Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (17): 3503-3515.doi: 10.3864/j.issn.0578-1752.2025.17.011

• HORTICULTURE • Previous Articles     Next Articles

Investigation and Evaluation of Inflorescence Attachment and Quality of Grape Germplasm Resources in The Hot Zone Guangxi

YU Huan1,2(), LIN Ling1, GUO RongRong1, CAO XiongJun1, WANG Bo3, FANG JingGui2, XIE ShuYu1, HUANG XiaoYun4, HAN JiaYu1,*(), BAI XianJin1,*()   

  1. 1 Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
    2 College of Horticulture, Nanjing Agricultural University, Nanjing 210095
    3 College of Agriculture, Guangxi University, Nanning 530004
    4 Guangxi Zhencheng Agriculture Co., Ltd., Nanning 530007
  • Received:2025-04-15 Accepted:2025-06-03 Online:2025-09-02 Published:2025-09-02
  • Contact: HAN JiaYu, BAI XianJin

Abstract:

【Objective】In recent years, with the promotion of rain-shelter cultivation and double cropping techniques, grape production in hot zones has achieved off-season and high-efficiency production. However, hot-region grapes face problems such as poor flower bud differentiation, uneven germination, and "flower running", which are the main constraints on stable and high-quality production. This study aims to systematically investigate and evaluate the inflorescence attachment characteristics and development quality of 98 grape germplasms in hot zones Guangxi, clarify the adaptability differences among different germplasms in hot zones, and provide theoretical basis and technical guidance for variety breeding and production management.【Method】This study investigated and evaluated the germination rate, flower bud rate, shoot formation rate, number of inflorescences per shoot, inflorescence attachment node, inflorescence type and quality of 98 grape germplasms in hot zones Guangxi for two consecutive years, covering European, American, and European-American hybrids. It deeply analyzed the quality differences and patterns among different varieties and inflorescence attachment nodes.【Result】Under the treatment of hydrogen cyanamide, all 98 germplasms could germinate and form shoots smoothly, among which 92 varieties could form normal inflorescences. The average germination rate was 90.42%, the shoot formation rate was 92.13%, the flower bud rate was about 61.06%, and the average number of inflorescences per shoot was 1.67. However, abnormal inflorescences were quite prominent, with a total proportion of 40.56%. This study classified abnormal inflorescences into three major types: tendrils type, differentiation cessation type and trophic tissue type. Among them, the tendril type was the most common, further divided into one to five tendril types, and all investigated varieties had two tendrils type inflorescences; the differentiation cessation type included single head type (only scales or death point), tendrils death point type, and branch death point type; the trophic tissue type included branch tendril and leaf tendril types. Shine Muscat showed all abnormal types and were representative materials of high sensitivity. Among the 8 investigated nodes, the inflorescence attachment was most concentrated at the 3rd and 4th nodes, accounting for 27.99% and 27.06% of the total inflorescences, respectively. The abnormal inflorescence rate at the 3rd node was the lowest, only 17.22%. Further population analysis indicated that V. vinifera L.×V. labrusca L. had higher flower bud rates (68.60%), more inflorescences per shoot (about 1.8), and higher normal inflorescence rates than V. vinifera (flower bud rate 46.59%). Moreover, varieties with high germination rates, flower bud rates, and shoot formation rates had more inflorescences per shoot and significantly lower abnormal inflorescence rates.【Conclusion】The attachment node of inflorescences significantly affects their quality performance. Among them, the middle nodes, especially the 3rd node, had the lowest abnormal inflorescence rate. Therefore, in production, for varieties prone to abnormal inflorescences, it is recommended to prioritize the retention of inflorescences at the 3rd node. Varieties with high germination rates, flower bud rates, and shoot formation rates and more inflorescences per shoot are more likely to obtain normal and high-quality inflorescences. Different grape populations show significant differences in inflorescence development and abnormal occurrence. V. vinifera L.×V. labrusca L. perform better in hot zones, with higher flower bud rates and normal inflorescence proportions. They are recommended as the preferred germplasm resources for cultivation in hot zones.

