel, branch bark 苹果胶质木病毒-2 ARWV-2 枝皮Branch bark
苹果褪绿叶斑病毒ACLSV 果皮、枝皮Fruit peel, branch bark 苹果绿皱果相关病毒AGCaV 枝皮Branch bark
苹果茎沟病毒ASGV 果皮、枝皮Fruit peel, branch bark 柑橘囊胶相关病毒CCGaV 枝皮Branch bark
苹果茎痘病毒ASPV 果皮、枝皮Fruit peel, branch bark 柑橘碎叶病毒CTLV 枝皮Branch bark

Table 10

Types of virus detected by small RNA sequencing using apple fruit peel and branch bark as samples"

检出病毒Virus 组织部位Tissue type
苹果坏死花叶病毒ApNMV 果皮、枝皮Fruit peel, branch bark
苹果褪绿叶斑病毒ACLSV 果皮、枝皮Fruit peel, branch bark
苹果茎沟病毒ASGV 果皮Fruit peel
苹果茎痘病毒ASPV 果皮Fruit peel
苹果胶质木病毒-2 ARWV-2 枝皮Branch bark

Table 11

Comprehensive score of macro-transcriptome sequencing and small RNA sequencing of apple fruit peel and branch bark"

样品种类
Sample type
测序方法
Sequencing method
病毒contigs数量
Viral contigs number
病毒contigs长度
Viral contigs length
N50值
N50 value
N90值
N90 value
完整性
Completeness
病毒种类
Viral type
综合得分
Synthesis score
果皮
Fruit peel
宏转录组测序
Macro-transcriptome sequencing
0.2220 0.3700 0.6580 0.6580 1.1365 1.0845 4.1290
小RNA测序
Small RNA sequencing
0.0740 0.1480 0.2632 0.3948 0.2273 1.0845 2.1918
枝皮
Branch bark
宏转录组测序
Macro-transcriptome sequencing
0.3700 0.3700 0.3948 0.5264 1.1365 1.8075 4.6052
小RNA测序
Small RNA sequencing
0.0740 0.1480 0.2632 0.3948 0.2273 0.7230 1.8303

Fig. 2

Identification of viruses in apple samples by RT-PCR"

Fig. 3

Position of ARWV-2-HB contigs in the genome The sequence position is referenced to R12 (MF062141)"

Fig. 4

Position of CCGaV-HB contigs in the genome The sequence position is referenced to CGW2 (KX960111)"

Table 12

Sequence identity between the ARWV-2-HB isolate and representative isolates (%)"

分离物
Isolate
登录号
Accession number
RdRp (nt 2719-3089) CP (nt 84-941) MP (nt 12-379)
nt aa nt aa nt aa
Fuji-BJ OP547336 98.9 97.5 99.0 99.6 98.9 98.0
R12 MF062141 97.3 96.7 98.2 98.2 98.0 98.1
LYXS MZ819711 98.9 99.1 98.6 100.0 98.6 98.3
982-11 MF062129 97.5 96.7 98.4 98.9 - -

Table 13

Sequence identity between the CCGaV-HB isolate and representative isolates (%)"

分离物
Isolate
登录号
Accession number
RdRp CP (nt 49-1269) MP (nt 1590-2639)
nt 5-1532 nt 1937-4198 nt 4887-6647 nt aa nt aa
Mishima MK940543 99.8 99.7 99.7 99.9 100.0 100.0 100.0
Gala MK940542 100.0 99.7 99.8 99.8 99.7 100.0 100.0
Fuji-BJ OP556109 99.9 99.6 99.7 99.9 100.0 99.8 99.5
Weihai MZ926714 99.7 99.6 99.4 99.6 99.4 99.6 99.5
Gala-BJ OP820577 - 99.7 - 99.9 100.0 99.9 100.0
AC1 MH038043 98.7 99.1 98.2 99.3 99.7 99.0 99.0
CCGaV_RNA2_T OR640154 99.8 99.6 99.7 99.3 99.7 98.6 98.2
CE-c3 OK495691 98.6 98.7 98.4 99.3 99.7 98.5 98.0
HU_Reglindis ON593790 - 99.4 99.6 99.1 99.4 98.8 98.5
HU_Jonagold ON593789 98.7 - - 98.8 99.1 98.3 98.5
CGW2 NC_035454 96.3 97.2 97.0 97.5 98.5 97.6 96.8
UN7 MH137741 96.5 97.3 96.4 97.6 98.5 97.6 96.3
LR3 MG764564 96.3 97.3 97.0 97.5 98.5 97.5 96.3
HU_Florina ON593791 99.3 - - 99.5 99.7 99.6 99.7
CGW2 KX960111 96.3 97.2 97.0 97.5 98.5 97.6 100.0

