Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (11): 2265-2274.doi: 10.3864/j.issn.0578-1752.2025.11.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Effects of β-mercaptoethanol on Rapamycin Induced Autophagy, Apoptosis and Steroid Hormone Synthesis in Buffalo Granulosa Cells

XU YuanYuan1,2(), HUANG LiQing1, LU XingRong1,2, FENG Chao1,2, SHANG JiangHua1,2()   

  1. 1 Guangxi Buffalo Research Institute/Guangxi Key Laboratory of Buffalo Genetics, Breeding and Reproduction, Nanning 530001
    2 Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology Ministry of Agriculture and Rural Affairs, Nanning 530001
  • Received:2024-12-04 Accepted:2025-04-03 Online:2025-06-01 Published:2025-06-09
  • Contact: SHANG JiangHua

Abstract:

【Objective】 The development of mammalian follicles involves a series of complex processes, which is regulated by various factors, among which granulosa cells (GCs) play an important role. The proliferation and differentiation of granulosa cells directly affect the development of follicles. Autophagy is a crucial biological process in the development of granulosa cells, and β-Mercaptoethanol (2-ME) is often used as an antioxidant to optimize the in vitro maturation culture system of domestic animal oocytes, but there is currently a lack of systematic research on its effects on the growth and development of buffalo follicular granulosa cells. In view of this, the aim of this study was to investigate the effects of 2-ME on rapamycin induced autophagy, apoptosis, and steroid hormone secretion in buffalo follicular granulosa cells. 【Method】 Buffalo ovaries were collected, and GCs were isolated and cultured in vitro. After the cells were passaged, the different concentrations of 2-ME and Rapamycin were added exogenously to measure the cell viability by CCK8 method. And then, the optimal concentrations of 2-ME and Rapamycin were selected to treat GCs. Real-time fluorescence quantitative PCR was used to detect the effects of 2-ME on the gene expression of Rapamycin induced autophagy, apoptosis and steroid hormone secretion in buffalo granulosa cells. In addition, contents of estradiol (E2) and progesterone (P4) were detected by ELISA. And the expression levels of autophagy and apoptosis related proteins in granulosa cells under different treatments were detected by Western blotting. 【Result】 The optimal treatment concentrations for 2-ME and Rapamycin were 50 and 25 µmol·L-1, respectively. Overactivation of autophagy could extremely significantly upregulate the expression of autophagy related genes ATG5, LC3, and Beclin1 (P<0.01), while the expression of all three genes was down regulated after the addition of 2-ME and Rapamycin simultaneously. Overactivation of autophagy could extremely significantly upregulate the expression of Bax and Caspase3 (P<0.01) and significantly upregulate the expression of Bcl2 (P<0.05). However, the addition of 2-ME and Rapamycin at the same time restored the expression of Bax and Caspase3 genes. Overactivation of autophagy could reduce the expression of CYP19A1 and CYP11A1 genes, while adding 2-ME and Rapamycin simultaneously increased the expression levels of CYP19A1 and CYP11A1 genes. Overactivation of autophagy could significantly reduce the secretion levels of E2 and P4 in granulosa cells (P<0.05), while adding 2-ME after activating autophagy can increase the secretion levels of E2 and P4. Autophagy could upregulate the expression levels of LC3, Beclin1 and Caspase3 proteins. However, the expression levels of all three proteins decreased to varying degrees after the addition of 2-ME and Rapamycin simultaneously. 【Conclusion】 Autophagy could promote the apoptosis of granulosa cells in buffalo follicles and inhibit their ability to secrete E2 and P4. However, 2-ME could alleviate cell apoptosis caused by autophagy in granulosa cells and restore the ability of granulosa cells to secrete E2 and P4 reduced by autophagy. In conclusion, 2-ME played an important role in maintaining autophagy homeostasis of buffalo granulosa cells.