Key words: hot zone, grape, abnormal inflorescences, quality of inflorescence, investigation and evaluation

Table 1

Germination rate, flower bud rate and shoot formation rate"

花芽指标Indicators of flower buds 平均值
Average value (%)
范围
Range
(%)
最小值Minimum value 最大值Maximum value
种质数量
Germplasm number
具体种质编号
Specific germpoasm ID
种质数量
Germplasm number
具体种质编号
Specific germpoasm ID
萌芽率GR 90.42 50.00-100.00 2 69, 86 21 1, 2, 10, 22, 25, 34, 35, 37, 38, 39, 48, 56, 57, 58, 77, 81, 82, 88, 90, 97, 98
花芽率FBR 61.06 0.00-100.00 6 13, 15, 26, 31, 36, 42 9 16, 47, 49, 51, 55, 67, 85, 97, 98
成枝率SFR 92.13 45.46-100.00 1 54 27 2, 6, 9, 10, 12, 13, 15, 16, 17, 22, 24, 35, 37, 47, 49, 51, 55, 61, 67, 69, 74, 76, 81, 84, 85, 86, 98

Fig. 1

Indicators of flower buds for different grape groups Ⅰ: V. vinifera; Ⅱ: V. vinifera L.×V. labrusca L.; Ⅲ: V. vinifera L.×V. amurensi Rupr.; Ⅳ: Other varieties, including: V. riparia Michx., Vitis aestivalis, Vitis labrusca, Vitis simpsonii, V. vinifera, Vitis quinquangularis×V. vinifera, Vitis rupestris, Vitis lincecumii, V. vinifera, Vitis quinquangularis, V. pseudoreticulata, Vitis sp. Different lowercase letters indicate significant differences at the P<0.05 level. The same as below"

Table 2

Appearance of inflorescences at different nodes of grape germplasm resources"

项目
Items
不同节位 Different nodes
1 2 3 4 5 6 7 8
有花种质数量
Number of germplasms with inflorescences
18 58 80 84 75 50 29 14
有花种质占有花种质总数比率
Proportion of inflorescences germplasm in all inflorescence’s germplasm (%)
19.57 63.04 86.96 91.30 81.52 54.35 31.52 15.22
花序率范围
Range of inflorescence rate (%)
0.00-28.57 0.00-43.75 0.00-100.00 0.00-100.00 0.00-100.00 0.00-100.00 0.00-42.86 0.00-42.86

Fig. 2

Rate of inflorescence at different nodes of grape germplasm resources A: Rate of inflorescences at different nodes; B: Inflorescence rate of different grape groups at different nodes"

Fig. 3

Grape abnormal inflorescence types"

Fig. 4

Grape tendrils type abnormal inflorescences of varying degrees of degeneration"

Fig. 5

Grape differentiation cessation type abnormal inflorescences of varying degrees of degeneration"

Fig. 6

Grape trophic tissue type abnormal inflorescences of varying degrees of degeneration"

Table 3

Inflorescence type of different grape germplasm resources"

不正常花序类型
Abnormal inflorescence type
种质数量
Germplasm number
种质数量占总种质数量比率
Ratio of the germplasm number
to total number of germplasm (%)
具体种质编号
Specific germplasm ID
卷须型
Tendril type
1卷 One tendril 27 27.55 4, 8, 11, 18, 24, 40, 41, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 56, 62, 65, 67, 68, 72, 80, 91, 92, 96
2卷 Two tendrils 98 100.00 全部All
3卷 Three tendrils 77 78.57 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 71, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 96, 97, 98
4卷 Four tendrils 14 14.29 2, 3, 10, 20, 28, 31, 52, 53, 61, 72, 78, 84, 85, 90
5卷 Five tendrils 2 2.04 72, 90
停止分化型
Differentiation cessation type
单头
Single head
死亡点Death point 2 2.04 54, 72
只有鳞片Only scales 1 1.02 72
枝条死亡点Branch death point 1 1.02 72
卷须死亡点Tendrils death point 1 1.02 72
营养组织型
Trophic tissue type
叶片卷须Leaf tendrils 15 15.31 3, 5, 9, 12, 14, 15, 31, 32, 42, 52, 53, 66, 72, 90, 98
枝条卷须Branch tendrils 15 15.31 3, 5, 9, 12, 14, 15, 31, 32, 42, 52, 53, 66, 72, 90, 98

Table 4

Abnormal inflorescence rate of different grape germplasm resources"

平均值
Average value (%)
范围
Range
(%)
最小值Min 最大值Max
种质数量
Germplasm number
具体种质编号
Specific germplasm ID
种质数量
Germplasm number
具体种质编号
Specific germplasm ID
40.56 0.00-100.00 12 5, 16, 43, 51, 54, 62, 73, 84, 86, 90, 92, 93 9 1, 7, 10, 12, 14, 27, 61, 79, 89

