Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (24): 4978-4989.doi: 10.3864/j.issn.0578-1752.2024.24.012

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Isolation, Identification and Genetic Variation of a Three-Lineage Strain Recombined Porcine Reproductive and Respiratory Syndrome Virus

LI XinLei1(), SUN JiuYing1, YANG Cheng1, CHENG Ning1, WANG KaiYue1, WANG HuanHuan2, CHENG XueJiao3, ZHAO Jian3, SUN YingFeng1()   

  1. 1 College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384
    2 Tianjin Nongken Kangjia Ecological Breeding Co., Ltd, Tianjin 300384
    3 Tianjin Zhongsheng Challenge Biotechnology Co., Ltd, Tianjin 300380
  • Received:2024-05-06 Accepted:2024-10-28 Online:2024-12-16 Published:2024-12-23
  • Contact: SUN YingFeng

Abstract:

【Objective】This study aimed to provide basic data for prevention and control of swine diseases in pig farms through analysis about molecular characterization of PRRSV isolated from the lungs of diseased piglets in pig farm in Tianjin. 【Method】Lung tissues of diseased piglets were collected, and PRRSV nucleic acid positive samples were inoculated into porcine alveolar macrophages (PAMs) for virus isolation and identification. The virus was purified by limited dilution method and identified by indirect immunofluorescence assay (IFA). Then, it was segmented amplification using overlapping primers of RT-PCR, and whole genome sequence was obtained by cloning. The nucleotide and amino acid sequences of N1 strain were analyzed for homology, genetic evolution, and recombination events using biological analysis software. 【Result】The PRRSV strain, named N1, was successfully isolated with the whole genome length of 15016 bp, excluding polyA tail. The homology analysis based on whole genome sequences showed that the homologous of N1 strain was 85.0%-90.0% to other lineage PRRSV strains, with the highest homology of 90.0% to lineage 8.3, the representative strain of JXA1, and the N1 isolate shared 93.7% identity with lineage 3 (QYYZ-like) in the ORF2a, ORF2b, and 3'UTR regions, and shared 96.2% identity with in the ORF5-ORF7 regions with lineage 1.8 (NADC30-like), while the rest of the regions had a high degree of homology with sublineage 8.3 (JXA1-like). It had similar 131 (111+1+19aa) discontinuous amino acid deletion pattern with lineage 1.8 (NADC30-like) in Nsp2-coding region. The virulence sites and major neutralizing antigenic epitopes of GP5 protein were identical to lineage 1 (NADC34-like, NADC30-like), but three N-glycosylation sites locating at N33, N44 and N51 were mutated to a certain extent compared with the other representative strains. These potential glycosylation sites were likely to contribute to the differences in viral virulence and led to the occurrence of viral immune escape. According to the genetic phylogenetic tree constructed based on ORF5 and whole genome sequences, the genetic evolution tree based on the ORF5 gene showed that N1 strain was closer to lineage 1.8 (NADC30-like) and belonged to the same branch, but N1 strain was in the same branch as lineage 8.3 (JXA1-like) strain based on whole genome genetic evolution tree, suggesting the possibility of this strain recombination. Recombination events of the N1 strain were analyzed by Simplot and RDP4.0 softwares, and the results of the recombination analyses showed that the N1 was a multiple recombinant virus from NADC30-, JXA1-, and QYYZ-Like strains with 13 recombination events and recombinant fragments located at A(1-421 nt), B(422-1 735 nt), C(736-3 598 nt), D(3 599-4 439 nt), E(4 440-5 762 nt), F(5 763-6 451 nt), G(6 502-7 226 nt), H(7 227-8 295 nt), I(8 296-9 312 nt), J(9 313-11 536 nt), K(11 537-12 854 nt), L(12 855-13 859 nt), M(13 860- 15 016 nt) with recombinant breakpoints in Nsp1, Nsp2, Nsp3, Nsp4, Nsp7, Nsp9, Nsp12, ORF3, and ORF5. 【Conclusion】The PRRSV N1 strain isolated in this experiment was a three-lineage recombinant strain of PRRSV with the sublineage 8.3 (JXA1-like) strain as its main parent, it exhibited extensive and complex recombination patterns between sublineage 1.8, lineage 3, and sublineage 8.3, and the results provided the reference for the comprehensive prevention and control of porcine reproductive and respiratory syndrome in Tianjin area.

