Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (13): 2682-2692.doi: 10.3864/j.issn.0578-1752.2025.13.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Research Progress on the Function of Bovine Thyroid Gene and Its Correlation with Environmental Adaptability

LI Hao1(), TIAN YuYang1, ZHANG ZiMing1, CAO YiFan1, CIREN LuoBu2, NIMA CangJue2, DANZENG LuoSang2, LEI ChuZhao1, BASANG ZhuZha2(), CHEN NingBo1()   

  1. 1 College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi
    2 Institute of Animal Husbandry and Veterinary, Xizang Academy of Agriculture and Animal Husbandry Sciences Medicine, Lhasa 850009
  • Received:2025-01-20 Accepted:2025-05-29 Online:2025-07-01 Published:2025-07-05

Abstract:

The thyroid gland is an important endocrine organ in cattle that plays a biological role by secreting thyroid hormone (TH), which promotes nutrient metabolism, growth and development, improves neural function; and regulates physiological functions. The multifunctionality of the thyroid gland is indispensable for maintaining a healthy body in animals and has a profound impact on their growth, development and environmental adaptation. The genetic background of Chinese yellow cattle is complex, and after long-term hybridization and selection in various regions, at least 58 local breeds have been formed. During the spread of Chinese yellow cattle, they faced diverse geographical and ecological environments, and their genomes continuously microevolved to adapt to different environments. Among these genes, thyroid-related genes may play important roles in adaptation. This article reviews the research progress on the regulatory functions of the thyroid and related genetic variations from the perspectives of animal physiology and genomics. First, the thyroid gland dynamically regulates TH levels through negative feedback regulation and then regulates animal development, metabolism, rhythm and reproductive function. The thyroid signal is highly sensitive to environmental influences and can respond accordingly, such as increasing heat production under cold conditions, reducing heat production under hot conditions, and regulating immunity and nerve cells to resist diseases and other adverse factors. The process from TH synthesis to its function is complex. Many genes are involved in the regulation of this process, and the genetic variation of some genes has an impact on the health and performance of animals. In recent years, research on the bovine genome has developed rapidly, with in-depth discussions on the origin, production, and stress resistance traits of cattle. With increasing research on the bovine genome, more new functions of bovine thyroid-related genes have been discovered. Thyroid-related genes affect key traits such as growth, metabolism, and environmental adaptation in cattle. For example, the DUOXA2 gene is involved in calcium regulation in dairy cows and in the high-altitude adaptation of Tibetan cattle, and its Leu20Pro variation has a potential impact on yellow cattle in the Qinghai‒Tibet Plateau. The TG gene is one of the key regulatory genes related to beef cattle production traits, with three SNPs associated with sexual maturity in bulls, which can significantly reduce the age of sexual maturity in bulls. Finally, this paper highlights the potential of genome resequencing technology and single-nucleus RNA and chromatin accessibility sequencing technology for exploring the genetic variations of thyroid related genes. The feasibility of these two technologies is demonstrated from aspects such as cost, functionality, and application examples. Genome resequencing can identify various types of variant sites and pinpoint key variants on the basis of selection signals. Single-nucleus RNA and chromatin accessibility sequencing technology can be used to investigate the gene expression differences within each cell under different environmental conditions and at various developmental stages, facilitating the verification of the mechanisms of action of key regulatory genes. Hence, delving into the functions of bovine thyroid-related genes and their genetic variations linked to growth and environmental adaptability is pivotal for revealing novel genes associated with important economic traits and stress resistance in cattle. This paper introduces the regulatory mechanism of the thyroid gland and the effects of thyroid-related genes on the growth, metabolism, biological rhythm regulation, reproductive function and environmental adaptation of livestock, and proposes new technologies that can be used for thyroid research in the future to provide a reference for future research on thyroid function and cattle breeding.