Key words: buffalo, β-mercaptoethanol, granulosa cells, autophagy, steroidogenesis

Table 1

Primer information"

Gene Primer sequence (5'-3') Product size (bp) Annealing temperature (℃) Accession No.
Atg5 F: ACAAGCAACTCTGGATGGGT
R: AGGCCGTTCAGTTGTTGTCT
143 60 XM_045161962
LC3 F: CCGACTTATCCGAGAGCAGC
R: ACATGATCAGGCACCAGAAACT
114 60 XM_006046130
Beclin1 F: GGACACTCAGCTCAACGTCA
R: GGATCAGCCTCTCCTCCTCT
143 60 XM_044938934
Bcl2 F: ATGACTTCTCTCGGCGCTAC
R: CTGAAGAGCTCCTCCACCAC
112 60 XM_025273636
Bax F: AAGGTGCCCGAGTTGATCAG
R: AAAGTAGGAGAGGAGGCCGT
114 60 XM_025269476
Caspase3 F: TGGTGCTGAGGATGACATGG
R: CCAGGATCCGTACTTTGCGT
115 60 XM_025280224
Cyp19A1 F: TGGTGACCATCTGTGCTGAT
R: CCCAGGAAGAGCACGTTAGA
136 60 NM_001290963
Cyp11A1 F: TGGAGGATGTCAAGGCCAAT
R: CGTGCCATCTCGTACAAGTG
94 60 XM_025271874
β-Actin F: GGACCTGACGGACTACCTCA
R: CCATCTCCTGCTCGAAGTCC
134 60 NM_001290932

Fig. 1

Effects of 2-ME and Rapamycin on cell viability of granulosa cells Compared with the control group (0 µmol·L-1), *, significant difference (P<0.05); **, extremely significant difference (P<0.01); ns, No significant difference (P>0.05). The same as below"

Fig. 2

Effects of 2-ME on the expression of autophagy and apoptosis related genes in granulosa cells"

Fig. 3

Effects of 2-ME on the secretion of estradiol and progesterone in granulosa cells"

Fig. 4

Effects of 2-ME on the expression of autophagy and apoptosis related proteins in granulosa cells"

[1]
CLARKE H J. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. WIREs Developmental Biology, 2018, 7(1): e294.
[2]
MONNIAUX D, MICHEL P, POSTEL M, CLÉMENT F. Multi-scale modelling of ovarian follicular development: From follicular morphogenesis to selection for ovulation. Biology of the Cell, 2016, 108(6): 149-160.

doi: 10.1111/boc.201500087 pmid: 26856895
[3]
HE Y M, DENG H H, JIANG Z L, LI Q W, SHI M H, CHEN H L, HAN Z S. Effects of melatonin on follicular atresia and granulosa cell apoptosis in the porcine. Molecular Reproduction and Development, 2016, 83(8): 692-700.

doi: 10.1002/mrd.22676 pmid: 27391761
[4]
SHIMIZU T, KOSAKA N, MURAYAMA C, TETSUKA M, MIYAMOTO A. Apelin and APJ receptor expression in granulosa and theca cells during different stages of follicular development in the bovine ovary: Involvement of apoptosis and hormonal regulation. Animal Reproduction Science, 2009, 116(1/2): 28-37.
[5]
GAO H, KHAWAR M B, LI W. Essential role of autophagy in resource allocation during sexual reproduction. Autophagy, 2020, 16(1): 18-27.

doi: 10.1080/15548627.2019.1628543 pmid: 31203720
[6]
TSUKAMOTO S, KUMA A, MURAKAMI M, KISHI C, YAMAMOTO A, MIZUSHIMA N. Autophagy is essential for preimplantation development of mouse embryos. Science, 2008, 321(5885): 117-120.

doi: 10.1126/science.1154822 pmid: 18599786
[7]
SHEN X H, JIN Y X, LIANG S, KWON J W, ZHU J W, LEI L, KIM N H. Autophagy is required for proper meiosis of porcine oocytes maturing in vitro. Scientific Reports, 2018, 8: 12581.
[8]
SONG B S, KIM J S, KIM Y H, SIM B W, YOON S B, CHA J J, CHOI S A, YANG H J, MUN S E, PARK Y H, et al. Induction of autophagy during in vitro maturation improves the nuclear and cytoplasmic maturation of porcine oocytes. Reproduction, Fertility and Development, 2014, 26(7): 974.
[9]
CLICK R E. Potential alteration of tumor microenvironments by β-mercaptoethanol. Future Oncology, 2021, 17(3): 315-331.