Fig. 5

Phylogenetic tree of ARWV-2-HB isolate and other ARWV representative isolates based on the RNASb CP amino acid sequence"

Fig. 6

Phylogenetic tree of CCGaV-HB isolate and other CCGaV representative isolates based on the CP amino acid sequence"

[1]
中国苹果产业协会;国家苹果产业技术体系. 2022年苹果产业发展概况(一). 中国果菜, 2024, 44(3): 1-9.
China Apple Industry Association; National Apple Industry Technology System. Overview of apple Industry development in 2022 (I). China Fruit & Vegetable, 2024, 44(3): 1-9. (in Chinese)
[2]
LIU L, CHEN X Q, YAN L Y, JIN Y K, SUN L L, YANG Y Z, WANG Y J, ZHAO Z Y. Different eradication effects of latent viruses by combining thermotherapy with shoot tip culture or cryotherapy in four apple cultivars. Scientia Horticulturae, 2021, 288: 110356.
[3]
王树桐, 王亚南, 曹克强. 近年我国重要苹果病害发生概况及研究进展. 植物保护, 2018, 44(5): 13-25, 50.
WANG S T, WANG Y N, CAO K Q. Occurrence of and research progress in important apple diseases in China in recent years. Plant Protection, 2018, 44(5): 13-25, 50. (in Chinese)
[4]
夏炎, 黄松, 武雪莉, 刘一琪, 王苗苗, 宋春晖, 白团辉, 宋尚伟, 庞宏光, 焦健, 郑先波. 基于宏病毒组测序技术的苹果病毒病鉴定与分析. 园艺学报, 2022, 49(7): 1415-1428.

doi: 10.16420/j.issn.0513-353x.2021-0450
XIA Y, HUANG S, WU X L, LIU Y Q, WANG M M, SONG C H, BAI T H, SONG S W, PANG H G, JIAO J, ZHENG X B. Identification and analysis of apple viruses diseases based on virome sequencing technology. Acta Horticulturae Sinica, 2022, 49(7): 1415-1428. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2021-0450
[5]
廖睿玲. 两种果树多组分RNA新病毒的分子鉴定[D]. 重庆: 西南大学, 2023.
LIAO R L. Molecular identification of two new multicomponent RNA viruses infecting fruit trees[D]. Chongqing: Southwest University, 2023. (in Chinese)
[6]
董云浩, 谢吉鹏, 李梦菲, 郝璐, 叶婷, 国立耘, 范在丰, 周涛. 加强果树规范化采样和病毒检测, 降低潜隐和危险性病毒对我国苹果产业的危害风险. 植物保护, 2020, 46(2): 164-168.
DONG Y H, XIE J P, LI M F, HAO L, YE T, GUO L Y, FAN Z F, ZHOU T. Reduction of the losses and risk of outbreaks caused by apple latent and dangerous viruses on China apple production by strengthening standard fruit tree sample collection and virus detection. Plant Protection, 2020, 46(2): 164-168. (in Chinese)
[7]
孙朱元吉. 苹果茎痘病毒梨分离物和苹果茎沟病毒基于单克隆抗体的血清学检测技术[D]. 杭州: 浙江大学, 2017.
SUN Z Y J. Monoclonal antibody-based serological detection techniques of pear isolate of apple stem pitting virus and apple stem grooving virus[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
[8]
PRASAD A, SHARMA N, MUTHAMILARASAN M, RANA S, PRASAD M. Recent advances in small RNA mediated plant- virus interactions. Critical Reviews in Biotechnology, 2019, 39(4): 587-601.
[9]
ZANARDO L G, DE SOUZA G B, ALVES M S. Transcriptomics of plant-virus interactions: A review. Theoretical and Experimental Plant Physiology, 2019, 31(1): 103-125.