Key words: thyroid, cattle, genes, growth traits, environmental adaptation

Fig. 1

Thyroid responses to environmental stimuli and regulatory mechanisms"

[1]
NILSSON M, FAGMAN H. Development of the thyroid gland. Development, 2017, 144(12): 2123-2140.

doi: 10.1242/dev.145615 pmid: 28634271
[2]
MULLUR R, LIU Y Y, BRENT G A. Thyroid hormone regulation of metabolism. Physiological Reviews, 2014, 94(2): 355-382.

doi: 10.1152/physrev.00030.2013 pmid: 24692351
[3]
SEEBACHER F, LITTLE A G. Thyroid hormone links environmental signals to DNA methylation. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2024, 379(1898): 20220506.
[4]
DUAN J, XU P Y, LUAN X D, JI Y J, HE X H, SONG N, YUAN Q N, JIN Y, CHENG X, JIANG H L, ZHENG J, ZHANG S Y, JIANG Y, XU H E. Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature, 2022, 609(7928): 854-859.
[5]
XU Y W, CAI H M, YOU C Z, HE X H, YUAN Q N, JIANG H L, CHENG X, JIANG Y, XU H E. Structural insights into ligand binding and activation of the human thyrotropin-releasing hormone receptor. Cell Research, 2022, 32(9): 855-857.

doi: 10.1038/s41422-022-00641-x pmid: 35365755
[6]
CHAGAS L M, BASS J J, BLACHE D, BURKE C R, KAY J K, LINDSAY D R, LUCY M C, MARTIN G B, MEIER S, RHODES F M, et al. Invited review: new perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows. Journal of Dairy Science, 2007, 90(9): 4022-4032.

pmid: 17699018
[7]
尹宏宇, 魏华, 刘瑾春. 维甲酸和甲状腺激素在骨髓间充质干细胞软骨分化中的作用. 首都医科大学学报, 2023, 44(2): 258-264.
YIN H Y, WEI H, LIU J C. Role of retinoic acid and thyroid hormone in chondrogenic differentiation of bone marrow mesenchymal stem cells. Journal of Capital Medical University, 2023, 44(2): 258-264. (in Chinese)

doi: 10.3969/j.issn.1006-7795.2023.02.012
[8]
HALLETT S A, ONO W, ONO N. Growth plate chondrocytes: skeletal development, growth and beyond. International Journal of Molecular Sciences, 2019, 20(23): 6009.
[9]
AĞIRDIL Y. The growth plate: A physiologic overview. EFORT Open Reviews, 2020, 5(8): 498-507.

doi: 10.1302/2058-5241.5.190088 pmid: 32953135
[10]
HAMEED S, PATTERSON M, DHILLO W S, RAHMAN S A, MA Y, HOLTON C, GOGAKOS A, YEO G S H, LAM B Y H, POLEX- WOLF J, et al. Thyroid hormone receptor beta in the ventromedial hypothalamus is essential for the physiological regulation of food intake and body weight. Cell Reports, 2017, 19(11): 2202-2209.

doi: S2211-1247(17)30723-4 pmid: 28614708
[11]
CASSAR-MALEK I, LANGLOIS N, PICARD B, GEAY Y. Regulation of bovine satellite cell proliferation and differentiation by insulin and triiodothyronine. Domestic Animal Endocrinology, 1999, 17(4): 373-388.
[12]
张萌萌, 毛未贤, 宋玉庭, 吴乃宝. 降钙素合成分泌及生理作用. 中国骨质疏松杂志, 2020, 26(7): 1059-1062.
ZHANG M M, MAO W X, SONG Y T, WU N B. Calcitonin synthesis, secretion and physiological effects. Chinese Journal of Osteoporosis, 2020, 26(7): 1059-1062. (in Chinese)
[13]
JI C, OU Y, YU W, LV J X, ZHANG F M, LI H S, GU Z Y, LI J Y, ZHONG Z M, WANG H. Thyroid-stimulating hormone-thyroid hormone signaling contributes to circadian regulation through repressing clock2/npas2 in zebrafish. Journal of Genetics and Genomics, 2024, 51(1): 61-74.
[14]
DE ASSIS L V M, HARDER L, LACERDA J T, PARSONS R, KAEHLER M, CASCORBI I, NAGEL I, RAWASHDEH O, MITTAG J, OSTER H. Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T(3)). supplementation. eLife, 2022, 11: e79405.
[15]
FOX D G, PRESTON R L, SENFT B, JOHNSON R R. Plasma growth hormone levels and thyroid secretion rates during compensatory growth in beef cattle. Journal of Animal Science, 1974, 38(2): 437-441.

