Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (13): 2663-2681.doi: 10.3864/j.issn.0578-1752.2025.13.013

• HORTICULTURE • Previous Articles     Next Articles

Identification of the VcTPS/VcTPP Gene Family in Blueberries and Functional Analysis of VcTPS24 in Floral Induction

WU XinLiang(), WU HuiLing, ZHANG SuiLin, CAO Man, FENG Xin, ZHOU BingJie, HOU ZhiXia()   

  1. College of Forestry, Beijing Forestry University/State Key Laboratory of Efficient Production of Forest Resources/Blueberry Research and Development Center of Beijing Forestry University, Beijing 100083
  • Received:2025-02-24 Accepted:2025-04-25 Online:2025-07-01 Published:2025-07-05

Abstract:

【Objective】 Trehalose-6-phosphate synthase (TPS), as a key enzyme in the trehalose synthesis pathway, is involved in regulating various developmental process such as germination, plant growth, flowering, and stress resistance. In this study, genes encoding TPS and TPP in the blueberry trehalose synthesis pathway were identified. We analyzed the molecular mechanism of VcTPS24 in regulating floral induction through molecular biology methods, laying the foundation for revealing the sugar signaling pathway regulating blueberry floral induction. 【Method】 Bioinformatics methods was used to analyze the number of amino acid, gene structure, conserved motifs, promoter sequences, and subcellular localization of VcTPS/VcTPP family members in the trehalose metabolism pathway of blueberries (Vaccinium corymbosum L.). The expression characteristics of VcTPS class I genes during blueberry floral differentiation were analyzed through qRT-PCR experiments. We analyzed the expression of VcTPS24 in blueberries under hormone and low temperature stress by exogenous application of gibberellin, auxin and other hormones, and 4 ℃ low temperature treatment. The regulatory effects of VcSOC1 and VcSVP on the VcTPS24 promoter were analyzed by dual luciferase assay. We validated the function of VcTPS24 in regulating growth and floral induction by overexpressing it in tobacco. 【Result】 A total of 28 VcTPS and 19 VcTPP family members were identified from blueberry, which can be divided into two subfamilies. VcTPS family members encoding proteins ranging from 465 to 1 382 amino acids, with an average isoelectric point (pI) of 6.02. Most members have 3 exon structures. VcTPP family members encoding proteins ranging from 241 to 434 amino acids, with an average isoelectric point (pI) of 7.48. Most members have 11 exon structures. Cis acting elements such as G-Box, P-Box, LTR, and circadian, which are involved in light, hormone, stress response, and regulation of plant growth, were found in the promoter sequences of VcTPS/VcTPP family members. Members of the VcTPS/VcTPP family are mostly located in chloroplasts and vacuoles. The expression level of VcTPS class I genes significantly increased during blueberry floral induction, and the expression level of VcTPS24 was significantly higher through the entire period of flower bud differentiation than in the undifferentiated group. Subcellular localization assay showed that the expression of VcTPS24 can be significantly upregulated in blueberry seedlings by exogenous IAA, GA3, SA, MeJA, and low temperature stress. The dual luciferase assay showed that the promoter activity of VcTPS24 was significantly increased by VcSOC1, while it was significantly decreased by VcSVP. VcTPS24 is located in the nucleus and cytoplasm. Under the condition of no exogenous sucrose supply, the germination and radicle elongation of tobacco seeds overexpressing VcTPS24 were promoted, but excessive sucrose hindered the growth of tobacco seedlings overexpressing VcTPS24. The expression level of VcTPS24 was upregulated under short day condition. Under both long and short day conditions, the relative expression levels of NtLFY, NtFUL, and NtSOC1 in overexpressing VcTPS24 tobacco lines were all increased to varying degrees, and the formation time of their inflorescences was significantly earlier than that of the wild type. This indicates that VcTPS24 is involved in the regulation of floral induction. 【Conclusion】 A total of 28 blueberry VcTPS and 19 VcTPP family members were identified, and the VcTPS class I gene played an important role during blueberry floral induction. The expression of VcTPS24 was influenced by exogenous hormones, and the overexpression of VcTPS24 can promote tobacco flowering, which may be related to the upregulated expression of flowering genes.