Key words: PRRSV, isolation and identification, recombination, genetic evolution analysis

Table 1

Genome-wide sequence information of the PRRSV reference strain"

名称
Name
登录号
Gene ID
国别
Country
年份
Year
名称
Name
登录号
Gene ID
国别
Country
年份
Year
APRRS GQ330474.2 China 2009 Prime Pac DQ779791.1 USA 2006
NADC34 MF326985 USA 2014 HK15 KF287142.1 China 2013
1483 KP998403.1 China 2015 QYYZ JQ308798.1 China 2011
NADC30 JN654459.1 USA 2008 SH1211 KF678434.1 China 2013
HNhx KX766379.1 China 2016 RespPRRS MLV AF066183.4 USA 2005
Q94-136 KP998421.1 China 2015 CH-1a AY032626.1 China 1996
MN184C EF488739.1 USA 2007 VR2332 U87392.3 USA 1992
GD-KP KU978619.1 China 2015 JXA1 EF112445.1 China 2006
TJ EU860248.1 China 2006

Fig. 1

Clinical samples RT-PCR amplification M: NormalRun 250 bp-I DNA ladder; 1: Positive material for disease; 2: Negative control"

Fig. 2

Isolation and identification of PRRSV strain N1 A: Normal PAMs cells; B: Cytopathy of PAMs; C: IFA assays for normal PAMs cells; D: IFA assay isolate N1 infected PAMs cells"

Fig. 3

N1 genome full-length segmented amplification M: NormalRun 250bp-I DNA ladder; 1-14: Amplification products of each fragment of the N1 genome"

Table 2

Nucleotide homology of the ORF region of isolate N1 with representative PRRSV strains"

项目
Project
NADC34
Sublineage1.5
NADC30
Sublineage1.8
SH1211
Lineage2
QYYZ
Lineage3
VR2332
Lineage5
ARRS
Lineage7
JXA1
Sublineage8.3
CH-1a
Sublineage8.1
全长 Total length 83.7% 87.1% 88.7% 85.0% 86.9% 86.1% 90.0% 88.8%
5′UTR 91.1% 89.5% 89.4% 91.1% 91.1% 89.5% 91.1% 91.1%
ORF1a 80.3% 85.7% 85.9% 81.4% 84.5% 83.5% 87.3% 86.0%
ORF1b 86.2% 88.6% 91.9% 88.2% 89.2% 89.0% 94.2% 92.3%
ORF2a 85.6% 84.8% 90.1% 89.0% 88.6% 85.7% 87.8% 88.5%
ORF2b 86.0% 90.5% 92.8% 93.7% 91.5% 90.1% 91.0% 91.4%
ORF3 82.6% 81.6% 95.5% 89.5% 88.5% 87.3% 97.4% 94.4%
ORF4 85.5% 84.9% 96.6% 94.4% 89.4% 90.9% 96.8% 95.9%
ORF5 86.9% 90.0% 85.1% 84.2% 84.9% 85.9% 85.1% 86.4%
ORF6 92.0% 94.1% 88.6% 87.6% 89.0% 89.1% 88.8% 87.8%
ORF7 93.8% 96.2% 94.9% 86.8% 92.7% 93.0% 90.1% 90.6%
3′UTR 92.1% 93.9% 92.7% 90.1% 94.7% 94.1% 89.5% 91.4%

Table 3

Amino acid homology of isolate N1 with representative PRRSV strains"