pmid: 4812296
[16]
李华振, 刘武军, 刘秋月, 王翔宇, 胡文萍, 夏青, 李春艳, 贺小云, 狄冉, 储明星. 甲状腺激素受体基因调控动物繁殖的研究进展. 畜牧兽医学报, 2019, 50(2): 243-252.
LI H Z, LIU W J, LIU Q Y, WANG X Y, HU W P, XIA Q, LI C Y, HE X Y, DI R, CHU M X. Research progress on the regulative role of thyroid hormone receptor gene in animal reproduction. Chinese Journal of Animal and Veterinary Sciences, 2019, 50(2): 243-252. (in Chinese)
[17]
STEINHOFF L, JUNG K, MEYERHOLZ M M, HEIDEKORN- DETTMER J, HOEDEMAKER M, SCHMICKE M. Thyroid hormone profiles and TSH evaluation during early pregnancy and the transition period in dairy cows. Theriogenology, 2019, 129: 23-28.
[18]
WANG C, ZHENG P, ADENIRAN S O, MA M J, HUANG F S, ADEGOKE E O, ZHANG G X. Thyroid hormone (T(3)) is involved in inhibiting the proliferation of newborn calf Sertoli cells via the PI3K/Akt signaling pathway in vitro. Theriogenology, 2019, 133: 1-9.
[19]
YAU W W, YEN P M. Thermogenesis in adipose tissue activated by thyroid hormone. International Journal of Molecular Sciences, 2020, 21(8): 3020.
[20]
LITTLE A G, KUNISUE T, KANNAN K, SEEBACHER F. Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio). BMC Biology, 2013, 11: 26.

doi: 10.1186/1741-7007-11-26 pmid: 23531055
[21]
YAU W W, SINGH B K, LESMANA R, ZHOU J, SINHA R A, WONG K A, WU Y J, BAY B H, SUGII S, SUN L, YEN P M. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy, 2019, 15(1): 131-150.
[22]
CHOUCHANI E T, KAZAK L, SPIEGELMAN B M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metabolism, 2019, 29(1): 27-37.

doi: S1550-4131(18)30679-X pmid: 30503034
[23]
SILVA J E. The thermogenic effect of thyroid hormone and its clinical implications. Annals of Internal Medicine, 2003, 139(3): 205-213.

pmid: 12899588
[24]
CHRISTOFFOLETE M A, LINARDI C C G, DE JESUS L, EBINA K N, CARVALHO S D, RIBEIRO M O, RABELO R, CURCIO C, MARTINS L, KIMURA E T, BIANCO A C. Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis. Diabetes, 2004, 53(3): 577-584.

doi: 10.2337/diabetes.53.3.577 pmid: 14988240
[25]
BERNABUCCI U, LACETERA N, BAUMGARD L H, RHOADS R P, RONCHI B, NARDONE A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 2010, 4(7): 1167-1183.

doi: 10.1017/S175173111000090X pmid: 22444615
[26]
TODINI L. Thyroid hormones in small ruminants: Effects of endogenous, environmental and nutritional factors. Animal, 2007, 1(7): 997-1008.

doi: 10.1017/S1751731107000262 pmid: 22444802
[27]
陈浩, 王纯洁, 斯木吉德, 张晨, 武思同, 徐萍, 曹佳明, 刘飞鸿, 敖日格乐. 慢性热应激对放牧肉牛血液生化指标、抗氧化能力及免疫功能的影响. 中国农业大学学报, 2021, 26(2): 61-69.
CHEN H, WANG C J, SMUJID , ZHANG C, WU S T, XU P, CAO J M, LIU F H, AORIGELE . Effects of chronic heat stress on blood biochemical index, immune function and antioxidant capacity of grazing beef cattle. Journal of China Agricultural University, 2021, 26(2): 61-69. (in Chinese)
[28]
PERROTTA C, BULDORINI M, ASSI E, CAZZATO D, DE PALMA C, CLEMENTI E, CERVIA D. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation. The American Journal of Pathology, 2014, 184(1): 230-247.
[29]
HOEN E, GOOSSENS F M, FALIZE K, MAYERL S, VAN DER SPEK A H, BOELEN A. The differential effect of a shortage of thyroid hormone compared with knockout of thyroid hormone transporters Mct8 and Mct10 on murine macrophage polarization. International Journal of Molecular Sciences, 2024, 25(4): 2111.
[30]
MADDUR M S, RAO S, CHOCKALINGAM A K, KISHORE S, GOPALAKRISHNA S, SINGH N, SURYANARAYANA V V S, GAJENDRAGAD M R. Absence of heat intolerance (panting) syndrome in foot-and-mouth disease-affected Indian cattle (Bos indicus) is associated with intact thyroid gland function. Transboundary and Emerging Diseases, 2011, 58(3): 274-279.

