Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2904-2913.doi: 10.3864/j.issn.0578-1752.2025.14.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of Chlorogenic Acid on Rumen Methane Emission, Fermentation Parameters and Performance of Late Lactating Cows Based on the GreenFeed System

LI XiaoPeng1,2(), LIU YunLong1, CUI JiaJun1,3, TU Yan1,*(), JIANG LinShu2,*(), CHENG ShuRu3   

  1. 1 Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs/Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 Beijing Key Laboratory of Dairy Cow Nutrition/College of Animal Science and Technology, Beijing Agricultural University, Beijing 102206
    3 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730000
  • Received:2024-12-24 Accepted:2025-06-19 Online:2025-07-17 Published:2025-07-17
  • Contact: TU Yan, JIANG LinShu

Abstract:

【Objective】Methane (CH4) emission from ruminants constitutes a significant portion of greenhouse gas emission from the livestock industry. Reducing CH4 emissions is essential for achieving low-carbon development in livestock production. This experiment aimed to measure CH4 emissions from late lactating cows using the GreenFeed system, and to evaluate the effects of chlorogenic acid supplementation on rumen CH4 emissions, fermentation parameters, and production performance of lactating cows, so as to provide a theoretical basis for the application of chlorogenic acid as a feed additive for CH4 emission mitigation in practical production settings. 【Method】A one-way completely randomized experimental design was used to select 30 lactating Holstein cows ((170.07 ± 57.81) days in lactation). The cows were divided into two groups, each with 15 replicates (one cow per replicate). The control group received a basal diet, while the treatment group was supplemented with 20 g of chlorogenic acid per cow per day in addition to the basal diet. The experiment lasted 10 weeks, including a 2-week pre-trial period and an 8-week main trial period. CH4 emissions were measured using the GreenFeed system during the test period. Samples of rumen fluid, blood, milk, and feces were collected during the final week for subsequent analysis, and CH4 emission intensity was calculated based on the average CH4 emissions and milk production during trial period. 【Result】Compared with the control group, (1) Chlorogenic acid supplementation significantly reduced daily CH4 emissions and CH4 emission intensity relative to milk production (P<0.05).Chlorogenic acid had no significant effects on milk yield, 4% fat-corrected milk (4% FCM), energy-corrected milk (ECM), milk fat percentage, lactose percentage, somatic cell count (SCC), or milk solids (P>0.05). However, it increased milk protein content (P<0.05) and decreased milk urea nitrogen (MUN) levels (P<0.01).(2) Chlorogenic acid did not significantly affect rumen pH, ammonia nitrogen (NH3-N), or total volatile fatty acid (TVFA) concentrations (P>0.05). However, it increased the proportion of propionic acid (P<0.05), decreased the proportion of butyric acid (P<0.01), and lowered the acetic acid-to-propionic acid ratio (P<0.05).(3) Chlorogenic acid significantly reduced serum total cholesterol (TC) and blood urea nitrogen (BUN) levels (P<0.01), while it increased serum total protein (TP, P<0.01), albumin (ALB, P<0.05), and globulin (GLB, P<0.01). (4) Chlorogenic acid had no significant effect on the apparent digestibility of nutrients (P>0.05).【Conclusion】Supplementing lactating dairy cows’ diets with chlorogenic acid could reduce CH4 emissions by modulating rumen fermentation patterns. Additionally, it improved production performance by influencing protein metabolism, lipid metabolism, and immune function.

Key words: chlorogenic acid, methane, lactating cows, production performance, GreenFeed system

Table 1

Cattle data"

项目
Item
组别 Group P
CON CGA
胎次 Parity 1.42±0.28 1.57+0.76 0.643
泌乳天数 Lactation days (d) 169.50±12.80 170.64±18.22 0.959
产奶量Milk yield (kg·d-1) 39.51±1.90 40.23±1.64 0.779

Table 2

Substrate composition and nutrient levels (DM basis, %)"