Key words: blueberry (Vaccinium corymbosum L.), trehalose, dual luciferase reporter assay, trehalose-6-phosphate synthase, floral induction

Table 1

Basic information of the VcTPS/VcTPP family in Vaccinium corymbosum"

蛋白质
Protein
基因组名称
Gene ID
分子量
Molecular weight

(kDa)
理论等电点
Theoretical isoelectric point

(pI)
氨基酸数量
No. of amino
acid

(aa)
脂肪族指数
Aliphatic

index
(AI)
总平均亲水性
Grand average of
hydropathicity (GRAVY)
亚细胞定位预测
Prediction of subcellular localization
VcTPS1 VaccDscaff1-augustus-396.21 109711.99 6.79 973 87.65 -0.269 叶绿体Chloroplast
VcTPS2 VaccDscaff2-augustus-264.26 101361.67 6.11 896 93.28 -0.140 叶绿体Chloroplast
VcTPS3 VaccDscaff3-augustus-173.14 101383.72 6.08 896 93.72 -0.132 叶绿体Chloroplast
VcTPS4 VaccDscaff4-augustus-204.23 96344.97 5.96 857 84.47 -0.228 液泡Vacuole
VcTPS5 VaccDscaff4-augustus-305.15 96296.98 5.78 852 87.85 -0.238 细胞质Cytoplasm
VcTPS6 VaccDscaff5-snap-373.29 103449.36 6.66 921 84.14 -0.346 叶绿体Chloroplast
VcTPS7 VaccDscaff6-snap-157.32 104767.98 6.07 922 84.89 -0.281 叶绿体Chloroplast
VcTPS8 VaccDscaff6-augustus-415.25 97533.97 5.90 865 90.75 -0.164 叶绿体Chloroplast
VcTPS9 VaccDscaff8-snap-53.38 102274.98 6.57 911 84.63 -0.333 叶绿体Chloroplast
VcTPS10 VaccDscaff9-augustus-192.33 51250.97 5.47 465 76.49 -0.247 液泡Vacuole
VcTPS11 VaccDscaff9-augustus-279.19 96393.19 5.90 852 87.73 -0.232 细胞质Cytoplasm
VcTPS12 VaccDscaff10-processed-46.5 98352.52 6.59 875 82.77 -0.370 细胞质Cytoplasm
VcTPS13 VaccDscaff14-snap-228.37 97032.44 6.18 857 91.52 -0.187 叶绿体Chloroplast
VcTPS14 VaccDscaff20-augustus-148.22 96872.05 5.50 856 90.93 -0.217 细胞质Cytoplasm
VcTPS15 VaccDscaff22-processed-180.0 155153.79 6.04 1382 85.17 -0.385 液泡Vacuole
VcTPS16 VaccDscaff25-snap-274.23 97028.45 6.18 857 91.4 -0.190 叶绿体Chloroplast
VcTPS17 VaccDscaff28-augustus-174.15 96922.17 5.50 856 90.48 -0.215 细胞质Cytoplasm
VcTPS18 VaccDscaff35-augustus-209.24 96292.13 5.85 852 87.85 -0.222 叶绿体Chloroplast
VcTPS19 VaccDscaff36-processed-141.5 96279.97 5.85 852 87.73 -0.230 细胞质Cytoplasm
VcTPS20 VaccDscaff37-snap-73.33 104704.9 6.07 992 85.31 -0.276 叶绿体Chloroplast
VcTPS21 VaccDscaff37-augustus-296.26 97625.08 5.96 865 90.18 -0.172 叶绿体Chloroplast
VcTPS22 VaccDscaff38-augustus-13.19 97520.93 5.95 865 90.42 -0.174 叶绿体Chloroplast
VcTPS23 VaccDscaff38-augustus-206.34 100031.5 5.78 883 85.78 -0.229 叶绿体Chloroplast
VcTPS24 VaccDscaff38-augustus-295.59 106154.43 6.77 946 84.41 -0.346 叶绿体Chloroplast
VcTPS25 VaccDscaff39-augustus-6.34 97603.07 5.93 865 90.64 -0.169 叶绿体Chloroplast
VcTPS26 VaccDscaff39-augustus-233.28 100186.69 5.78 883 85.66 -0.225 叶绿体Chloroplast
VcTPS27 VaccDscaff44-augustus-176.31 96872.05 5.50 856 90.93 -0.217 细胞质Cytoplasm
VcTPS28 VaccDscaff46-augustus-60.18 97060.12 5.93 863 91.32 -0.169 液泡Vacuole
VcTPP1 VaccDscaff13-augustus-12.21 42711.95 8.84 386 84.40 -0.257 液泡Vacuole
VcTPP2 VaccDscaff19-snap-26.29 48525.61 6.21 434 85.32 -0.257 叶绿体Chloroplast
VcTPP3 VaccDscaff20-snap-26.33 42818.92 6.61 383 81.67 -0.327 叶绿体Chloroplast
VcTPP4 VaccDscaff21-augustus-85.22 43152.42 8.81 384 79.95 -0.351 叶绿体Chloroplast
VcTPP5 VaccDscaff22-augustus-142.24 44825.27 6.73 396 88.13 -0.395 叶绿体Chloroplast
VcTPP6 VaccDscaff23-augustus-237.19 42680.54 9.08 387 72.82 -0.445 液泡Vacuole
VcTPP7 VaccDscaff26-augustus-82.30 42608.65 5.69 380 82.32 -0.292 叶绿体Chloroplast
VcTPP8 VaccDscaff26-augustus-83.16 43024.25 8.50 382 80.86 -0.334 叶绿体Chloroplast
VcTPP9 VaccDscaff28-snap-330.33 42814.92 6.84 383 82.19 -0.329 液泡Vacuole
VcTPP10 VaccDscaff29-augustus-42.42 39118.42 7.12 346 77.51 -0.496 液泡Vacuole
VcTPP11 VaccDscaff29-augustus-84.21 44352.86 8.88 394 81.88 -0.338 叶绿体Chloroplast
VcTPP12 VaccDscaff33-augustus-254.24 43199.47 8.90 384 79.69 -0.364 叶绿体Chloroplast
VcTPP13 VaccDscaff35-snap-140.24 26586.25 4.61 241 80.08 -0.033 叶绿体Chloroplast
VcTPP14 VaccDscaff37-augustus-226.21 42763.88 8.64 387 81.37 -0.281 叶绿体Chloroplast
VcTPP15 VaccDscaff38-snap-84.29 42550.6 8.65 385 80.78 -0.285 液泡Vacuole
VcTPP16 VaccDscaff39-snap-90.9 42535.59 8.64 385 80.78 -0.291 叶绿体Chloroplast
VcTPP17 VaccDscaff43-augustus-226.19 44804.23 6.53 396 87.88 -0.394 液泡Vacuole
VcTPP18 VaccDscaff46-augustus-22.31 44840.24 6.29 396 88.13 -0.394 液泡Vacuole
VcTPP19 VaccDscaff48-snap-89.34 42832.87 6.61 383 81.93 -0.337 叶绿体Chloroplast