doi: 10.1111/j.1865-1682.2011.01203.x pmid: 21388520
[31]
LIU J T, ZHAO K F, QIAN T T, LI X X, YI W Z, PAN R B, HUANG Y E, JI Y F, SU H. Association between ambient air pollution and thyroid hormones levels: A systematic review and meta-analysis. Science of The Total Environment, 2023, 904: 166780.
[32]
HORIKAMI D, SAYAMA N, SASAKI J, KUSUNO H, MATSUZAKI H, HAYASHI A, NAKAMURA T, SATOH H, NATSUHORI M, OKADA K, et al. The effect of exposure on cattle thyroid after the Fukushima Daiichi nuclear power plant accident. Scientific Reports, 2022, 12(1): 21754.

doi: 10.1038/s41598-022-25269-0 pmid: 36526648
[33]
VAN VLIET N A, KAMPHUIS A E P, DEN ELZEN W P J, BLAUW G J, GUSSEKLOO J, NOORDAM R, VAN HEEMST D. Thyroid function and risk of Anemia: a multivariable-adjusted and mendelian randomization analysis in the UK biobank. The Journal of Clinical Endocrinology and Metabolism, 2022, 107(2): e643-e652.
[34]
MARTINEZ M E, DUARTE C W, STOHN J P, KARACZYN A, WU Z F, DEMAMBRO V E, HERNANDEZ A. Thyroid hormone influences brain gene expression programs and behaviors in later generations by altering germ line epigenetic information. Molecular Psychiatry, 2020, 25(5): 939-950.

doi: 10.1038/s41380-018-0281-4 pmid: 30356120
[35]
CAO C W, ZHANG Y, JIA Q T, WANG X, ZHENG Q T, ZHANG H Y, SONG R G, LI Y S, LUO A L, HONG Q L, et al. An exonic splicing enhancer mutation in DUOX2 causes aberrant alternative splicing and severe congenital hypothyroidism in Bama pigs. Disease Models & Mechanisms, 2019, 12(1): dmm036616.
[36]
RUBIN C J, ZODY M C, ERIKSSON J, MEADOWS J R S, SHERWOOD E, WEBSTER M T, JIANG L, INGMAN M, SHARPE T, KA S, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 2010, 464(7288): 587-591.
[37]
GROTTESI A, GABBIANELLI F, VALENTINI A, CHILLEMI G. Structural and dynamic analysis of G558R mutation in chicken TSHR gene shows altered signal transduction and corroborates its role as a domestication gene. Animal Genetics, 2020, 51(1): 51-57.
[38]
SHEN Y F, MAO H G, HUANG M J, CHEN L X, CHEN J C, CAI Z W, WANG Y, XU N Y. Long noncoding RNA and mRNA expression profiles in the thyroid gland of two phenotypically extreme pig breeds using ribo-zero RNA sequencing. Genes, 2016, 7(7): 34.
[39]
BRIGELIUS-FLOHÉ R, FLOHÉ L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxidants & Redox Signaling, 2020, 33(7): 498-516.
[40]
LIU S L, GAO Y H, CANELA-XANDRI O, WANG S, YU Y, CAI W T, LI B J, XIANG R D, CHAMBERLAIN A J, PAIRO-CASTINEIRA E, et al. A multi-tissue atlas of regulatory variants in cattle. Nature Genetics, 2022, 54(9): 1438-1447.

doi: 10.1038/s41588-022-01153-5 pmid: 35953587
[41]
LU X B, ARBAB A A I, ZHANG Z P, FAN Y L, HAN Z Y, GAO Q S, SUN Y J, YANG Z P. Comparative transcriptomic analysis of the pituitary gland between cattle breeds differing in growth: Yunling cattle and Leiqiong cattle. Animals, 2020, 10(8): 1271.
[42]
SETH A, STANLEY S, DHILLO W, MURPHY K, GHATEI M, BLOOM S. Effects of galanin-like peptide on food intake and the hypothalamo-pituitary-thyroid axis. Neuroendocrinology, 2003, 77(2): 125-131.