Fig. 7

Rate of abnormal inflorescence for different grape groups"

Fig. 8

Abnormal inflorescences rate at different nodes of different grape germplasm resources A: Rate of abnormal inflorescences at different nodes; B: Abnormal inflorescence rate of different grape groups at different nodes"

Table 5

Statistics on the number of different inflorescences in grape germplasm resources"

花序数
Inflorescences number
种质数量
Germplasm number
有花种质占总有花种质比率
Proportion of inflorescences germplasm in all in florescences germplasm (%)
具体品种编号
Specific germplasm ID
0<NISB≤1 10 10.87 5, 9, 10, 12, 14, 27, 58, 60, 61, 95
1<NISB≤2 68 73.91 1, 4, 6, 7, 8, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 55, 57, 59, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 87, 89, 90, 91, 92, 93, 96
2<NISB≤3 12 13.04 2, 3, 41, 47, 53, 54, 56, 68, 86, 88, 94, 98
3<NISB≤4 2 2.17 85, 97

Fig. 9

Different inflorescences numbers of different grape germplasm resources A: Number of inflorescences on a single branch; B: The flower bud indicators of grape germplasm resources with different numbers of inflorescences; C: Rate of inflorescence at different nodes; D: The number of different grape groups with different numbers of inflorescences"

[1]
杨卓雅, 王小芳, 李娜, 魏艳. 中国热区农业科研管理研究. 现代农业科技, 2024(6): 185-189.
YANG Z Y, WANG X F, LI N, WEI Y. Research on agricultural scientific research management in tropical regions of China. Modern Agricultural Science and Technology, 2024(6): 185-189. (in Chinese)
[2]
王博, 郭荣荣, 成果, 韩佳宇, 林玲, 何建军, 白扬, 谢蜀豫, 王举兵, 白先进. 热区葡萄育种研究进展. 南方农业学报, 2024, 55(8): 2374-2385.
WANG B, GUO R R, CHENG G, HAN J Y, LIN L, HE J J, BAI Y, XIE S Y, WANG J B, BAI X J. Grape breeding in tropical and subtropical regions: A review. Journal of Southern Agriculture, 2024, 55(8): 2374-2385. (in Chinese)
[3]
CARMONA M J, CHAÏB J, MARTÍNEZ-ZAPATER J M, THOMAS M R. A molecular genetic perspective of reproductive development in grapevine. Journal of Experimental Botany, 2008, 59(10): 2579-2596.

doi: 10.1093/jxb/ern160 pmid: 18596111
[4]
黄雨晴, 孙艳艳, 罗荣峥, 阿旺措姆, 卢素文, 樊秀彩, 王晨, 刘崇怀, 房经贵. 葡萄种质资源花穗形状分类标准的建立及其动态发育过程分析. 中国农业科学, 2021, 54(11): 2389-2405. doi: 10.3864/j.issn.0578-1752.2021.11.012.
HUANG Y Q, SUN Y Y, LUO R Z, AWANGCUOMU, LU S W, FAN X C, WANG C, LIU C H, FANG J G. A new classification standard for different grape cluster shapes and investigation on cluster shape dynamic development process. Scientia Agricultura Sinica, 2021, 54(11): 2389-2405. doi: 10.3864/j.issn.0578-1752.2021.11.012. (in Chinese)
[5]
张雪梅. 设施栽培‘大青’葡萄花芽分化规律及机理研究[D]. 银川: 宁夏大学, 2023.
ZHANG X M. Study on the flower bud differentiation law and mechanism of ’Daqing’ grape cultivated in facilities[D]. Yinchuan: Ningxia University, 2023. (in Chinese)
[6]
张顺英, 周勇, 刘忠, 钟倩, 周世彬. 11个葡萄品种在乐山地区的花芽分化规律. 落叶果树, 2020, 52(3): 18-21.
ZHANG S Y, ZHOU Y, LIU Z, ZHONG Q, ZHOU S B. Flower bud differentiation of different grape cultivars in Leshan area. Deciduous Fruits, 2020, 52(3): 18-21. (in Chinese)
[7]
王海波, 王孝娣, 赵君全, 史祥宾, 王宝亮, 郑晓翠, 刘凤之. 设施促早栽培下耐弱光能力不同的葡萄品种冬芽的花芽分化. 园艺学报, 2016, 43(4): 633-642.