Fig. 1

Structure and conserved motif analysis of VcTPS (a) and VcTPP (b) family members in Vaccinium corymbosum"

Fig. 2

Analysis of cis regulatory elements in the VcTPS (a) and VcTPP (b) promoter of Vaccinium corymbosum The numbers in the grid represent the corresponding number of control components, and the VcTPS and VcTPP members in different colored boxes represent their respective families"

Fig. 3

Phylogenetic trees of Vaccinium corymbosum, Arabidopsis thaliana, Oryza sativa and Brachypodium distachyon TPS (a)/ TPP (b) families"

Fig. 4

Relative expression levels of VcTPS class I in axillary bud under different photoperiod SD: Short day, LD: Long day. Different lowercase letters indicate significant differences at the P<0.05 leve. The same as below"

Fig. 5

The subcellular localization of VcTPS24 The green signal represents the localization signal of the green fluorescent protein GFP on the pCAMBIA1300 vector, while the red signal represents the nuclear localization signal of tobacco mCherry cells"

Fig. 6

Detection results of dual luciferase reporter system a: Visualized images of tobacco leaves after processing with luminescent protein imaging system; b: The ratio of firefly luciferase to Renilla luciferase in tobacco leaves with different treatments"

Fig. 7

The relative expression levels of VcTPS24 under hormone and low temperature stress treatment Control: Control group, GA3, IAA, SA, MeJA, and Cold represent the gibberellin, auxin, salicylic acid, methyl jasmonate, and low temperature stress treatments, respectively. * indicate a significant difference from the control group (P<0.05)"