pmid: 12624534
[43]
LYU Y, WANG F W, CHENG H J, HAN J, DANG R H, XIA X T, WANG H, ZHONG J C, LENSTRA J A, ZHANG H C, et al. Recent selection and introgression facilitated high-altitude adaptation in cattle. Science Bulletin, 2024, 69(21): 3415-3424.
[44]
KANG S, PARK H W, HAN K H. Antibodies regulate dual-function enzyme IYD to induce functional synergy between metabolism and thermogenesis. International Journal of Molecular Sciences, 2022, 23(14): 7834.
[45]
王娟, 姜忠玲, 丛霞, 曹荣峰, 田文儒, 丰艳妮, 李华涛. 基于RNA-seq技术筛选低钙培养奶牛乳腺上皮细胞差异表达基因. 中国兽医杂志, 2021, 57(1): 27-31, 130-131.
WANG J, JIANG Z L, CONG X, CAO R F, TIAN W R, FENG Y N, LI H T. Screening differentially expressed genes based on RNA-seq technology in cow mammary epithelial cells cultured with low calcium medium. Chinese Journal of Veterinary Medicine, 2021, 57(1): 27-31, 130-131. (in Chinese)
[46]
ANAFI M, YANG Y F, BARLEV N A, GOVINDAN M V, BERGER S L, BUTT T R, WALFISH P G. GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone ReceptorFree. Molecular Endocrinology, 2000, 14(5): 718-732.
[47]
HOWARD J T, KACHMAN S D, SNELLING W M, POLLAK E J, CIOBANU D C, KUEHN L A, SPANGLER M L. Beef cattle body temperature during climatic stress: A genome-wide association study. International Journal of Biometeorology, 2014, 58(7): 1665-1672.

doi: 10.1007/s00484-013-0773-5 pmid: 24362770
[48]
ROBOTI P, SATO K, LOWE M. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway. Journal of Cell Science, 2015, 128(8): 1595-1606.

doi: 10.1242/jcs.166710 pmid: 25717001
[49]
WEITZEL J M, VIERGUTZ T, ALBRECHT D, BRUCKMAIER R, SCHMICKE M, TUCHSCHERER A, KOCH F, KUHLA B. Hepatic thyroid signaling of heat-stressed late pregnant and early lactating cows. The Journal of Endocrinology, 2017, 234(2): 129-141.
[50]
HERNANDEZ-QUILES M, BROEKEMA M F, KALKHOVEN E. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Frontiers in Endocrinology, 2021, 12: 624112.
[51]
夏小婷. 瘤牛基因组遗传变异与环境适应性研究[D]. 杨凌: 西北农林科技大学, 2023.
XIA X T. Genetic variation and environmental adaptation of indicine cattle genome[D]. Yangling: Northwest Agriculture and Forestry University, 2023. (in Chinese)
[52]
SZANTO I, PUSZTASZERI M, MAVROMATI M. H2O2 metabolism in normal thyroid cells and in thyroid tumorigenesis: focus on NADPH oxidases. Antioxidants, 2019, 8(5): 126.
[53]
DE SOUZA FONSECA P A, ID-LAHOUCINE S, REVERTER A, MEDRANO J F, FORTES M S, CASELLAS J, MIGLIOR F, BRITO L, CARVALHO M R S, SCHENKEL F S, NGUYEN L T, PORTO- NETO L R, THOMAS M G, CÁNOVAS A. Combining multi-OMICs information to identify key-regulator genes for pleiotropic effect on fertility and production traits in beef cattle. PLoS ONE, 2018, 13(10): e0205295.
[54]
DEHGHANIAN REYHAN V, GHAFOURI F, SADEGHI M, MIRAEI-ASHTIANI S R, KASTELIC J P, BARKEMA H W, SHIRALI M. Integrated comparative transcriptome and circRNA- lncRNA-miRNA-mRNA CeRNA regulatory network analyses identify molecular mechanisms associated with intramuscular fat content in beef cattle. Animals, 2023, 13(16): 2598.
[55]
SALCEDO-TACUMA D, PARALES-GIRON J, PROM C, CHIRIVI M, LAGUNA J, LOCK A L, CONTRERAS G A. Transcriptomic profiling of adipose tissue inflammation, remodeling, and lipid metabolism in periparturient dairy cows (Bos taurus). BMC Genomics, 2020, 21(1): 824.
[56]
SCHERING L, ALBRECHT E, KOMOLKA K, KÜHN C, MAAK S. Increased expression of thyroid hormone responsive protein (THRSP) is the result but not the cause of higher intramuscular fat content in cattle. International Journal of Biological Sciences, 2017, 13(5): 532-544.