doi: 10.2217/fon-2020-0801 pmid: 33356533
[10]
DE MATTOS K, PENA-BELLO C A, CAMPAGNOLO K, BORBA DE OLIVEIRA G, TICIANI E, PINZÓN-OSORIO C A, DA SILVA FEIJÓ A L, DA SILVA FERREIRA H, RODRIGUES J L, BERTOLINI M, et al. β-Mercaptoethanol in culture medium improves cryotolerance of in vitro-produced bovine embryos. Zygote, 2022, 30(6): 830-840.
[11]
MOUSSA M, YANG C Y, ZHENG H Y, LI M Q, YU N Q, YAN S F, HUANG J X, SHANG J H. Vitrification alters cell adhesion related genes in pre-implantation buffalo embryos: Protective role of β-mercaptoethanol. Theriogenology, 2019, 125: 317-323.

doi: S0093-691X(18)30716-7 pmid: 30502624
[12]
王娓娓, 鲍天昊, 张红苗, 王淑芬, 肖志成, 韩剑虹. 非必需氨基酸和β-巯基乙醇对神经干细胞增殖的影响. 山东医药, 2016, 56(1): 21-23.
WANG W W, BAO T H, ZHANG H M, WANG S F, XIAO Z C, HAN J H. Effects of non-essential amino acids and β-mercaptoethanol on proliferation of neural stem cells. Shandong Medical Journal, 2016, 56(1): 21-23. (in Chinese)
[13]
兰宗宝, 何若钢, 莫品方, 潘天彪, 黄敏瑞, 卢晟盛, 卢克焕. β-巯基乙醇对猪卵母细胞体外受精及胚胎发育的影响. 广西畜牧兽医, 2008, 24(4): 202-203, 232.
LAN Z B, HE R G, MO P F, PAN T B, HUANG M R, LU S S, LU K H. Effects of β-mercaptoethanol on in vitro fertilization and embryonic development of porcine oocytes. Guangxi Journal of Animal Husbandry & Veterinary Medicine, 2008, 24(4): 202-203, 232. (in Chinese)
[14]
郭洪, 万鹏程, 石文艳, 倪建宏, 代蓉, 毛青青, 朱汇, 张宾, 刘长彬, 石国庆. EGF和β-巯基乙醇对羔羊卵母细胞体外受精和体外发育的影响. 安徽农业科学, 2012, 40(11): 6537-6540.
GUO H, WAN P C, SHI W Y, NI J H, DAI R, MAO Q Q, ZHU H, ZHANG B, LIU C B, SHI G Q. Effects of EGF and β- mercaptoethanol on in vitro fertilization and development of oocytes collected from hormone-stimulated lambs. Journal of Anhui Agricultural Sciences, 2012, 40(11): 6537-6540. (in Chinese)
[15]
毛杨毅, 罗惠娣, 王志武, 赵鹏, 张冠武, 李俊, 郭宏宇, 张丽, 薛丽娜, 党文庆. 不同浓度β-巯基乙醇对6周龄杜泊羊卵母细胞发育能力的影响. 中国草食动物科学, 2018, 38(3): 11-14.
MAO Y Y, LUO H D, WANG Z W, ZHAO P, ZHANG G W, LI J, GUO H Y, ZHANG L, XUE L N, DANG W Q. Effects of β- mercaptoethanol concentrations on developmental capacity of oocyte in 6-week-old dorper sheep. China Herbivore Science, 2018, 38(3): 11-14. (in Chinese)
[16]
王伟. BMP/Smad信号通路对猪卵泡颗粒细胞的影响[D]. 南京: 南京农业大学, 2010.
WANG W. Effect of BMP/Smad signaling on porcine follicular granulosa cells[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[17]
ZHU Z J, HE M N, ZHANG T, ZHAO T, QIN S G, GAO M, WANG W J, ZHENG W Y, CHEN Z Q, LIU L P, HAO M, et al. LSD 1 promotes the FSH responsive follicle formation by regulating autophagy and repressing Wt1 in the granulosa cells. Science Bulletin, 2024, 69(8): 1122-1136.
[18]
LEVINE B, KROEMER G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1): 27-42.