Fig. 8

The growth status and radicle length statistics of tobacco plants overexpressing VcTPS24 A: Growth status of tobacco seeds cultured on MS medium and the root length for 7 days; B: Growth status of tobacco seedlings transplanted for 40 days. YS: Wild-type tobacco, OE: VcTPS24 overexpressing tobacco. The same as below"

Table 2

Growth indicators for each tobacco treatment"

处理 Treatment 叶长 Length of leaf (cm) 叶宽 Width of leaf (cm) 株高 Plant height (cm) 节间长 Internode length (cm)
OE-长日照 LD 16.0±1.5 10.5±1.0 28.6±2.5 2.4±0.3
OE-短日照 SD 19.5±1.0 10.0±1.0 16.5±1.0 2.0±0.1
YS-长日照 LD 20.0±1.5 11.5±1.5 17.3±2.0 1.8±0.1
YS-短日照 SD 15.5±1.5 11.0±1.0 9.5±1.5 1.5±0.5

Fig. 9

The growth status of the wild-type and VcTPS24 overexpressing tobacco as well as the expression levels of VcTPS24"

Fig. 10

Relative expression levels of flowering related genes in tobacco"

[1]
WU Y Q, HAN T Y, YANG H, LYU L F, LI W L, WU W L. Known and potential health benefits and mechanisms of blueberry anthocyanins: A review. Food Bioscience, 2023, 55: 103050.
[2]
O’HARA L E, PAUL M J, WINGLER A. How do sugars regulate plant growth and development new insight into the role of trehalose-6-phosphate. Molecular Plant, 2013, 6(2): 261-274.
[3]
杜姣林, 蔺新兰, 马豫皖, 陈己任, 陈海霞, 李玉帆. 植物海藻糖-6-磷酸合成酶基因研究进展. 植物科学学报, 2023, 41(3): 411-420.
DU J L, LIN X L, MA Y W, CHEN J R, CHEN H X, LI Y F. Research progress in plant Trehalose-6-phosphate synthase genes. Plant Science Journal, 2023, 41(3): 411-420. (in Chinese)
[4]
VICHAIYA T, FAIYUE B, ROTARAYANONT S, UTHAIBUTRA J, SAENGNIL K. Exogenous trehalose alleviates chilling injury of ‘Kim Ju’ guava by modulating soluble sugar and energy metabolisms. Scientia Horticulturae, 2022, 301: 111138.
[5]
GUO H L, XU Y, CHEN H Y, SI X Y, ZHOU M H, ZHU E L. Antagonistic yeast and trehalose-enriched gelatin film: A bioactive antifungal packaging film for cherry tomato preservation. Food Packaging and Shelf Life, 2024, 42: 101258.
[6]
ELBEIN A D, PAN Y T, PASTUSZAK I, CARROLL D. New insights on trehalose: A multifunctional molecule. Glycobiology, 2003, 13(4): 17R-27R.
[7]
YANG Y Z, WANG C, LIANG Y T, XIAO D D, FU T T, YANG X Q, LIU J H, WANG S L, WANG Y W. PagTPS1 and PagTPS10, the trehalose-6-phosphate synthase genes, increase trehalose content and enhance drought tolerance. International Journal of Biological Macromolecules, 2024, 279(Pt 4): 135518.
[8]
YANG H L, LIU Y J, WANG C L, ZENG Q Y. Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice. PLoS ONE, 2012, 7(8): e42438.
[9]
ISLAM M O, KATO H, SHIMA S, TEZUKA D, MATSUI H, IMAI R. Functional identification of a rice trehalase gene involved in salt stress tolerance. Gene, 2019, 685: 42-49.