doi: 10.7150/ijbs.18775 pmid: 28539828
[57]
POLASIK D, GOLIŃCZAK J, PROSKURA W, TERMAN A, DYBUS A. Association between THRSP gene polymorphism and fatty acid composition in milk of dairy cows. Animals, 2021, 11(4): 1144.
[58]
AHONEN M A, HÖRING M, NGUYEN V D, QADRI S, TASKINEN J H, NAGARAJ M, WABITSCH M, FISCHER-POSOVSZKY P, ZHOU Y, LIEBISCH G, NIDHINA HARIDAS P A, YKI-JÄRVINEN H, OLKKONEN V M. Insulin-inducible THRSP maintains mitochondrial function and regulates sphingolipid metabolism in human adipocytes. Molecular Medicine, 2022, 28(1): 68.

doi: 10.1186/s10020-022-00496-3 pmid: 35715726
[59]
WANG F Q, ZANG Y C, LI M M, LIU W M, WANG Y G, YU X L, LI H, WANG F, LIU S G. DUOX2 and DUOXA2 variants confer susceptibility to thyroid dysgenesis and gland-in-situ with congenital hypothyroidism. Frontiers in Endocrinology, 2020, 11: 237.
[60]
CUI Y J, LIU Z Y, SUN X, HOU X M, QU B, ZHAO F, GAO X J, SUN Z, LI Q Z. Thyroid hormone responsive protein spot 14 enhances lipogenesis in bovine mammary epithelial cells. In Vitro Cellular & Developmental Biology-Animal, 2015, 51(6): 586-594.
[61]
FONTANESI L, CALÒ D G, GALIMBERTI G, NEGRINI R, MARINO R, NARDONE A, AJMONE-MARSAN P, RUSSO V. A candidate gene association study for nine economically important traits in Italian Holstein cattle. Animal Genetics, 2014, 45(4): 576-580.

doi: 10.1111/age.12164 pmid: 24796806
[62]
DUARTE-GUTERMAN P, NAVARRO-MARTÍN L, TRUDEAU V L. Mechanisms of crosstalk between endocrine systems: Regulation of sex steroid hormone synthesis and action by thyroid hormones. General and Comparative Endocrinology, 2014, 203: 69-85.
[63]
FERNÁNDEZ M, LOAIZA ECHEVERRI A, HENRY M, DRUMMOND M, ANDRADE DE OLIVEIRA D, DEMYDA PEYRÁS S, CUNHA CARDOSO D, GIOVAMBATTISTA G, LIRON J. Bovine thyroglobulin gene polymorphisms and their association with sexual precocity in Guzerat bulls. Reproduction in Domestic Animals, 2017, 52(5): 911-913.

doi: 10.1111/rda.12989 pmid: 28580618
[64]
CASILLAS S, BARBADILLA A. Molecular population genetics. Genetics, 2017, 205(3): 1003-1035.

doi: 10.1534/genetics.116.196493 pmid: 28270526
[65]
LUO L H, GRIBSKOV M, WANG S F. Bibliometric review of ATAC-Seq and its application in gene expressionOpen Access. Briefings in Bioinformatics, 2022, 23(3): bbac061.
[66]
RANZONI A M, TANGHERLONI A, BEREST I, RIVA S G, MYERS B, STRZELECKA P M, XU J R, PANADA E, MOHORIANU I, ZAUGG J B, CVEJIC A. Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis. Cell Stem Cell, 2021, 28(3): 472-487.e7.