项目
Project
NADC34
Sublineage1.5
NADC30
Sublineage1.8
SH1211
Lineage2
QYYZ
Lineage3
VR2332
Lineage5
ARRS
Lineage7
JXA1
Sublineage8.3
CH-1a
Sublineage8.1
Nsp1 82.7% 83.5% 92.9% 86.4% 86.8% 86.9% 95.6% 92.0%
Nsp2 74.3% 84.6% 81.4% 75.7% 80.9% 79.3% 83.5% 81.0%
Nsp3 85.7% 90.2% 83.5% 82.6% 86.1% 85.9% 83.6% 84.9%
Nsp4 84.7% 83.7% 89.3% 82.3% 86.7% 84.0% 90.5% 88.8%
Nsp5 81.8% 87.7% 84.8% 80.2% 85.0% 85.4% 85.9% 88.0%
Nsp6 88.5% 90.4% 86.5% 84.6% 86.5% 88.5% 86.5% 84.6%
Nsp7 81.8% 83.8% 91.8% 89.4% 86.8% 85.5% 92.5% 90.8%
Nsp8 92.1% 90.1% 98.7% 95.4% 96.0% 95.4% 99.3% 100.0%
Nsp9 87.3% 89.7% 91.2% 88.3% 89.2% 88.8% 92.6% 91.6%
Nsp10 85.7% 84.6% 95.5% 90.8% 90.0% 90.2% 99.1% 95.2%
Nsp11 85.7% 90.1% 91.6% 87.2% 89.4% 89.4% 95.0% 93.1%
Nsp12 82.8% 92.4% 85.8% 82.8% 86.0% 85.4% 86.0% 86.0%
GP2a 84.5% 84.1% 90.1% 87.8% 87.5% 84.8% 88.4% 87.7%
GP2b 84.7% 90.5% 93.0% 93.4% 90.9% 93.0% 89.7% 90.5%
GP3 82.4% 81.2% 95.5% 90.0% 88.4% 87.2% 97.6% 94.5%
GP4 84.8% 84.3% 94.4% 92.7% 88.4% 89.9% 95.3% 94.3%
GP5 86.7% 89.3% 85.0% 83.8% 84.4% 85.3% 84.9% 85.8%
M 87.7% 94.2% 88.9% 87.7% 89.1% 89.3% 89.1% 88.0%
N 92.9% 95.6% 94.8% 85.7% 92.1% 92.4% 89.4% 89.4%

Table 4

Comparison of key amino acid sites of N1 strain GP5 protein with representative PRRSV strains"

毒株
Strain
毒力位点
Virulence locus
毒株鉴别位点
Strain identification site
主要中和抗原表位
Major neutralizing antigenic epitopes
13 151 137 37 38 39 40 41 42 43 44 45
N1 Q K S S H L Q L I Y N L
NADC34
Sublineage1.5
Q K S S H L Q L I Y N L
NADC30
Sublineage1.8
Q K S S H L Q L I Y N L
QYYZ
Lineage3
Q K S S Y S Q L I Y N L
VR2332
Lineage5
R R A S H L Q L I Y N L
JXA1
Sublineage8.3
R R S S H I Q L I Y N L

Fig. 4

Analysis of GP5 N-glycosylation sites"

Fig. 5

Phylogenetic tree of isolated strain N1 based on whole genome sequence and ORF5 gene A: Phylogenetic tree based on whole genome sequence; B: Phylogenetic tree based on ORF5 gene"

Fig. 6

Recombination analysis of N1"

Table 5

Recombination region analysis of N1"

重组区域
Reorganization region
重组位点(nt)
Recombination site
主要亲本
Major parent
次要亲本
Minor parent
P value
RDP BootScan MaxChi Chimaera SiScan Phylpro
A 1-421 JXA1 QYYZ 1.095×10-20 2.080×10-19 3.278×10-9 1.373×10-10 3.970×10-7 2.220×10-15
C 1736-3598 JXA1 NADC30 2.788×10-53 4.086×10-29 2.750×10-22 5.663×10-24 2.572×10- 31 1.110×10-15
E 4440-5762 JXA1 NADC30 1.992×10-29 2.616×10-26 2.940×10-6 5.158×10-27 3.269×10-16 3.330×10-15
G 6502-7226 JXA1 NADC30 1.950×10-16 6.263×10-18 8.705×10-22 6.763×10-16 1.982×10-4 3.330×10-15
I 8296-9312 JXA1 NADC30 6.450×10-33 1.764×10-32 1.784×10-18 2.944×10-20 2.522×10-14 4.440×10-15
K 11537-12854 JXA1 NADC30 1.447×10-18 1.273×10-18 4.880×10-25 4.469×10-17 4.652×10-3 5.804×10-11
M 13860-15016 JXA1 NADC30 5.238×10-27 2.180×10-27 5.437×10-17 2.184×10-6 8.484×10-13 3.330×10-15
[1]
郭宝清, 陈章水, 刘文兴, 崔益洙. 从疑似PRRS流产胎儿分离PRRSV的研究. 中国畜禽传染病, 1996, 18(2): 3-7.
GUO B Q, CHEN Z S, LIU W X, CUI Y Z. Isolation of PRRSV from fetuses aborted with suspected PRRS. Chinese Journal of Preventive Veterinary Medicine, 1996, 18(2): 3-7. (in Chinese)
[2]
TIAN K G, YU X L, ZHAO T Z, FENG Y J, CAO Z, WANG C B, HU Y, CHEN X Z, HU D M, TIAN X S, et al. Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS ONE, 2007, 2(6): e526.