doi: S0378-1119(18)31115-6 pmid: 30393190
[10]
KAASEN I, FALKENBERG P, STYRVOLD O B, STRØM A R. Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: Evidence that transcription is activated by katF (AppR). Journal of Bacteriology, 1992, 174(3): 889-898.
[11]
DELORGE I, FIGUEROA C M, FEIL R, LUNN J E, VAN DIJCK P. Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis thaliana. The Biochemical Journal, 2015, 466(2): 283-290.
[12]
VANDESTEENE L, RAMON M, LE ROY K, VAN DIJCK P, ROLLAND F. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. Molecular Plant, 2010, 3(2): 406-419.
[13]
RAMON M, DE SMET I, VANDESTEENE L, NAUDTS M, LEYMAN B, VAN DIJCK P, ROLLAND F, BEECKMAN T, THEVELEIN J M. Extensive expression regulation and lack of heterologous enzymatic activity of the Class II trehalose metabolism proteins from Arabidopsis thaliana. Plant, Cell & Environment, 2009, 32(8): 1015-1032.
[14]
SCHLUEPMANN H, BERKE L, SANCHEZ-PEREZ G F. Metabolism control over growth: A case for trehalose-6-phosphate in plants. Journal of Experimental Botany, 2012, 63(9): 3379-3390.

doi: 10.1093/jxb/err311 pmid: 22058405
[15]
OSZVALD M, PRIMAVESI L F, GRIFFITHS C A, COHN J, BASU S S, NUCCIO M L, PAUL M J. Trehalose 6-phosphate regulates photosynthesis and assimilate partitioning in reproductive tissue. Plant Physiology, 2018, 176(4): 2623-2638.

doi: 10.1104/pp.17.01673 pmid: 29437777
[16]
FICHTNER F, BARBIER F F, ANNUNZIATA M G, FEIL R, OLAS J J, MUELLER-ROEBER B, STITT M, BEVERIDGE C A, LUNN J E. Regulation of shoot branching in Arabidopsis by trehalose 6-phosphate. New Phytologist, 2021, 229(4): 2135-2151.
[17]
LIU Z Y, SHI Y T, XUE Y Q, WANG X P, HUANG Z, XUE J Q, ZHANG X X. Non-structural carbohydrates coordinate tree peony flowering both as energy substrates and as sugar signaling triggers, with the bracts playing an essential role. Plant Physiology and Biochemistry, 2021, 159: 80-88.

doi: 10.1016/j.plaphy.2020.12.012 pmid: 33341082
[18]
ZHAI Z Y, KEEREETAWEEP J, LIU H, FEIL R, LUNN J E, SHANKLIN J. Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. The Plant Cell, 2018, 30(10): 2616-2627.

doi: 10.1105/tpc.18.00521 pmid: 30249634
[19]
YADAV U P, IVAKOV A, FEIL R, DUAN G Y, WALTHER D, GIAVALISCO P, PIQUES M, CARILLO P, HUBBERTEN H M, STITT M, LUNN J E. The sucrose-trehalose 6-phosphate (Tre6P) nexus: Specificity and mechanisms of sucrose signalling by Tre6P. Journal of Experimental Botany, 2014, 65(4): 1051-1068.

doi: 10.1093/jxb/ert457 pmid: 24420566
[20]
NUCCIO M L, WU J, MOWERS R, ZHOU H P, MEGHJI M, PRIMAVESI L F, PAUL M J, CHEN X, GAO Y, HAQUE E, BASU S S, LAGRIMINI L M. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 2015, 33(8): 862-869.

pmid: 26473199
[21]
GABRIEL C, FERNHOUT J J, FICHTNER F, FEIL R, LUNN J E, KOSSMANN J, LLOYD J R, VAN DER VYVER C. Genetic manipulation of trehalose-6-phosphate synthase results in changes in the soluble sugar profile in transgenic sugarcane stems. Plant Direct, 2021, 5(11): e358.

doi: 10.1002/pld3.358 pmid: 34765864
[22]
GÓMEZ L D, GILDAY A, FEIL R, LUNN J E, GRAHAM I A. AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. The Plant Journal, 2010, 64(1): 1-13.

doi: 10.1111/j.1365-313X.2010.04312.x pmid: 20659274
[23]
GOMEZ L D, BAUD S, GRAHAM I A. Metabolite sensing in plants: A role for trehalose metabolism in seed development and embryo development. FEBS JOURNAL, 2005, 2721:460.
[24]
VAN DIJKEN A J H, SCHLUEPMANN H, SMEEKENS S C M. Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiology, 2004, 135(2): 969-977.