doi: 10.1016/j.stem.2020.11.015 pmid: 33352111
[67]
NAZZARI M, ROMITTI M, HAUSER D, CARVALHO D J, GISELBRECHT S, MORONI L, COSTAGLIOLA S, CAIMENT F. Investigation of the effects of phthalates on in vitro thyroid models with RNA-Seq and ATAC-Seq. Frontiers in Endocrinology, 2023, 14: 1200211.
[68]
CAI C C, WAN P, WANG H, CAI X, WANG J B, CHAI Z X, WANG J K, WANG H B, ZHANG M, YANG N, WU Z J, ZHU J J, YANG X Y, LI Y L, YUE B L, DANG R H, ZHONG J C. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing. Cell Proliferation, 2023, 56(9): e13430.
[69]
ALEXANDRE P A, NAVAL-SÁNCHEZ M, MENZIES M, NGUYEN L T, PORTO-NETO L R, FORTES M R S, REVERTER A. Chromatin accessibility and regulatory vocabulary across indicine cattle tissues. Genome Biology, 2021, 22(1): 273.

doi: 10.1186/s13059-021-02489-7 pmid: 34548076
[1] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[2] YANG GuoChang, ZHENG Yue, BAO XiangNan, DAI YingChun, WANG JinGang, BAI XueFeng, SUN Wei, LI XiHe, ZHANG ShuJun. Research Progress on the Application of Mid-Infrared Spectroscopy Analysis Technology in Predicting Methane Emissions from Cows [J]. Scientia Agricultura Sinica, 2025, 58(9): 1856-1866.
[3] WANG WeiMeng, WEI YunXiao, TANG YunNi, LIU MiaoMiao, CHEN QuanJia, DENG XiaoJuan, ZHANG Rui. Establishment and Rooting Optimization of Agrobacterium rhizogenes Transformation System in Cotton [J]. Scientia Agricultura Sinica, 2025, 58(8): 1479-1493.
[4] CHEN BingRu, TANG YuJie, ZHANG LiXia, ZHOU YuFei, YU Miao, SHI GuiShan, WANG XinDing, LI Yang, GAO ShiJie, LU XiaoChun, WANG Nai, DIAO XianMin. The Green Revolution of Chinese Grain Hybrid Sorghum [J]. Scientia Agricultura Sinica, 2025, 58(8): 1494-1507.
[5] XIE LuLu, LI Fu, ZHANG SiYuan, GAO JianChang. Analysis of Conserved Genes in Adventitious Root Formation Based on Cross Species Transcriptomes [J]. Scientia Agricultura Sinica, 2025, 58(6): 1195-1209.
[6] GAO YanHao, WANG TingTing, BAI WeiWei, DU XingJie, LIU Xian, QIN BenYuan, FU Tong, SUN Yu, GAO TengYun, ZHANG TianLiu. The Combination of Lipidome and Transcriptome Revealed the Differential Expression Patterns of Lipid Characteristics in Different Muscle Tissues for Nanyang Cattle [J]. Scientia Agricultura Sinica, 2025, 58(6): 1239-1258.
[7] XU YuanYuan, HUANG LiQing, LU XingRong, FENG Chao, SHANG JiangHua. Effects of β-mercaptoethanol on Rapamycin Induced Autophagy, Apoptosis and Steroid Hormone Synthesis in Buffalo Granulosa Cells [J]. Scientia Agricultura Sinica, 2025, 58(11): 2265-2274.
[8] ZHANG Yang, GAO Yan, ZHANG Yan, HUANG DanDan, CHEN XueWen, ZHANG ShiXiu, LIANG AiZhen. Effects of Residue Return Methods on Nitrogen Mineralization and N-Cycling Functional Genes in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2025, 58(10): 1958-1968.
[9] GE Yi, ZHENG QiuLing, CHEN MengXia, XIA JiaXin, FANG Xiang, TANG MeiLing, FANG JingGui, SHANGGUAN LingFei. Cloning and Functional Analysis of the Autophagy Gene ATG8f in the Grapevine [J]. Scientia Agricultura Sinica, 2025, 58(1): 156-169.
[10] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[11] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[12] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[13] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[14] ZHAO Meng, BI HuanGai, MENG LingHao, JIANG TingTing, ZHANG XiaoWei, AI XiZhen. The Regulatory Mechanism of Cold Circulation Induction Stress Memory in Chilling Tolerance in Cucumber [J]. Scientia Agricultura Sinica, 2024, 57(24): 4933-4944.
[15] ZHAO Jie, ZHAO LongYuan, PAN NingHui, GUAN LiRong, DU YunLong, LI ChengYun, WANG YunYue, XIE Yong. Hydrolase Gene BGIOSGA023826 Involved in Regulation of Resistance Process to Rice Blast [J]. Scientia Agricultura Sinica, 2024, 57(23): 4607-4618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!