doi: 10.1371/journal.pone.0000526 pmid: 17565379
[3]
童光志, 周艳君, 郝晓芳, 田志军, 仇华吉, 彭金美, 安同庆. 高致病性猪繁殖与呼吸综合征病毒的分离鉴定及其分子流行病学分析. 中国预防兽医学报, 2007, 29(5): 323-327.
TONG G Z, ZHOU Y J, HAO X F, TIAN Z J, QIU H J, PENG J M, AN T Q. Identification and molecular epidemiology of the very virulent porcine reproductive and respiratory syndrome viruses emerged in China. Chinese Journal of Preventive Veterinary Medicine, 2007, 29(5): 323-327. (in Chinese)
[4]
张建武, 庄金山, 袁世山. 中国部分地区高致病性猪繁殖与呼吸综合征病毒的分子流行病学研究. 中国农业科学, 2008, 41(6): 1822-1831.
ZHANG J W, ZHUANG J S, YUAN S S. Molecular epidemiology study on high pathogenic porcine reproductive and respiratory syndrome virus in some regions of China. Scientia Agricultura Sinica, 2008, 41(6): 1822-1831. (in Chinese)
[5]
许浒. 我国Lineage 3 PRRSV的流行病学调查及其单克隆抗体的制备[D]. 哈尔滨: 东北农业大学, 2020.
XU H. Epidemiological Investigation of Lineage 3 PRRSV in China and Preparation of Monoclonal Antibodies against Lineage 3 PRRSV[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese)
[6]
杨程, 刘野, 程宁, 王凯月, 李欣蕾, 孙久英, 韩俊平, 李文军, 王欢欢, 邵笑, 程雪娇, 孙英峰. 一株PRRSV-2谱系1.8与1.5重组毒株的基因组特征分析. 畜牧兽医学报, 2024, 55(8): 3570-3578.

doi: 10.11843/j.issn.0366-6964.2024.08.028
YANG C, LIU Y, CHENG N, WANG K Y, LI X L, SUN J Y, HAN J P, LI W J, WANG H H, SHAO X, CHENG X J, SUN Y F. Genomic characterization of a recombinant strain of PRRSV-2 between lineages 1.8 and 1.5. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3570-3578. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2024.08.028
[7]
XU H, SONG S J, ZHAO J, LENG C L, FU J, LI C, TANG Y D, XIANG L R, PENG J M, WANG Q, ZHAO H Y, AN T Q, CAI X H, ZHANG H L, TIAN Z J. A potential endemic strain in China: NADC34-like porcine reproductive and respiratory syndrome virus. Transboundary and Emerging Diseases, 2020, 67(4): 1730-1738.

doi: 10.1111/tbed.13508 pmid: 32037673
[8]
SUN Y F, LIU Y, YANG J, LI W Z, YU X X, WANG S Y, LI L A, YU H. Recombination between NADC34-like and QYYZ-like strain of porcine reproductive and respiratory syndrome virus with high pathogenicity for piglets in China. Transboundary and Emerging Diseases, 2022, 69(5): e3202-e3207.
[9]
SUN Y F, YANG J, LIU Y, LI W Z, YU X X, LI L A, YU H. Emergence of novel recombinant type 2 porcine reproductive and respiratory syndrome viruses with high pathogenicity for piglets in China. The Journal of Infection, 2021, 83(5): 607-635.
[10]
刘野, 李文忠, 杨婧, 程宁, 杨程, 王凯月, 吴庆东, 张乐, 赵瑞利, 孙英峰. 1株重组类NADC34猪繁殖与呼吸综合征病毒分离鉴定与基因组特征分析. 中国兽医学报, 2023, 43(11): 2212-2220.
LIU Y, LI W Z, YANG J, CHENG N, YANG C, WANG K Y, WU Q D, ZHANG L, ZHAO R L, SUN Y F. Isolation and genome analysis of a recombinant NADC34-like porcine reproductive and respiratory syndrome virus. Chinese Journal of Veterinary Science, 2023, 43(11): 2212-2220. (in Chinese)
[11]
李文忠, 荣新利, 刘野, 吴庆东, 张乐, 孙英峰, 于海. 天津地区猪繁殖与呼吸综合征流行毒株ORF5基因的克隆及遗传变异分析. 中国动物传染病学报, 2023. https://doi.org/10.19958/j.cnki.cn31-2031/s.20230210.003.
LI W Z, RONG X L, LIU Y, WU Q D, ZHANG L, SUN Y F, YU H. Cloning and genetic variation analysis of ORF5 gene of porcine reproductive and respiratory syndrome epidemic strains in Tianjin. Chinese Journal of Animal Infectious Diseases, 1-10. https://doi.org/10.19958/j.cnki.cn31-2031/s.20230210.003. (in Chinese)
[12]
ALLENDE R, LEWIS T L, LU Z, ROCK D L, KUTISH G F, ALI A, DOSTER A R, OSORIO F A. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. The Journal of General Virology, 1999, 80 (Pt 2): 307-315.
[13]
GAO Z Q, GUO X, YANG H C. Genomic characterization of two Chinese isolates of porcine respiratory and reproductive syndrome virus. Archives of Virology, 2004, 149(7): 1341-1351.