doi: 10.1007/s40626-019-00143-z
[10]
刘青, 周书玉, 崔冬丽, SEYMOUR J. 高通量测序技术在植物病毒分类中的应用. 西南大学学报(自然科学版), 2022, 44(7): 87-95.
LIU Q, ZHOU S Y, CUI D L, SEYMOUR J. High-throughput sequencing technology and its application in plant virus detection. Journal of Southwest University (Natural Science Edition), 2022, 44(7): 87-95. (in Chinese)
[11]
DEVI B M, GURUPRASATH S, BALU P, CHATTOPADHYAY A, THILAGAR S S, DHANABALAN K V, CHOUDHARY M, MOPARTHI S, JAILANI A A K. Dissecting diagnostic and management strategies for plant viral diseases: What next? Agriculture, 2024, 14(2): 284.
[12]
米美璇, 张志想, 李世访, 战斌慧, 麦合木提江·米吉提. 利用高通量测序检测新疆野苹果上的病毒. 植物保护, 2023, 49(6): 247-252.
MI M X, ZHANG Z X, LI S F, ZHAN B H, MAIHEMUTI M J T. Virus detection of Malus sieversii from Xinjiang using high-throughput sequencing. Plant Protection, 2023, 49(6): 247-252. (in Chinese)
[13]
ZHANG Z X, QI S S, TANG N, ZHANG X X, CHEN S S, ZHU P F, MA L, CHENG J P, XU Y, LU M G, WANG H Q, DING S W, LI S F, WU Q F. Discovery of replicating circular RNAs by RNA-Seq and computational algorithms. PLoS Pathogens, 2014, 10(12): e1004553.
[14]
ROTT M E, KESANAKURTI P, BERWARTH C, RAST H, BOYES I, PHELAN J, JELKMANN W. Discovery of negative- sense RNA viruses in trees infected with apple rubbery wood disease by next-generation sequencing. Plant Disease, 2018, 102(7): 1254-1263.
[15]
NABI S U, MADHU G S, RAO G P, BARANWAL V K. Development of multiplex RT-PCR assay for simultaneous detection of four viruses infecting apple (Malus domestica). Letters in Applied Microbiology, 2022, 74(4): 586-592.
[16]
NABI S U, MIR J I, YASMIN S, DIN A, RAJA W H, MADHU G S, PARVEEN S, MANSOOR S, CHUNG Y S, SHARMA O C, SHEIKH M A, AL-MISNED F A, EL-SEREHY H A. Tissue and time optimization for real-time detection of apple mosaic virus and apple necrotic mosaic virus associated with mosaic disease of apple (Malus domestica). Viruses, 2023, 15(3): 795.
[17]
DANG T, BODAGHI S, OSMAN F, WANG J B, RUCKER T, TAN S H, HUANG A, PAGLIACCIA D, COMSTOCK S, LAVAGI- CRADDOCK I, et al. A comparative analysis of RNA isolation methods optimized for high-throughput detection of viral pathogens in California’s regulatory and disease management program for citrus propagative materials. Frontiers in Agronomy, 2022, 4: 911627.
[18]
HU G J, DONG Y F, ZHANG Z P, FAN X D, REN F, LU X K. First report of apple rubbery wood virus 2 infection of apples in China. Plant Disease, 2021, 105(2): 519.
[19]
WANG Y X, WANG Y, WANG G P, LI Q Y, ZHANG Z, LI L, LV Y Z, YANG Z K, GUO J S, HONG N. Molecular characteristics and incidence of apple rubbery wood virus 2 and citrus virus A infecting pear trees in China. Viruses, 2022, 14(3): 576.
[20]
NAVARRO B, ZICCA S, MINUTOLO M, SAPONARI M, ALIOTO D, DI SEROI F. A negative-stranded RNA virus infecting citrus trees: The second member of a new genus within the order Bunyavirales. Frontiers in Microbiology, 2018, 9: 2340.

doi: 10.3389/fmicb.2018.02340 pmid: 30333811
[21]
LIU Z, DONG Z F, ZHAN B H, LI S F. Characterization of an isolate of citrus concave gum-associated virus from apples in China and development of an RT-RPA assay for the rapid detection of the virus. Plants, 2021, 10(11): 2239.
[22]
WRIGHT A A, SZOSTEK S A, BEAVER-KANUYA E, HARPER S J. Diversity of three bunya-like viruses infecting apple. Archives of Virology, 2018, 163(12): 3339-3343.