项目 Item 含量 Content
原料 Ingredient
全株玉米青贮 Whole corn silage 29.01
玉米压片 Corn grain flaked 8.96
苜蓿 Alfalfa hay 8.56
棉籽 Cottonseed 5.14
燕麦草 Oat hay 1.86
全脂膨化大豆 Whole puffed soybean 1.74
甜菜浆 Beet pulp 1.69
饱和脂肪酸 Saturated fatty acid 1.10
玉米胚芽粉 Corn germ meal 1.04
玉米酒糟 DDGS1) 0.99
过瘤胃脂肪酸 Undegradable fatty acids 0.54
精料补充料 Concentrate supplement 25.51
颗粒料 Pellet 13.84
营养水平 Nutrient levels2)
代谢能 ME (MJ·kg-1) 10.88
泌乳净能 NEL (MJ·kg-1) 6.99
粗蛋白 CP 15.10
粗脂肪 EE 7.23
淀粉 Starch 27.80
中性洗涤纤维 NDF 34.19
酸性洗涤纤维 ADF 19.04
钙 Ca 1.04
磷 P 0.43

Table 3

Effects of CGA supplementation on methane emission and milk yield in dairy cows"

项目
Item
组别 Group SEM P
CON CGA 处理
Treatment
时间
Time
处理×时间
Treatment×Time
CH4排放量 CH4 emission (g·d-1) 426.01 401.60 10.079 <0.001 <0.001 0.005
CH4/产奶量 CH4/milk yield (g·kg-1) 12.31 11.35 0.345 <0.001 0.207 0.701
CH4/FCM (g·kg-1) 12.72 11.87 0.359 <0.001 0.152 0.626
CH4/ECM (g·kg-1) 12.19 11.31 0.343 <0.001 0.148 0.632
产奶量 Milk yield (kg) 36.92 37.11 1.094 0.702 0.024 0.764

Table 4

Effects of CGA supplementation on performance in dairy cows"

项目
Item
组别 Group SED P
CON CGA
4%乳脂校正乳4%FCM (kg·d-1) 34.84 34.26 2.004 0.773
能量校正乳 ECM (kg·d-1) 36.16 36.18 2.076 0.992
乳脂率 Milk fat percentage (%) 3.88 3.64 0.159 0.147
乳蛋白率 Milk protein percentage (%) 3.30 3.44 0.062 0.043
乳糖率 Lactose percentage (%) 5.40 5.37 0.033 0.446
尿素氮 MUN (mg·dL-1) 11.69 10.48 0.422 0.008
体细胞数SCC,×103cells (mL) 75.20 68.60 24.001 0.785
乳固形物 Milk solid (%) 11.69 10.48 0.189 0.506
乳脂产量 Milk fat yield (kg·d-1) 1.38 1.32 0.089 0.505
乳蛋白产量 Milk protein (kg·d-1) 1.17 1.25 0.071 0.305
乳糖产量 Lactose yield (kg·d-1) 1.91 1.95 0.107 0.744

Table 5

Effects of CGA supplementation on rumen fermentation parameters"

项目
Item
组别 Group SED P
CON CGA
pH 6.26 6.25 0.032 0.869
NH3-N (mg·dL-1) 12.10 13.52 0.585 0.237
总挥发酸 Total VFA (mmol·L-1) 142.35 139.21 4.662 0.749
乙酸Acetate (%) 58.17 57.12 0.590 0.392
丙酸Propionate (%) 21.32 25.09 0.874 0.025
异丁酸Isobutyrate (%) 0.96 1.04 0.035 0.289
丁酸Butyrate (%) 16.22 13.18 0.517 0.001
异戊酸Isovalerate (%) 1.31 1.48 0.053 0.115
戊酸Valertate (%) 2.01 2.09 0.059 0.534
乙酸/丙酸 Acetate/Propionate 2.74 2.34 0.100 0.040
乙酸+丁酸/丙酸 (Acetate+Butyrate)/Propionate 3.50 2.88 0.225 0.006

Table 6

Effect of CGA supplementation on blood biochemical indexes in lactating cows"