doi: 10.1016/j.cell.2007.12.018 pmid: 18191218
[19]
BOYA P, REGGIORI F, CODOGNO P. Emerging regulation and functions of autophagy. Nature Cell Biology, 2013, 15(7): 713-720.

doi: 10.1038/ncb2788 pmid: 23817233
[20]
BHARDWAJ J K, PALIWAL A, SARAF P, SACHDEVA S N. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary. Journal of Cellular Physiology, 2022, 237(2): 1157-1170.
[21]
张亚平. 2-巯基乙醇对猪卵母细胞体外成熟过程自噬影响的研究[D]. 南宁: 广西大学, 2022.
ZHANG Y P. Effect of 2-mercaptoethanol on autophagy of porcine oocytes during maturation in vitro[D]. Nanning: Guangxi University, 2022. (in Chinese)
[22]
李睿, 梁跃, 白杨, 张桂悦, 王楠楠, 乔松林, 张改平. 自噬在猪繁殖与呼吸综合征病毒感染中的作用机制研究进展. 中国农业科学, 2025, 58(4): 792-801. doi: 10.3864/j.issn.0578-1752.2025.04.013.
LI R, LIANG Y, BAI Y, ZHANG G Y, WANG N N, QIAO S L, ZHANG G P. Research progress on the roles and mechanisms of autophagy involved in porcine reproductive and respiratory syndrome virus infection. Scientia Agricultura Sinica, 2025, 58(4): 792-801. doi: 10.3864/j.issn.0578-1752.2025.04.013. (in Chinese)
[23]
KOHATA-ONO C, WAKAI T, FUNAHASHI H. The autophagic inducer and inhibitor display different activities on the meiotic and developmental competencies of porcine oocytes derived from small and medium follicles. Journal of Reproduction and Development, 2019, 65(6): 527-532.
[24]
GÜRALP O, BESE T, BILDIK G, DEMIKIRAN F, İNCE Ü, MALIK E, ARVAS M, ÖKTEM Ö. The mammalian target of rapamycin protein expression in human granulosa cell tumors. Journal of the Turkish-German Gynecological Association, 2019, 20(4): 247-254.

doi: 10.4274/jtgga.galenos.2018.2018.0140 pmid: 30592193
[25]
YU W X, LU C, WANG B, REN X Y, XU K. Effects of rapamycin on osteosarcoma cell proliferation and apoptosis by inducing autophagy. European Review for Medical and Pharmacological Sciences, 2020, 24(2): 915-921.

doi: 20076 pmid: 32016998
[26]
LUO Z, XU X, SHO T, ZHANG J, XU W N, YAO J B, XU J X. ROS-induced autophagy regulates porcine trophectoderm cell apoptosis, proliferation, and differentiation. American Journal of Physiology-Cell Physiology, 2019, 316(2): C198-C209.
[27]
GONG Q F, LIU E H, XIN R, HUANG X N, GAO N. 2ME and 2OHE2 exhibit growth inhibitory effects and cell cycle arrest at G2/M in RL95-2 human endometrial cancer cells through activation of p53 and Chk1. Molecular and Cellular Biochemistry, 2011, 352(1): 221-230.
[28]
WANG Y, YI H X, HUANG K Q, ZENG Y, MIAO P, ZHANG Y T, HU N. 2-Mercaptoethanol enhances the yield of exosomes showing therapeutic potency in alleviating spinal cord injury mice. Life Sciences, 2025, 364: 123451.
[29]
ZHAN X S, QI N S, TOMS D, FREIBURGER R, FLETCHER L, WANG B Y, LI J L. miR-29b inhibits COC expansion and oocyte in vitro maturation via induction of ROS by targeting CYCS. Animal Reproduction Science, 2024, 270: 107598.
[30]
张冰, 杨燕燕, 冯前会, 施雯, 方肄臻, 黄佳宝, 石德顺. 亚硒酸钠对猪卵母细胞体外成熟及其胚胎发育潜能的影响. 中国农业科学, 2024, 57(17): 3482-3493. doi: 10.3864/j.issn.0578-1752.2024.17.013.
ZHANG B, YANG Y Y, FENG Q H, SHI W, FANG Y Z, HUANG J B, SHI D S. Effects of sodium selenite on the in vitro maturation of porcine oocytes and their embryonic development potentials. Scientia Agricultura Sinica, 2024, 57(17): 3482-3493. doi: 10.3864/j.issn.0578-1752.2024.17.013. (in Chinese)
[31]
PATEL P A, CHAUDHARY S S, PURI G, SINGH V K, ODEDARA A B. Effects of β-mercaptoethanol on in vitro maturation and glutathione level of buffalo oocytes. Veterinary World, 2015: 213-216.
[32]
DONG Y, WU Y, ZHAO G L, YE Z Y, XING C G, YANG X D. Inhibition of autophagy by 3-MA promotes hypoxia-induced apoptosis in human colorectal cancer cells. European Review for Medical and Pharmacological Sciences, 2019, 23(3): 1047-1054.