doi: 10.1007/s00705-018-3999-z pmid: 30132135
[23]
SAATY T L. How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 1990, 48(1): 9-26.
[24]
胡馨, 张职亮, 张飞, 邓波, 房伟民. 大花型茶专用菊杂交后代株系的综合评价与筛选. 中国农业科学, 2022, 55(20): 4036-4051. doi: 10.3864/j.issn.0578-1752.2022.20.014.
HU X, ZHANG Z L, ZHANG F, DENG B, FANG W M. Comprehensive evaluation and selection of hybrid offsprings of large-flowered tea chrysanthemum. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051. doi: 10.3864/j.issn.0578-1752.2022.20.014. (in Chinese)
[25]
宋想, 王钟曼, 张秋玲, 魏媛媛, 赵小刚, 刘波, 戴思兰. 早花露地小菊杂交后代株系的综合评价与筛选. 中国农业科学, 2024, 57(1): 173-189. doi: 10.3864/j.issn.0578-1752.2024.01.012.
SONG X, WANG Z M, ZHANG Q L, WEI Y Y, ZHAO X G, LIU B, DAI S L. Comprehensive evaluation and selection of hybrid offsprings of early flowering spray outdoor chrysanthemum. Scientia Agricultura Sinica, 2024, 57(1): 173-189. doi: 10.3864/j.issn.0578-1752.2024.01.012. (in Chinese)
[26]
杨金凤, 郭永斌, 胡同乐, 王树桐, 王亚南, 曹克强. 河北保定地区苹果锈果类病毒分离物的序列分析. 北方园艺, 2016(6): 103-106.
YANG J F, GUO Y B, HU T L, WANG S T, WANG Y N, CAO K Q. Sequence analysis of apple scar skin viroid isolated from Baoding in Hebei. Northern Horticulture, 2016(6): 103-106. (in Chinese)
[27]
PARK H L, YOON J S, KIM H R, BAEK K H. Multiplex RT-PCR assay for the detection of apple stem grooving virus and apple chlorotic leaf spot virus in infected Korean apple cultivars. The Plant Pathology Journal, 2006, 22(2): 168-173.
[28]
NODA H, YAMAGISHI N, YAEGASHI H, XING F, XIE J P, LI S F, ZHOU T, ITO T, YOSHIKAWA N. Apple necrotic mosaic virus, a novel ilarvirus from mosaic-diseased apple trees in Japan and China. Journal of General Plant Pathology, 2017, 83(2): 83-90.
[29]
CAO M J, YU Y Q, TIAN X, YANG F Y, LI R H, ZHOU C Y. First report of citrus leaf blotch virus in lemon in China. Plant Disease, 2017, 101(8): 1561.
[30]
COSTA L C, ATHA B, HU X J, LAMOUR K, YANG Y, O’CONNELL M, MCFARLAND C, FOSTER J A, HURTADO-GONZALES O P. High-throughput detection of a large set of viruses and viroids of pome and stone fruit trees by multiplex PCR-based amplicon sequencing. Frontiers in Plant Science, 2022, 13: 1072768.
[31]
陈荣鑫. 3个苹果新品种主要病毒病的调查及RT-PCR检测采样条件的确定[D]. 杨凌: 西北农林科技大学, 2023.
CHEN R X. Investigation of main virus diseases of three new apple cultivars and determination of sampling conditions for RT-PCR detection[D]. Yangling: Northwest A&F University, 2023. (in Chinese)
[32]
MAINA S, DONOVAN N J, PLETT K, BOGEMA D, RODONI B C. High-throughput sequencing for plant virology diagnostics and its potential in plant health certification. Frontiers in Horticulture, 2024, 3: 1388028.
[33]
周俊. 桃及其野生近缘种中病毒组研究[D]. 北京: 中国农业科学院, 2020.
ZHOU J. Study on the virome of peach and its wild relative species[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[34]
SONG Z, LI Z A, LIU K H, ZHOU C Y. Complete genome sequence analysis of two citrus tatter leaf virus (CTLV) isolates from China. Journal of Integrative Agriculture, 2015, 14(5): 984-987.

doi: 10.1016/S2095-3119(14)60911-4
[35]
SHI W S, YAO R D, SUNWU R Z, HUANG K, LIU Z B, LI X F, YANG Y, WANG J M. Incidence and molecular identification of apple necrotic mosaic virus (ApNMV) in Southwest China. Plants, 2020, 9(4): 415.
[36]
JAMES D, VARGA A, JESPERSON G D, NAVRATIL M, SAFAROVA D, CONSTABLE F, HORNER M, EASTWELL K, JELKMANN W. Identification and complete genome analysis of a virus variant or putative new foveavirus associated with apple green crinkle disease. Archives of Virology, 2013, 158(9): 1877-1887.

doi: 10.1007/s00705-013-1678-7 pmid: 23553453
[37]
李春艳, 刘芳婷, 张王斌. 基于高通量测序对引起苹果外观异常病原的鉴定. 新疆农业科学, 2023, 60(1): 171-177.