项目
Item
组别 Group SED P
CON CGA
总胆固醇 TC (mmol·L-1) 7.86 6.28 0.493 0.006
甘油三酯 TG (mmol·L-1) 0.17 0.16 0.009 0.150
高密度脂蛋白 HDL (mmol·L-1) 3.48 3.46 0.134 0.882
低密度脂蛋白 LDL (mmol·L-1) 2.35 2.09 0.225 0.260
游离脂肪酸 NEFA (μmol·L-1) 0.10 0.13 0.018 0.105
血尿素氮 BUN (mmol·L-1) 6.10 5.07 0.269 0.002
总蛋白 TP (g·L-1) 73.09 82.73 1.742 <0.001
白蛋白 ALB (g·L-1) 33.25 34.42 0.492 0.033
球蛋白 GLB (g·L-1) 39.84 48.30 1.914 0.001
葡萄糖 GLU (mmol·L-1) 3.34 3.36 0.103 0.794
β-羟基丁酸BHBA (mmol·L-1) 0.78 0.79 0.061 0.829

Table 7

Effect of CGA supplementation on the digestibility of nutrients in lactating cows (%)"

项目
Item
组别 Group SED P
CON CGA
干物质 DM 65.59 67.39 2.249 0.448
粗脂肪 EE 88.09 90.50 1.769 0.179
粗蛋白 CP 65.22 66.56 2.791 0.705
中性洗涤纤维 NDF 40.68 42.02 3.991 0.291
酸性洗涤纤维 ADF 39.47 39.98 3.927 0.222
[1]
杨国昌, 郑月, 包向男, 代迎春, 王金刚, 白雪峰, 孙伟, 李喜和, 张淑君. 中红外光谱分析技术在奶牛甲烷排放预测中的应用研究进展. 中国农业科学, 2025, 58(9): 1856-1866. doi: 10.3864/j.issn.0578-1752.2025.09.014.
YANG G C, ZHENG Y, BAO X N, DAI Y C, WANG J G, BAI X F, SUN W, LI X H, ZHANG S J. Research progress on the application of mid-infrared spectroscopy analysis technology in predicting methane emissions from cows. Scientia Agricultura Sinica, 2025, 58(9): 1856-1866. doi: 10.3864/j.issn.0578-1752.2025.09.014. (in Chinese)
[2]
LI L P, QU L, LI T. Supplemental dietary Selenohomolanthionine affects growth and rumen bacterial population of Shaanbei white Cashmere wether goats. Frontiers in Microbiology, 2022, 13: 942848.
[3]
CRIPPA M, SOLAZZO E, GUIZZARDI D, MONFORTI-FERRARIO F, TUBIELLO F N, LEIP A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2021, 2(3): 198-209.

doi: 10.1038/s43016-021-00225-9 pmid: 37117443
[4]
NIU M T, KEBREAB E, HRISTOV A N, OH J, ARNDT C, BANNINK A, BAYAT A R, BRITO A F, BOLAND T, CASPER D, et al. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 2018, 24(8): 3368-3389.
[5]
ZHAO Y G, TANG Z W, NAN X M, SUN F Y, JIANG L S, XIONG B H. Effects of Lonicera japonica extract on performance, blood biomarkers of inflammation and oxidative stress during perinatal period in dairy cows. Asian-Australasian Journal of Animal Sciences, 2020, 33(7): 1096-1102.
[6]
符运斌, 黄涛, 瞿明仁, 宋小珍, 陈玉敏, 杨食堂, 杨建军. 金银花提取物对热应激肉牛血清激素及抗氧化指标的影响. 动物营养学报, 2016, 28(3): 926-931.
FU Y B, HUANG T, QU M R, SONG X Z, CHEN Y M, YANG S T, YANG J J. Effects of honeysuckle extracts on serum hormones and antioxidant indexes of beef cattle under heat stress. Chinese Journal of Animal Nutrition, 2016, 28(3): 926-931. (in Chinese)
[7]
KIM J Y, LEE Y S, PARK E J, LEE H J. Honeysuckle berry (Lonicera caerulea L.) inhibits lipase activity and modulates the gut microbiota in high-fat diet-fed mice. Molecules, 2022, 27(15): 4731.
[8]
SUN W W, ZHU J H, QIN G Y, HUANG Y J, CHENG S Y, CHEN Z Z, ZHANG Y Y, SHU Y F, ZENG X X, GUO R P. Lonicera japonica polysaccharides alleviate D-galactose-induced oxidative stress and restore gut microbiota in ICR mice. International Journal of Biological Macromolecules, 2023, 245: 125517.
[9]
CHEN K, PENG C T, CHI F, YU C D, YANG Q L, LI Z J. Antibacterial and antibiofilm activities of chlorogenic acid against Yersinia enterocolitica. Frontiers in Microbiology, 2022, 13: 885092.
[10]
MEI Y M, SUN H L, DU G D, WANG X Q, LYU D G. Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antioxidant capacity. Scientia Horticulturae, 2020, 274: 109676.
[11]
CHEN C, WANG T, SHEN J L, LIANG C S, LING F, LI P F, WANG G X. Evaluation of the antiviral activity of chlorogenic acid against white spot syndrome virus. Aquaculture, 2024, 579: 740242.
[12]
LIU H W, LI X M, ZHANG K, LV X G, ZHANG Q W, CHEN P, WANG Y, ZHAO J S. Integrated multi-omics reveals the beneficial role of chlorogenic acid in improving the growth performance and immune function of immunologically stressed broilers. Animal Nutrition, 2023, 14: 383-402.