pmid: 15221535
[14]
DO V T, DAO H T, HAHN T W. Generation of a cold-adapted PRRSV with a nucleotide substitution in the ORF5 and numerous mutations in the hypervariable region of NSP2. Journal of Veterinary Science, 2020, 21(6): e85.

doi: 10.4142/jvs.2020.21.e85 pmid: 33263232
[15]
LUO Q, ZHENG Y J, ZHANG H, YANG Z Y, SHA H Y, KONG W L, ZHAO M M, WANG N N. Research progress on glycoprotein 5 of porcine reproductive and respiratory syndrome virus. Animals, 2023, 13(5): 813.
[16]
WANG A P, CHEN Q, WANG L Y, MADSON D, HARMON K, GAUGER P, ZHANG J Q, LI G W. Recombination between vaccine and field strains of porcine reproductive and respiratory syndrome virus. Emerging Infectious Diseases, 2019, 25(12): 2335-2337.

doi: 10.3201/eid2512.191111 pmid: 31742529
[17]
WANG H M, LIU Y G, TANG Y D, LIU T X, ZHENG L L, WANG T Y, LIU S G, WANG G, CAI X H. A natural recombinant PRRSV between HP-PRRSV JXA1-like and NADC30-like strains. Transboundary and Emerging Diseases, 2018, 65(4): 1078-1086.

doi: 10.1111/tbed.12852 pmid: 29520988
[18]
AN T Q, TIAN Z J, XIAO Y, LI R, PENG J M, WEI T C, ZHANG Y, ZHOU Y J, TONG G Z. Origin of highly pathogenic porcine reproductive and respiratory syndrome virus, China. Emerging Infectious Diseases, 2010, 16(2): 365-367.
[19]
WANG L J, WAN B, GUO Z H, QIAO S L, LI R, XIE S, CHEN X X, ZHANG G P. Genomic analysis of a recombinant NADC30-like porcine reproductive and respiratory syndrome virus in China. Virus Genes, 2018, 54(1): 86-97.
[20]
WANG A R, WANG G H, WANG S M, DUAN H Y, JIANG Y F, ZHOU Y J, LI L W, GAO F. Research Progress on Glycoprotein 5 of Porcine Reproductive and Respiratory Syndrome Virus. Chinese Journal of Animal Infectious Diseases, 2024. https://link.cnki.net/urlid/31.2031.S.20240104.1454.004. (in Chinese)
[21]
李文军, 王欢欢, 邵笑, 刘野, 李文忠, 孙英峰. 2019—2022年天津地区猪繁殖与呼吸综合征病毒ORF5基因遗传演化分析. 天津农学院学报, 2024, 31(1): 71-77.

doi: 10.19640/j.cnki.jtau.2024.01.013
LI W J, WANG H H, SHAO X, LIU Y, LI W Z, SUN Y F. Genetic evolution analysis of the ORF5 gene in porcine reproductive and respiratory syndrome virus in Tianjin from 2019 to 2022. Journal of Tianjin Agricultural University, 2024, 31(1): 71-77. (in Chinese)
[22]
WANG P P, DONG J G, ZHANG L Y, LIANG P S, LIU Y L, WANG L, FAN F H, SONG C X. Sequence and phylogenetic analyses of the Nsp2 and ORF5 genes of porcine reproductive and respiratory syndrome virus in boars from South China in 2015. Transboundary and Emerging Diseases, 2017, 64(6): 1953-1964.