doi: 10.16420/j.issn.0513-353x.2015-0616
WANG H B, WANG X D, ZHAO J Q, SHI X B, WANG B L, ZHENG X C, LIU F Z. Studies on the flower bud differentiation of grape cultivars with different tolerant ability of low light in greenhouse. Acta Horticulturae Sinica, 2016, 43(4): 633-642. (in Chinese)
[8]
郭徐澄, 左洪印. 夏黑葡萄“跑花”现象的原因与对策. 果农之友, 2016(6): 23, 26.
GUO X C, ZUO H Y. Causes and countermeasures of “flower running” phenomenon of summer black grape. Fruit Growers’ Friend, 2016(6): 23, 26. (in Chinese)
[9]
许瀛之, 张文颖, 上官凌飞, 樊秀彩, 刘崇怀, 房经贵. 葡萄种质资源花序的调查与分析. 植物遗传资源学报, 2018, 19(3): 488-497.

doi: 10.13430/j.cnki.jpgr.2018.03.014
XU Y Z, ZHANG W Y, SHANGGUAN L F, FAN X C, LIU C H, FANG J G. Survey and analysis on the inflorescence of grape variety resources. Journal of Plant Genetic Resources, 2018, 19(3): 488-497. (in Chinese)
[10]
BOSS P K, BUCKERIDGE E J, POOLE A, THOMAS M R. New insights into grapevine flowering. Functional Plant Biology, 2003, 30(6): 593-606.

doi: 10.1071/FP02112 pmid: 32689045
[11]
MENEGHETTI S, GARDIMAN M, CALÒ A. Flower biology of grapevine. A review. Advances in Horticultural Science, 2006, 20(4): 317-325.
[12]
谭一婷, 范秀娟, 纪薇. 单氰胺对3个葡萄品种休眠解除生理特性及综合品质的影响. 果树学报, 2021, 38(5): 725-738.
TAN Y T, FAN X J, JI W. Effects of hydrogen cyanamide on physiological characteristics of dormancy release and comprehensive berry quality of three grape cultivars. Journal of Fruit Science, 2021, 38(5): 725-738. (in Chinese)
[13]
时晓芳, 张瑛, 韩佳宇, 程昌富, 蒋士宋, 罗梅娟, 李倩珍, 梁海芸. “黑皇”葡萄在广西南宁引种表现及一年两收栽培技术. 中国南方果树, 2024, 53(2): 201-205.
SHI X F, ZHANG Y, HAN J Y, CHENG C F, JIANG S S, LUO M J, LI Q Z, LIANG H Y. Introduction performance and cultivation techniques for Two-crop-a-year of Black King grape in Nanning, Guangxi. South China Fruits, 2024, 53(2): 201-205. (in Chinese)
[14]
王海波, 刘凤之, 韩晓, 谢计蒙, 王孝娣, 王宝亮. 葡萄需冷量和需热量估算模型及设施促早栽培品种筛选. 农业工程学报, 2017, 33(17): 187-193.
WANG H B, LIU F Z, HAN X, XIE J M, WANG X D, WANG B L. Grape chilling requirement estimated models and heat requirement estimated models and selection of early cultivars in greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 187-193. (in Chinese)
[15]
刘天华. 不同成熟期葡萄品种需冷量比较分析与生物标记开发[D]. 南京: 南京农业大学, 2021.
LIU T H. Comparative analysis and biomarker development of grape varieties in different maturity stages[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese)
[16]
黄泳碧, 覃园媛, 陆秀边, 白扬, 韩佳宇, 曹雄军, 白先进, 廖原, 张延晖, 王博. 妮娜皇后葡萄需冷量及休眠解除过程中相关基因表达分析. 南方农业学报, 2023, 54(11): 3165-3173.
HUANG Y B, QIN Y Y, LU X B, BAI Y, HAN J Y, CAO X J, BAI X J, LIAO Y, ZHANG Y H, WANG B. Chilling requirement and related gene expression analysis during dormancy release of Queen Nina grape. Journal of Southern Agriculture, 2023, 54(11): 3165-3173. (in Chinese)
[17]
郑婷, 张克坤, 张培安, 贾海锋, 房经贵. 葡萄营养生长与生殖生长间的转变研究进展. 植物生理学报, 2020, 56(7): 1361-1372.
ZHENG T, ZHANG K K, ZHANG P A, JIA H F, FANG J G. Recent progress in the study of transition between vegetative and reproductive growth in grapevine. Plant Physiology Journal, 2020, 56(7): 1361-1372. (in Chinese)
[18]
MONTEIRO A I, MALHEIRO A C, BACELAR E A. Morphology, physiology and analysis techniques of grapevine bud fruitfulness: A review. Agriculture, 2021, 11(2): 127.
[19]
VASCONCELOS M C, GREVEN M, WINEFIELD C S, TROUGHT M C T, RAW V. The flowering process of Vitis vinifera: A review. American Journal of Enology and Viticulture, 2009, 60(4): 411-434.
[20]
CALONJE M, CUBAS P, MARTÍNEZ-ZAPATER J M, CARMONA M J. Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiology, 2004, 135(3): 1491-1501.