doi: 10.6048/j.issn.1001-4330.2023.01.019
LI C Y, LIU F T, ZHANG W B. Identification of pathogens causing the abnormal appearance of apples in alar based on high-throughput sequencing technology. Xinjiang Agricultural Sciences, 2023, 60(1): 171-177. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2023.01.019
[1] CHEN YongXian, CHEN RuiJiang, DU YiZhi, ZHU JunJie, CHEN WanXia, ZHAO ZiHan, WANG JiChun, DU Kang, ZHANG Kai. Screening and Identification of Drought-Tolerant Sweet Potato Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(2): 214-237.
[2] WEI NaiCui, TAO JinBo, YUAN MingYang, ZHANG Yu, KAI MengXiang, QIAO Ling, WU BangBang, HAO YuQiong, ZHENG XingWei, WANG JuanLing, ZHAO JiaJia, ZHENG Jun. Seedling Characterization and Genetic Analysis of Low Phosphorus Tolerance in Shanxi Varieties [J]. Scientia Agricultura Sinica, 2024, 57(5): 831-845.
[3] CHEN XiHong, CAI Wei, YU Yun, LI Min, WANG NianWu, DU ZhenGuo, SHEN JianGuo, GAO FangLuan. Identification of Tea Plant Viruses in Fujian Province and Establishment of Multiplex PCR Detection Assay [J]. Scientia Agricultura Sinica, 2024, 57(4): 698-710.
[4] LI XinLei, SUN JiuYing, YANG Cheng, CHENG Ning, WANG KaiYue, WANG HuanHuan, CHENG XueJiao, ZHAO Jian, SUN YingFeng. Isolation, Identification and Genetic Variation of a Three-Lineage Strain Recombined Porcine Reproductive and Respiratory Syndrome Virus [J]. Scientia Agricultura Sinica, 2024, 57(24): 4978-4989.
[5] LI Pei, HE ZhiLin, TAN YueXia, ZHAO WanTong, FENG JinYing, CHEN GuiHu, YAN Chi, WANG ZiHao, HUANG Ping, JIANG Dong. Genetic Diversity Analysis of Mandarin and Excellent Germplasm Screening Based on Whole-Genome Resequencing Data and Phenotypic Traits [J]. Scientia Agricultura Sinica, 2024, 57(23): 4761-4773.
[6] ZHONG ZiChun, WU HongXin, ZHANG Jie, GUO YuJing, HE LiuYan, XU XiaoXia, JIN FengLiang, PANG Rui. Comparative Analysis of the Toll Receptor Gene Families in Three Species of Rice Planthoppers [J]. Scientia Agricultura Sinica, 2024, 57(20): 4007-4021.
[7] WANG Ni, SHI ZheYi, YOU YuanZheng, ZHANG Chao, ZHOU WenWu, ZHOU Ying, ZHU ZengRong. Effects of miRNA on Gene Expression of Sphingolipids Metabolism and Small RNA Analysis of Silencing NlSPT1 and NlSMase4 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 4022-4034.
[8] DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi. Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2 [J]. Scientia Agricultura Sinica, 2024, 57(2): 336-348.
[9] REN CaiXia, LIU Lin, LIU ShengXue, BU Fang DI, XIANG BenChun, ZHENG YinYing, CUI BaiMing. Complete Genome Sequence Analysis and Infectious Clone Construction of Mume Virus A Peach Isolate pp in Xinjiang [J]. Scientia Agricultura Sinica, 2024, 57(19): 3810-3822.
[10] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[11] CAO WeiPing, FENG Shuo, CHENG JiaXu, CHEN Dan, WU QingJun, SONG Jian. Species Identification of Beauveria brongniartii Strain JG-17 and Virulence Against Three Scarabaeoidae Pests [J]. Scientia Agricultura Sinica, 2024, 57(12): 2364-2377.
[12] LUO SuXian, ZHOU Hong, LIN HuiXing, FAN HongJie. Epidemiological Investigation of Respiratory Pathogens in Deceased Fattening Pigs in Major Pig Farming Area of Middle and Eastern China and Characterization of Pasteurella multocida [J]. Scientia Agricultura Sinica, 2024, 57(11): 2254-2264.
[13] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[14] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[15] WANG Qian, DONG KongJun, XUE YaPeng, LIU ShaoXiong, WANG RuoNan, YANG JiaQi, LU Ping, WANG RuiYun, YANG TianYu, LIU MinXuan. Identification and Evaluation of Drought Tolerance and Screening of Drought-Tolerant Germplasm for Core Germplasms in Proso Millet at Adult Stage [J]. Scientia Agricultura Sinica, 2023, 56(21): 4163-4174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!