doi: 10.1104/pp.104.039743 pmid: 15181208
[25]
FENG X, WU X L, WU H L, LI Y, ZHOU B J, JIANG Y, ZHANG S L, WEI J L, SU S C, HOU Z X. Short-photoperiod induces floral induction involving carbohydrate metabolism and regulation by VcCO3 in greenhouse blueberry. Plant, Cell & Environment, 2025, 48(3): 2145-2161.
[26]
DU L S, QI S Y, MA J J, XING L B, FAN S, ZHANG S W, LI Y M, SHEN Y W, ZHANG D, HAN M Y. Identification of TPS family members in apple (Malus×domestica Borkh.) and the effect of sucrose sprays on TPS expression and floral induction. Plant Physiology and Biochemistry, 2017, 120: 10-23.
[27]
SU Z X, XIAO Q S, SHEN J Y, CHEN H B, YAN S J, HUANG W J. Metabolomics analysis of Litchi leaves during floral induction reveals metabolic improvement by stem girdling. Molecules, 2021, 26(13): 4048.
[28]
WU H L, ZHANG S L, FENG X, ZHANG Y Q, ZHOU B J, CAO M, WANG Y P, GUO B S, HOU Z X. Possible mechanism of sucrose and trehalose-6-phosphate in regulating the secondary flower on the strong upright spring shoots of blueberry planted in greenhouse. Plants, 2024, 13(17): 2350.
[29]
张鹤华, 刘嘉欣, 罗朝兵, 张凌云. 青杄转录因子PwERF8及其启动子序列的克隆与分析. 林业科学, 2018, 54(3): 48-60.
ZHANG H H, LIU J X, LUO C B, ZHANG L Y. Cloning and analysis of a transcription factor PwERF8 and the promoter sequences in Picea wilsonii. Scientia Silvae Sinicae, 2018, 54(3): 48-60. (in Chinese)
[30]
YANG J F, SHI W J, LI B B, BAI Y C, HOU Z X. Preharvest and postharvest UV radiation affected flavonoid metabolism and antioxidant capacity differently in developing blueberries (Vaccinium corymbosum L.). Food Chemistry, 2019, 301: 125248.
[31]
GALLEGO-GIRALDO L, GARCÍA-MARTÍNEZ J L, MORITZ T, LÓPEZ-DÍAZ I. Flowering in tobacco needs gibberellins but is not promoted by the levels of active GA1 and GA4 in the apical shoot. Plant and Cell Physiology, 2007, 48(4): 615-625.
[32]
DE OLIVEIRA L P, NAVARRO B V, DE JESUS PEREIRA J P, LOPES A R, MARTINS M C M, RIAÑO-PACHÓ N D M, BUCKERIDGE M S. Bioinformatic analyses to uncover genes involved in trehalose metabolism in the polyploid sugarcane. Scientific Reports, 2022, 12: 7516.

doi: 10.1038/s41598-022-11508-x pmid: 35525890
[33]
WANG W P, CUI H, XIAO X F, WU B J, SUN J L, ZHANG Y X, YANG Q Y, ZHAO Y P, LIU G X, QIN T F. Genome-wide identification of cotton (Gossypium spp.) trehalose-6-phosphate phosphatase (TPP) gene family members and the role of GhTPP22 in the response to drought stress. Plants, 2022, 11(8): 1079.
[34]
LUNN J E. Gene families and evolution of trehalose metabolism in plants. Functional Plant Biology, 2007, 34(6): 550-563.