doi: 10.1104/pp.104.040832 pmid: 15247405
[21]
ARRO J, CUENCA J, YANG Y Z, LIANG Z C, COUSINS P, ZHONG G Y. A transcriptome analysis of two grapevine populations segregating for tendril phyllotaxy. Horticulture Research, 2017, 4: 17032.

doi: 10.1038/hortres.2017.32 pmid: 28713572
[22]
李志成, 田淑芬, 王荣, 王超霞, 李洋, 穆丁郁. ‘阳光玫瑰’葡萄不同节位冬芽激素含量差异分析. 中外葡萄与葡萄酒, 2023(4): 62-69.
LI Z C, TIAN S F, WANG R, WANG C X, LI Y, MU D Y. Analysis on difference of hormone content in winter buds of ‘Shine Muscat’ grapevine at different nodes. Sino-Overseas Grapevine & Wine, 2023(4): 62-69. (in Chinese)
[23]
刘丹, 孙欣, 慕茜, 吴伟民, 章镇, 房经贵. 葡萄花芽发育相关基因在不同节位芽中的表达分析. 中国农业科学, 2015, 48(10): 2007-2016. doi: 10.3864/j.issn.0578-1752.2015.10.013.
LIU D, SUN X, MU Q, WU W M, ZHANG Z, FANG J G. Analysis of expression levels of floral genes in the buds on different branch nodes of grapevine. Scientia Agricultura Sinica, 2015, 48(10): 2007-2016. doi: 10.3864/j.issn.0578-1752.2015.10.013. (in Chinese)
[24]
ZUO X, WANG S, LIU X, TANG T, LI Y, TONG L, SHAH K, MA J, AN N, ZHAO C, XING L, ZHANG D. FLOWERING LOCUS T1 and TERMINAL FLOWER1 regulatory networks mediate flowering initiation in apple. Plant Physiology, 195(1): 580-597.
[25]
DAHAL K C, BHATTARAI S P, WALSH K B, MIDMORE D J, OAG D. Poor inflorescence development of ‘Menindee Seedless’ grapevines in the subtropics leads to low fertility. The Journal of Horticultural Science and Biotechnology, 2022, 97(2): 255-264.
[26]
DAHAL K C, BHATTARAI S P, MIDMORE D J, OAG D R, WALSH K B. Temporal yield variability in subtropical table grape production. Scientia Horticulturae, 2019, 246: 951-956.

doi: 10.1016/j.scienta.2018.11.063
[27]
YAO W J, WANG Y P, PENG J, YIN P P, GAO H B, XU L, LAUX T, ZHANG X S, SU Y H. The RPT2a-MET1 axis regulates TERMINAL FLOWER1 to control inflorescence meristem indeterminacy in Arabidopsis. The Plant Cell, 2024, 36(5): 1718-1735.
[28]
杜朝金, 张汉尧, 罗心平, 宋云连, 毕珏, 王跃全, 张惠云. 基因调控植物花器官发育的研究进展. 植物遗传资源学报, 2024, 25(2): 151-161.

doi: 10.13430/j.cnki.jpgr.20230811001
DU C J, ZHANG H Y, LUO X P, SONG Y L, BI J, WANG Y Q, ZHANG H Y. Progress in gene regulation of plant floral organ development. Journal of Plant Genetic Resources, 2024, 25(2): 151-161. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20230811001
[29]
HIGUCHI Y. Florigen and anti-florigen: Flowering regulation in horticultural crops. Breeding Science, 2018, 68(1): 109-118.