doi: 10.1016/j.aninu.2023.05.009 pmid: 37635925
[13]
张钰宁. 绿原酸对辽宁绒山羊羔羊瘤胃发酵、微生物菌群结构及其代谢的影响[D]. 沈阳: 沈阳农业大学, 2024.
ZHANG Y N. Effects of chlorogenic acid on rumen fermentation, microbial flora structure and metabolism of Liaoning Cashmere goat lambs[D]. Shenyang: Shenyang Agricultural University, 2024. (in Chinese)
[14]
张丽英. 饲料分析及饲料质量检测技术. 4版. 北京: 中国农业大学出版社, 2016.
ZHANG L Y. Feed Analysis and Quality Test Technology. 4th ed. Beijing: China Agricultural University Press, 2016. (in Chinese)
[15]
冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 内蒙古畜牧科学, 1993(4):40-41.
FENG Z C, GAO M. Improvement of determination of ammonia nitrogen content in rumen fluid by colorimetric method. Inner Mongolian Journal of Animal Sciences and Production, 1993(4):40-41. (in Chinese)
[16]
张俊瑜, 苏玲玲. 不同前处理对气相色谱法测定瘤胃中挥发性脂肪酸的影响. 草食家畜, 2017(3): 30-34.
ZHANG J Y, SU L L. Effects of different pretreatment methods on the determination of volatile fatty acids in rumen by gas chromatography. Grass-Feeding Livestock, 2017(3): 30-34. (in Chinese)
[17]
BEN SHABAT S K, SASSON G, DORON-FAIGENBOIM A, DURMAN T, YAACOBY S, BERG MILLER M E, WHITE B A, SHTERZER N, MIZRAHI I. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminantsOpen Access. The ISME Journal, 2016, 10(12): 2958-2972.
[18]
LEE Y J, KYOUNG L S, JA L S, JONG-SU E, SUNG SILL L. Effects of Lonicera japonica extract supplementation on in vitro ruminal fermentation, methane emission, and microbial population. Animal Science Journal, 2019, 90(9): 1170-1176.
[19]
BANNINK A, KOGUT J, DIJKSTRA J, FRANCE J, KEBREAB E, VAN VUUREN A M, TAMMINGA S. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. Journal of Theoretical Biology, 2006, 238(1): 36-51.

pmid: 16111711
[20]
BERGMAN E N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 1990, 70(2): 567-590.

doi: 10.1152/physrev.1990.70.2.567 pmid: 2181501
[21]
DIJKSTRA J. Production and absorption of volatile fatty acids in the rumen. Livestock Production Science, 1994, 39(1): 61-69.
[22]
CHEN J B, XU W H, LIU Y, LIANG X, CHEN Y Y, LIANG J J, CAO J P, LU B Y, SUN C D, WANG Y. Lonicera japonica Thunb. and its characteristic component chlorogenic acid alleviated experimental colitis by promoting Lactobacillus and fecal short-chain fatty acids production. Food Frontiers, 2024, 5(4): 1583-1602.
[23]
CHEN J L, YU B, CHEN D W, ZHENG P, LUO Y H, HUANG Z Q, LUO J Q, MAO X B, YU J, HE J. Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation. Applied Microbiology and Biotechnology, 2019, 103(19): 8157-8168.