doi: 10.1111/tbed.12594 pmid: 27888586
[23]
HAN G W, LEI K X, XU H L, HE F. Genetic characterization of a novel recombinant PRRSV2 from lineage 8, 1 and 3 in China with significant variation in replication efficiency and cytopathic effects. Transboundary and Emerging Diseases, 2020, 67(4): 1574-1584.

doi: 10.1111/tbed.13491 pmid: 31975574
[24]
杨汉春, 周磊. 2023年猪病流行情况与2024年流行趋势及防控对策. 猪业科学, 2024, 41(2): 61-64.
YANG H C, ZHOU L. Prevalence of Swine Diseases in 2023 and Trend of Prevalence and Countermeasures for Prevention and Control in 2024. Swine Industry Science, 2024, 41(2): 61-64. (in Chinese)
[25]
LIU J K, WEI C H, LIN Z F, FAN J L, XIA W, DAI A L, YANG X Y. Recombination in lineage 1, 3, 5 and 8 of porcine reproductive and respiratory syndrome viruses in China. Infection, Genetics and Evolution, 2019, 68: 119-126.

doi: S1567-1348(18)30717-2 pmid: 30529558
[26]
BIAN T, SUN Y F, HAO M, ZHOU L, GE X N, GUO X, HAN J, YANG H C. A recombinant type 2 porcine reproductive and respiratory syndrome virus between NADC30-like and a MLV-like: genetic characterization and pathogenicity for piglets. Infection, Genetics and Evolution, 2017, 54: 279-286.

doi: S1567-1348(17)30245-9 pmid: 28713014
[27]
ZHAO K, YE C, CHANG X B, JIANG C G, WANG S J, CAI X H, TONG G Z, TIAN Z J, SHI M, AN T Q. Importation and recombination are responsible for the latest emergence of highly pathogenic porcine reproductive and respiratory syndrome virus in China. Journal of Virology, 2015, 89(20): 10712-10716.

doi: 10.1128/JVI.01446-15 pmid: 26246582
[28]
KVISGAARD L K, KRISTENSEN C S, RYT-HANSEN P, PEDERSEN K, STADEJEK T, TREBBIEN R, ANDRESEN L O, LARSEN L E. A recombination between two Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-1) vaccine strains has caused severe outbreaks in Danish pigs. Transboundary and Emerging Diseases, 2020, 67(5): 1786-1796.
[29]
SHI M, HOLMES E C, BRAR M S, LEUNG F C C. Recombination is associated with an outbreak of novel highly pathogenic porcine reproductive and respiratory syndrome viruses in China. Journal of Virology, 2013, 87(19): 10904-10907.

doi: 10.1128/JVI.01270-13 pmid: 23885071
[30]
ZHAO H J, HAN Q G, ZHANG L, ZHANG Z Y, WU Y F, SHEN H, JIANG P. Emergence of mosaic recombinant strains potentially associated with vaccine JXA1-R and predominant circulating strains of porcine reproductive and respiratory syndrome virus in different provinces of China. Virology Journal, 2017, 14(1): 67.

doi: 10.1186/s12985-017-0735-3 pmid: 28376821
[31]
LIU J K, ZHOU X, ZHAI J Q, WEI C H, DAI A L, YANG X Y, LUO M L. Recombination in JXA1-R vaccine and NADC30-like strain of porcine reproductive and respiratory syndrome viruses. Veterinary Microbiology, 2017, 204: 110-120.