doi: 10.1270/jsbbs.17084 pmid: 29681753
[30]
WANG S, YANG Y M, CHEN F D, JIANG J F. Functional diversification and molecular mechanisms of flowering locus t/terminal flower 1 family genes in horticultural plants. Molecular Horticulture, 2022, 2(1): 19.

doi: 10.1186/s43897-022-00039-8 pmid: 37789396
[31]
GASTON A, POTIER A, ALONSO M, SABBADINI S, DELMAS F, TENREIRA T, COCHETEL N, LABADIE M, PRÉVOST P, FOLTA K M, et al. The FveFT 2 florigen/FveTFL1 antiflorigen balance is critical for the control of seasonal flowering in strawberry while FveFT3 modulates axillary meristem fate and yield. New Phytologist, 2021, 232(1): 372-387.
[32]
VEZZULLI S, LEONARDELLI L, MALOSSINI U, STEFANINI M, VELASCO R, MOSER C. Pinot blanc and Pinot gris arose as independent somatic mutations of Pinot noir. Journal of Experimental Botany, 2012, 63(18): 6359-6369.
[33]
REN D Y, RAO Y C, WU L W, XU Q K, LI Z Z, YU H P, ZHANG Y, LENG Y J, HU J, ZHU L, et al. The pleiotropic abnormal flower and dwarf 1 affects plant height, floral development and grain yield in rice. Journal of Integrative Plant Biology, 2016, 58(6): 529-539.
[34]
赵梓钧, 吴如会, 王硕, 张君, 游静, 段倩楠, 唐俊, 张新芳, 韦秘, 刘金艳, 等. 水稻PDL2的突变导致小穗外稃退化. 中国农业科学, 2023, 56(7): 1248-1259. doi: 10.3864/j.issn.0578-1752.2023.07.004.
ZHAO Z J, WU R H, WANG S, ZHANG J, YOU J, DUAN Q N, TANG J, ZHANG X F, WEI M, LIU J Y, et al. Mutation of PDL 2 gene causes degeneration of lemma in the spikelet of rice. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259. doi: 10.3864/j.issn.0578-1752.2023.07.004. (in Chinese)
[35]
DOLL N M. Modulating apical tip degeneration of the barley inflorescence: A potential target for grain yield increase. The Plant Cell, 2023, 35(11): 3918-3919.

doi: 10.1093/plcell/koad180 pmid: 37364163
[36]
SHANMUGARAJ N, RAJARAMAN J, KALE S, KAMAL R, HUANG Y Y, THIRULOGACHANDAR V, GARIBAY- HERNÁNDEZ A, BUDHAGATAPALLI N, TANDRON MOYA Y A, HAJIREZAEI M R, et al. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. The Plant Cell, 2023, 35(11): 3973-4001.

doi: 10.1093/plcell/koad164 pmid: 37282730
[37]
WOO H R, KIM H J, LIM P O, NAM H G. Leaf senescence: Systems and dynamics aspects. Annual Review of Plant Biology, 2019, 70: 347-376.