doi: 10.1007/s00253-019-10025-8 pmid: 31401751
[24]
LI Q S, WANG R, MA Z Y, ZHANG X M, JIAO J Z, ZHANG Z G, UNGERFELD E M, YI K L, ZHANG B Z, LONG L, LONG Y, TAO Y, HUANG T, GREENING C, TAN Z L, WANG M. Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminantsOpen Access. The ISME Journal, 2022, 16(11): 2535-2546.
[25]
任国栋, 郝小燕, 张暄梓, 刘森, 张宏祥, 田光元, 张建新. 胍基乙酸和甜菜碱对羔羊生长性能、瘤胃发酵和血液代谢的影响. 中国农业科学, 2023, 56(4): 766-778. doi: 10.3864/j.issn.0578-1752.2023.04.014.
REN G D, HAO X Y, ZHANG X Z, LIU S, ZHANG H X, TIAN G Y, ZHANG J X. Effects of guanidinoacetic acid and betaine supplementation on growth performance, rumen fermentation and blood metabolites in lambs. Scientia Agricultura Sinica, 2023, 56(4): 766-778. doi: 10.3864/j.issn.0578-1752.2023.04.014. (in Chinese)
[26]
WANG K, XIONG B H, ZHAO X. Could propionate formation be used to reduce enteric methane emission in ruminants? Science of The Total Environment, 2023, 855: 158867.
[27]
MOSS A R, JOUANY J P, NEWBOLD J. Methane production by ruminants: its contribution to global warming. Annales de Zootechnie, 2000, 49(3): 231-253.
[28]
HUANG R, ROMERO P, BELANCHE A, UNGERFELD E M, YANEZ-RUIZ D, MORGAVI D P, POPOVA M. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro-Part 1. Dairy cows. Animal, 2023, 17(5): 100788.
[29]
KIM Y R, PARK K Y, GHASSEMI NEJAD J, YOON W J, KIM S C, LEE J S, LEE H G. Rumen methane abatement by phlorotannin derivatives (phlorofucofuroeckol-A, dieckol, and 8, 8’-bieckol) and its relationship with the hydroxyl group and ether linkage. Animal Feed Science and Technology, 2022, 293: 115468.
[30]
LIU Y L, LI X P, DIAO Q Y, MA T, TU Y. In silico and in vitro studies revealed that rosmarinic acid inhibited methanogenesis via regulating composition and function of rumen microbiota. Journal of Dairy Science, 2024, 107(10): 7904-7917.
[31]
MARTINEZ-FERNANDEZ G, DENMAN S E, CHEUNG J, MCSWEENEY C S. Phloroglucinol degradation in the rumen promotes the capture of excess hydrogen generated from methanogenesis inhibition. Frontiers in Microbiology, 2017, 8: 1871.
[32]
WANAPAT M, VIENNASAY B, MATRA M, TOTAKUL P, PHESATCHA B, AMPAPON T, WANAPAT S. Supplementation of fruit peel pellet containing phytonutrients to manipulate rumen pH, fermentation efficiency, nutrient digestibility and microbial protein synthesis. Journal of the Science of Food and Agriculture, 2021, 101(11): 4543-4550.

doi: 10.1002/jsfa.11096 pmid: 33452814
[33]
王圆圆, 李月, 朱会霞, 丁亚伟, 钱周泽, 张昇, 郭云霞, 孙金旭, 郝庆红. 复合益生菌发酵玉米-豆粕型日粮对哺乳期羔羊瘤胃发酵参数及菌群结构的影响. 饲料工业, 2024, 45(1): 87-93.
WANG Y Y, LI Y, ZHU H X, DING Y W, QIAN Z Z, ZHANG S, GUO Y X, SUN J X, HAO Q H. Effects of corn-soybean meal diet fermented by compound probiotics on rumen fermentation parameters and microbiota structure of lactating lambs. Feed Industry, 2024, 45(1): 87-93. (in Chinese)
[34]
梅杰, 吕美, 曾佳, 刘红云. 金银花提取物对热应激奶山羊生产性能、乳成分、血清生化指标和抗氧化能力的影响. 动物营养学报, 2022, 34(9): 5995-6002.