doi: S0378-1135(16)30645-9 pmid: 28532789
[20]
王安冉, 王桂花, 王树茂, 段宏勇, 姜一峰, 周艳君, 李丽薇, 高飞. 猪繁殖与呼吸综合征病毒糖蛋白5的研究进展. 中国动物传染病学报, 2024. https://link.cnki.net/urlid/31.2031.S.20240104.1454.004.
[1] LI BOTIAN, LI CHUNQI, LIU GUOPING, XIE JUN, ZENG PAN, ZHAO RUNZE, LI TONG, PEI JIE, GUO LIWEI, WU RUI, TAN LEI. Molecular Epidemic Characteristics and Genetic Variation Analysis of Porcine Circovirus 3 in Some Pig Farms in Central China from 2020 to 2022 [J]. Scientia Agricultura Sinica, 2024, 57(3): 613-626.
[2] CAO WeiPing, FENG Shuo, CHENG JiaXu, CHEN Dan, WU QingJun, SONG Jian. Species Identification of Beauveria brongniartii Strain JG-17 and Virulence Against Three Scarabaeoidae Pests [J]. Scientia Agricultura Sinica, 2024, 57(12): 2364-2377.
[3] Qun ZHOU,XiaoFei CHEN,RuiCi KAN,Yu LI,Hui CAO,YanLing PENG,Bin ZHANG. Molecular Epidemiological Investigation of Porcine Group A Rotavirus in Sichuan from 2017 to 2019 [J]. Scientia Agricultura Sinica, 2021, 54(5): 1063-1072.
[4] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[5] ZHAO JiuRan, LI ChunHui, SONG Wei, LIU XinXiang, WANG YuanDong, ZHANG RuYang, WANG JiDong, SUN Xuan, WANG XiaQing. Heterosis and Genetic Recombination Dissection of Maize Key Inbred Line Jing2416 [J]. Scientia Agricultura Sinica, 2020, 53(22): 4527-4536.
[6] QIN YanHong,WANG YongJiang,WANG Shuang,QIAO Qi,TIAN YuTing,ZHANG DeSheng,ZHANG ZhenChen. Complete Nucleotide Sequence Analysis and Genetic Characterization of the Sweet potato feathery mottle virus O and RC Strains Isolated from China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2207-2218.
[7] CUI TianTian, YAN JianHong, BIN Yu, LI ZhongAn, ZHOU ChangYong, SONG Zhen. Construction of Citrus leaf blotch virus Infectious cDNA Clone by Yeast Homologous Recombination System [J]. Scientia Agricultura Sinica, 2018, 51(9): 1695-1705.
[8] LONG DingPei, HAO ZhanZhang, XIANG ZhongHuai, ZHAO AiChun. Current Status of Transgenic Technologies for Safety Consideration in Silkworm (Bombyx mori) and Future Perspectives [J]. Scientia Agricultura Sinica, 2018, 51(2): 363-373.
[9] LIU Zhi-yun, LIU Guo-hua, CAI Hui-yi, ZHANG Shu, CHANG Wen-huan, XIE Qing, SI Yan-pei. Isolation and Characterization of Ammonia Nitrogen-Degrading Microbe from Chicken Manure [J]. Scientia Agricultura Sinica, 2016, 49(6): 1187-1195.
[10] GAO Fang-luan, CHANG Fei, SHEN Jian-guo, XIE Lian-hui, ZHAN Jia-sui. Complete Genome Analysis of a PVYNTN-NW Recombinant Isolate from Yulin of China [J]. Scientia Agricultura Sinica, 2015, 48(2): 270-279.
[11] LI Ke, SHI Hong-wei, JING Chen-chen, SUN Xian-chao, ZHOU Chang-yong, QING Ling. Analysis of Genome Recombination and CP Sequence Diversity of ACLSV Apple Isolate from Shandong [J]. Scientia Agricultura Sinica, 2015, 48(14): 2857-2867.
[12] XU Miao, WU Yang, YANG Yan, XIA Li-qiu. Impact on Strain Growth and Spinosad Biosynthesis by Overexpression of Cyclic AMP Receptor Protein Gene in Saccharopolyspora spinosa [J]. Scientia Agricultura Sinica, 2014, 47(18): 3577-3587.
[13] SONG Na, DAI Qing-Qing, SONG Na, HUANG Li-Li, HAN Qing-Mei. Construction of Knockout Vector of GTP Cyclohydrolase II Gene and Mutant’s Biological Characteristics of Valsa mali [J]. Scientia Agricultura Sinica, 2014, 47(15): 2980-2989.
[14] TIAN Li-1, LIU Na-1, XU Rong-Qi-2, QU Zhi-Cai-1, LIU Qian-1. Construction of Enhanced Gene Knockout Frequency Recipient Strain by Deletion of Vdku80 in Verticillium dahliae [J]. Scientia Agricultura Sinica, 2014, 47(11): 2142-2150.
[15] REN Juan-Juan, WANG Jing-Yu, LIU Hong-Yan, LIU Wan-Hua, WU Ning, QIU Yuan-Hao, TANG Pan, JIANG Yue-De. Phylogenetic Analysis of Avain-like H1N1 Swine Influenza Virus in Shaanxi Province [J]. Scientia Agricultura Sinica, 2013, 46(18): 3901-3913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!