doi: 10.1146/annurev-arplant-050718-095859 pmid: 30811218
[38]
YA M, LI J D, ZHANG N B, YU Q H, XU W R. Phenotypically abnormal cotyledonary Vitis vinifera embryos differ in anatomy, endogenous hormone levels and transcriptome profiles. Tree Physiology, 43(3): 467-485.
[39]
CHATELET P, LAUCOU V, FERNANDEZ L, SREEKANTAN L, LACOMBE T, MARTINEZ-ZAPATER J M, THOMAS M R, TORREGROSA L. Characterization of Vitis vinifera L. somatic variants exhibiting abnormal flower development patterns. Journal of Experimental Botany, 2007, 58(15/16): 4107-4118.
[40]
BALANZÀ V, MARTÍNEZ-FERNÁNDEZ I, SATO S, YANOFSKY M F, KAUFMANN K, ANGENENT G C, BEMER M, FERRÁNDIZ C. Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nature Communications, 2018, 9: 565.
[1] TAN XiBei, LAN XuYing, LIU ChongHuai, FAN XiuCai, JIANG JianFu, SUN Lei, LI Peng, YU ShuXin, ZHANG Ying. Changes of Secondary Metabolites in Grapes with Different Resistance Levels in Response to White Rot Infection [J]. Scientia Agricultura Sinica, 2025, 58(9): 1767-1778.
[2] TANG XueShen, DANG ShiZhuo, ZHOU Juan, LI JiaHao, LI MeiHua, HU Hao, ZHANG YaHong. Analysis of VvBES1-1 Involvement in Flower Bud Differentiation of Red Globe Grape Based on Red and Blue Light Regulation [J]. Scientia Agricultura Sinica, 2025, 58(8): 1650-1662.
[3] YANG CaiLi, LI YongZhou, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU ZhaoXian, LI PengHui, LIU SanJun. Genome-Wide Identification and Analysis of TPS Gene Family and Functional Verification of VvTPS4 in the Formation of Monoterpenes in Grape [J]. Scientia Agricultura Sinica, 2025, 58(7): 1397-1417.
[4] GUO AoLin, LIN JunXuan, LAI GongTi, HE LiYuan, CHE JianMei, PAN Ruo, YANG FangXue, HUANG YuJi, CHEN GuiXin, LAI ChengChun. Effect of VdF3′5′H2 Overexpression on the Accumulation of Anthocyanin Composition in Spine Grape Cells [J]. Scientia Agricultura Sinica, 2025, 58(4): 802-818.
[5] WANG HuiLing, ZHANG YingYing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Multi-Omics Analysis Reveals the Changes of Monoterpenes and Anthocyanins Accumulation During Veraison in Red Muscat-Type Grape [J]. Scientia Agricultura Sinica, 2025, 58(13): 2645-2662.
[6] CAO XiongJun, WANG Bo, HAN JiaYu, LIAO YongFeng, XIE ShuYu, BAI Yang, HUANG XiaoYun, LU Li, HUANG QiuMi, JIANG ChunFen, PAN FengPing, BAI XianJin. Research and Practice on High Photosynthetic Efficiency Breeding of Grapes in Hot Climate Regions [J]. Scientia Agricultura Sinica, 2025, 58(10): 1994-2007.
[7] DONG Jie, ZHANG Peng, LI WangZe, LI HeFang, ZHOU GuoChao, CHEN KeQin, FANG YuLin, ZHANG KeKun. Effects of Seedlessness and Swelling Treatments Based on GA3 and CPPU on the Fruit Quality of 'Shine Muscat' Grapes [J]. Scientia Agricultura Sinica, 2025, 58(10): 2008-2021.
[8] GE Yi, ZHENG QiuLing, CHEN MengXia, XIA JiaXin, FANG Xiang, TANG MeiLing, FANG JingGui, SHANGGUAN LingFei. Cloning and Functional Analysis of the Autophagy Gene ATG8f in the Grapevine [J]. Scientia Agricultura Sinica, 2025, 58(1): 156-169.
[9] FENG Fan, JIANG XingRui, WANG LingYun, ZHANG YongGang, LI AiHua, TAO YongSheng. The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment [J]. Scientia Agricultura Sinica, 2024, 57(8): 1592-1605.
[10] YUAN Miao, ZHOU Juan, DANG ShiZhuo, TANG XueShen, ZHANG YaHong. Functional Analysis of VvARF18 Gene in Red Globe Grape [J]. Scientia Agricultura Sinica, 2024, 57(7): 1363-1376.
[11] DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi. Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2 [J]. Scientia Agricultura Sinica, 2024, 57(2): 336-348.
[12] WANG JianFeng, HAN YuQi, WANG Kai, ZHAO Man, LI JiXin, FENG LiDan, ZHANG Bo, ZHAO Yong, JIANG YuMei. Influence of Pre-Harvest Application of Benzothiadiazole on Color and Aroma of Cabernet Gernischt Grapes During Fruit Development [J]. Scientia Agricultura Sinica, 2024, 57(19): 3870-3893.
[13] ZHANG Ying, YUAN QingYun, REN Fang, HU GuoJun, FAN XuDong, DONG YaFeng. Establishment of RT-qPCR Detection Technology for GINV and Its Spatial and Temporal Distribution in Different Grape Rootstocks [J]. Scientia Agricultura Sinica, 2024, 57(14): 2771-2780.
[14] XU MengYu, WANG JiaYang, WANG JiangBo, TANG Wen, CHEN YiHeng, SHANGGUAN LingFei, FANG JingGui, LU SuWen. Differential Analysis of Aroma Substance Content and Gene Expression in the Berry Skins of Different Grape Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(13): 2635-2650.
[15] WANG HuiLing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Genome-Wide Association Studies for Grape Berry Weight Related Traits [J]. Scientia Agricultura Sinica, 2023, 56(8): 1561-1573.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!