doi: 10.3969/j.issn.1006-267x.2022.09.052
MEI J, M, ZENG J, LIU H Y. Effects of honeysuckle extract on performance, milk composition, serum biochemical indexes and antioxidant capacity of heat-stressed dairy goats. Chinese Journal of Animal Nutrition, 2022, 34(9): 5995-6002. (in Chinese)

doi: 10.3969/j.issn.1006-267x.2022.09.052
[35]
李吉鹏, 路强. 金银花提取物对奶牛生产性能、乳品质及血清免疫指标的影响. 中国饲料, 2023(16): 13-16.
LI J P, LU Q. Effects of honeysuckle extract on production performance, milk quality, somatic cell cell number and serum immune indexes of dairy cows. China Feed, 2023(16): 13-16. (in Chinese)
[36]
MORRIS S M Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annual Review of Nutrition, 2002, 22: 87-105.

pmid: 12055339
[37]
KOHN R A, DINNEEN M M, RUSSEK-COHEN E. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. Journal of Animal Science, 2005, 83(4): 879-889.

doi: 10.2527/2005.834879x pmid: 15753344
[38]
JOHNSON R G, YOUNG A J. The association between milk urea nitrogen and DHI production variables in western commercial dairy herds 1. Journal of Dairy Science, 2003, 86(9): 3008-3015.