doi: 16992 pmid: 30779071
[33]
ZHANG Y P, LI Q Q, LI W C, YAN K, LIU Y R, XU H Y, JIANG M S, LU Y Q, LIANG X W, SHANG J H, YANG X G. 2-Mercaptoethanol promotes porcine oocyte maturation in vitro by maintaining autophagy homeostasis. Theriogenology, 2022, 186: 155-167.
[1] LI Rui, LIANG Yue, BAI Yang, ZHANG GuiYue, WANG NanNan, QIAO SongLin, ZHANG GaiPing. Research Progress on the Roles and Mechanisms of Autophagy Involved in Porcine Reproductive and Respiratory Syndrome Virus Infection [J]. Scientia Agricultura Sinica, 2025, 58(4): 792-801.
[2] GE Yi, ZHENG QiuLing, CHEN MengXia, XIA JiaXin, FANG Xiang, TANG MeiLing, FANG JingGui, SHANGGUAN LingFei. Cloning and Functional Analysis of the Autophagy Gene ATG8f in the Grapevine [J]. Scientia Agricultura Sinica, 2025, 58(1): 156-169.
[3] ZHANG HuaPeng, ZHANG QingZe, HE Fan, QI MengFan, FU BinBin, LI QingChun, LI MengXun, MA LiPeng, LIU Yi, HUANG Tao. Cloning and Identification of Differentially Expressed lncRNAs in Follicles of Meishan Pigs and Duroc Pigs with Their Correlation Analysis with miRNAs [J]. Scientia Agricultura Sinica, 2024, 57(9): 1807-1819.
[4] MENG ZhaoYi, WANG YunLu, YAO YiLong, XI GuangYin, NIU JiaQiang, SOLANGSIZHU, GUO Min, XU YeFen. lncRNA-MSTRG.7889.1 Competitively Binds to bta-miR-146a Targeting Smad4 to Regulate Apoptosis of Yak Granulosa Cells [J]. Scientia Agricultura Sinica, 2024, 57(4): 797-809.
[5] GUO ZeYuan, DU ZhangSheng, ZHANG YaQi, CHEN ChunLu, MA XiaoYan, CHENG Ying, WANG Kai, LÜ LiHua. Effects of Smad7-Mediated TGF-β Signaling Pathway on Proliferation of Sheep Granulosa Cells [J]. Scientia Agricultura Sinica, 2023, 56(13): 2597-2608.
[6] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[7] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[8] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[9] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[10] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[11] ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066.
[12] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[13] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[14] ZHANG YuFei,CAO ManYuan,WANG LiYing,ZHAO WeiGang,LI XiaoXia,CHANG Tong,XU BaoZeng. Eukaryotic Expression, Purification and Biological Activity of Recombinant Cervus Nippon Activin A Protein [J]. Scientia Agricultura Sinica, 2020, 53(5): 1058-1070.
[15] LU SiYu,HE YingTing,ZHOU XiaoFeng,XIN XiaoPing,ZHANG AiLing,YUAN XiaoLong,ZHANG Zhe,LI JiaQi. Effect of KISS1 Interference on the Function of Porcine Granulosa Cells in Porcine Ovary [J]. Scientia Agricultura Sinica, 2020, 53(23): 4940-4949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!