pmid: 14507038
[39]
ONTAWONG A, PASACHAN T, SOODVILAI S, DUANGJAI A, PONGCHAIDECHA A, AMORNLERDPISON D, SRIMAREONG C. Chlorogenic acid enriched in coffee pulp extract attenuates hepatic steatosis by modulating gene-regulated lipid metabolism and lipid transporters. The FASEB Journal, 2018, 32(S1): 749.1.
[40]
韩晶, 王小琪, 段子渊. 饲喂柠条对滩羊血清指标及瘤胃、结肠菌群结构的影响. 中国农业科学, 2023, 56(14): 2812-2827. doi: 10.3864/j.issn.0578-1752.2023.14.015.
HAN J, WANG X Q, DUAN Z Y. Effects of Caragana korshinskii kom. on serum indexes, rumen and colon microbiota of Tan sheep. Scientia Agricultura Sinica, 2023, 56(14): 2812-2827. doi: 10.3864/j.issn.0578-1752.2023.14.015. (in Chinese)
[41]
HAWTHORNE B E, SMITH E, PESCADOR J O. Free and total cholesterol in human blood fractions. The Journal of Nutrition, 1963, 81(3): 241-248.
[42]
SHIRKHANI S, MARANDI S M, NASR-ESFAHANI M H, KIM S K. Effects of exercise training and chlorogenic acid supplementation on hepatic lipid metabolism in prediabetes mice. Diabetes & Metabolism Journal, 2023, 47(6): 771-783.
[43]
曹祺. 绿原酸对湖羊生长性能、胃肠道组织形态及微生物区系的影响[D]. 郑州: 河南农业大学, 2022.
CAO Q. Effects of chlorogenic acid on growth performance, gastrointestinal tissue morphology and microflora of Hu sheep. Master's thesis[D]. Zhengzhou: Henan Agricultural University, 2022. (in Chinese)
[44]
ZHU H K, SHEN F L, WANG X C, QIAN H, LIU Y. Chlorogenic acid improves the cognitive deficits of sleep-deprived mice via regulation of immunity function and intestinal flora. Phytomedicine, 2024, 123: 155194.
[45]
DING H X, CAO A Z, LI H Y, ZHAO Y, FENG J. Effects of Eucommia ulmoides leaf extracts on growth performance, antioxidant capacity and intestinal function in weaned piglets. Journal of Animal Physiology and Animal Nutrition, 2020, 104(4): 1169-1177.
[1] YANG GuoChang, ZHENG Yue, BAO XiangNan, DAI YingChun, WANG JinGang, BAI XueFeng, SUN Wei, LI XiHe, ZHANG ShuJun. Research Progress on the Application of Mid-Infrared Spectroscopy Analysis Technology in Predicting Methane Emissions from Cows [J]. Scientia Agricultura Sinica, 2025, 58(9): 1856-1866.
[2] YAO Hong, SHI ShouRong, ZHAO RuQian. The Potential and Mechanism of Chlorogenic Acid to Alleviate Intestinal Inflammation in Chickens Based on Network Pharmacology and Molecular Docking [J]. Scientia Agricultura Sinica, 2025, 58(3): 600-616.
[3] WANG XiaoJun, WANG JinLan, JU ZeLiang, LIANG GuoLing, JIA ZhiFeng, LIU WenHui, MA Xiang, MA JinXiu, LI Wen. Comprehensive Evaluation on Production Performance and Nutritional Quality of Different Varieties of Forage Oat in the Qinghai Lake Area [J]. Scientia Agricultura Sinica, 2024, 57(19): 3730-3742.
[4] CHEN HengGuang, PEI XiaoMeng, XIA YuTing, LIU Jing, MAO DaGan. Effects of Adding Curcumin to Perinatal Diets on Production Performance, Blood Indexes and Gene Expression of Inflammatory Factors in Goats [J]. Scientia Agricultura Sinica, 2024, 57(12): 2483-2496.
[5] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[6] MIAO JianJun,PENG ZhongLi,GAO YanHua,BAI Xue,XIE XinTing. Effects of Dietary Small Peptides on Production Performance and Expression of PepT1 mRNA in Digestive Tract of Fattening Yaks [J]. Scientia Agricultura Sinica, 2020, 53(23): 4950-4960.
[7] XIAO ZhiXin,WANG Yang,LIU GuoFu,GONG Hao,LI DanDan,GONG Lin,BAI ZhenJian,CUI GuoWen. Effects of Fertilizing Time in Early Spring on Alfalfa (Medicago sativa) Production Performance and Nutritional Quality in Mollisol Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677.
[8] LIU ShaoWen,YIN Min,CHU Guang,XU ChunMei,WANG DanYing,ZHANG XiuFu,CHEN Song. Effects of Various Paddy-Upland Crop Rotations and Nitrogen Fertilizer Levels on CH4 Emission in the Middle and Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2019, 52(14): 2484-2499.
[9] ZHOU Yan, DONG LiFeng, DENG KaiDong, XU GuiShan, DIAO QiYu. Development of Models of Methane Emissions from Growing Sheep [J]. Scientia Agricultura Sinica, 2019, 52(10): 1797-1806.
[10] SUN YongBo,WANG Ya,SA RenNa,ZHANG HongFu. Effects of Different Relative Humidities on Growth Performance, Antioxidant Capacity and Immune Function of Broilers [J]. Scientia Agricultura Sinica, 2018, 51(24): 4720-4728.
[11] SU Fan, XUE Jia, YANG Xi, DENG Hong, MENG YongHong, GUO YuRong. Effects of Phenolic Acids on Copigmentation and Stability of Anthocyanins in Red-Fleshed Apple [J]. Scientia Agricultura Sinica, 2017, 50(4): 732-742.
[12] XIN Hai-rui, PAN Xiao-hua, BI Ye, XIONG Ben-hai, JIANG Lin-shu. Effects of Lighting Regimes on Production Performance, Carcass Performance and Anti-Oxidant Capacity of the Blood in Peking Ducks [J]. Scientia Agricultura Sinica, 2016, 49(23): 4638-4645.
[13] ZHANG Yu, LI Yue, QIN Xiao-bo, KONG Fan-long, XI Min, LI Yu’e. Dissolved Methane Concentration and Diffusion Flux in Agricultural Watershed of Subtropics [J]. Scientia Agricultura Sinica, 2016, 49(20): 3968-3980.
[14] JIA Zhen-Wei. Recent Advances in Research of the Expression and Role of C-Type Natriuretic Peptide as a Regulator in Control of Animal Ovary Performance [J]. Scientia Agricultura Sinica, 2014, 47(2): 403-410.
[15] MA Yan-Fen, DU Rui-Ping, GAO Min. Effect of Heat Stress on Dairy Goat Performance and Rumen Epithelial Cell Morphology [J]. Scientia Agricultura Sinica, 2013, 46(21): 4486-4495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!