doi: 10.1071/FP06315 pmid: 32689383
[35]
RAHMAN M M, RAHMAN M M, EOM J S, JEON J S. Genome-wide identification, expression profiling and promoter analysis of trehalose-6-phosphate phosphatase gene family in rice. Journal of Plant Biology, 2021, 64(1): 55-71.
[36]
孙汉青, 陶红霞, 宋雪娜, 郭延平, 赵政阳. 干旱诱导的海藻糖和脱落酸对苹果品质的影响. 西北农业学报, 2019, 28(2): 204-212.
SUN H Q, TAO H X, SONG X N, GUO Y P, ZHAO Z Y. Effects of drought induced trehalose and abscisic acid on apple quality. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(2): 204-212. (in Chinese)
[37]
FAN S H, WANG Z, XIAO Y S, LIANG J H, ZHAO S L, LIU Y H, PENG F T, GUO J. Genome-wide identification of trehalose-6- phosphate synthase (TPS) gene family reveals the potential role in carbohydrate metabolism in peach. Genes, 2024, 15(1): 39.
[38]
MOLLAVALI M, BÖRNKE F. Characterization of trehalose-6- phosphate synthase and trehalose-6-phosphate phosphatase genes of tomato (Solanum lycopersicum L.) and analysis of their differential expression in response to temperature. International Journal of Molecular Sciences, 2022, 23(19): 11436.
[39]
GAO Y H, YANG X Y, YANG X, ZHAO T Y, AN X M, CHEN Z. Characterization and expression pattern of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase gene families in Populus. International Journal of Biological Macromolecules, 2021, 187: 9-23.
[40]
YUAN P, YU M Z, LIU H J, HAMMOND J P, CAI H M, DING G D, WANG S L, XU F S, WANG C, HONG D F, SHI L. Overexpression of oilseed rape trehalose-6-phosphate synthesis gene BnaC02.TPS8 confers sensitivity to low nitrogen and high sucrose-induced anthocyanin accumulation in Arabidopsis. Planta, 2024, 259(5): 122.
[41]
林孟飞. 辣木海藻糖-6-磷酸合成酶的功能与进化分析[D]. 广州: 华南农业大学, 2020.
LIN M F. Functional and evolutionary analysis of trehalose-6- phosphate synthase in Moringa[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
[42]
FICHTNER F, OLAS J J, FEIL R, WATANABE M, KRAUSE U, HOEFGEN R, STITT M, LUNN J E. Functional features of TREHALOSE-6-PHOSPHATE SYNTHASE1, an essential enzyme in Arabidopsis. The Plant Cell, 2020, 32(6): 1949-1972.
[43]
ALMEIDA A M, SANTOS M, VILLALOBOS E, ARAÚJO S S, VAN DIJCK P, LEYMAN B, CARDOSO L A, SANTOS D, FEVEREIRO P S, TORNÉ J M. Immunogold localization of trehalose-6-phosphate synthase in leaf segments of wild-type and transgenic tobacco plants expressing the AtTPS1 gene from Arabidopsis thaliana. Protoplasma, 2007, 230(1): 41-49.
[44]
ZHANG Y X, YUAN Y C, LIU Z J, ZHANG T, LI F, LIU C Y, GAI S P. GA 3 is superior to GA4 in promoting bud endodormancy release in tree peony (Paeonia suffruticosa) and their potential working mechanism. BMC Plant Biology, 2021, 21(1): 323.
[45]
ZHU F M, LI M Y, SUN M L, JIANG X F, QIAO F. Plant hormone signals regulate trehalose accumulation against osmotic stress in watermelon cells. Protoplasma, 2022, 259(5): 1351-1369.
[46]
LAN S S, GONG M, YANG S L. Osmoregulation is a crucial factor for methyl jasmonate to enhance chilling tolerance of Jatropha curcas L.. Tree Physiology, 2025, 45(4): tpaf037.
[47]
JIANG W, FU F L, ZHANG S Z, WU L, LI W C. Cloning and characterization of functional trehalose-6-phosphate synthase gene in maize. Journal of Plant Biology, 2010, 53(2): 134-141.
[48]
ZHANG Q, ZHANG M, ZHAO Y Q, HU H, HUANG Y X, JIA G X. Identification of trehalose-6-phosphate synthase (TPS)-coding genes involved in flowering induction of Lilium×formolongi. Plant Physiology and Biochemistry, 2022, 171: 84-94.
[49]
PONNU J, WAHL V, SCHMID M. Trehalose-6-phosphate: Connecting plant metabolism and development. Frontiers in Plant Science, 2011, 2: 70.

doi: 10.3389/fpls.2011.00070 pmid: 22639606
[50]
LIANG J H, ZHANG S H, YU W Y, WU X L, WANG W R, PENG F T, XIAO Y S. Overexpression alters the response to light and affects photosynthesis and carbon metabolism in tomato. Physiologia Plantarum, 2021, 173(4): 1808-1823.
[51]
LUO J J, PENG F T, ZHANG S H, XIAO Y S, ZHANG Y F. The protein kinase FaSnRK1α regulates sucrose accumulation in strawberry fruits. Plant Physiology and Biochemistry, 2020, 151: 369-377.

doi: S0981-9428(20)30157-1 pmid: 32276220
[52]
HU Y X, LIN Y, XIA Y Q, XU X M, WANG Z T, CUI X R, HAN L, LI J Y, ZHANG R T, DING Y F, CHEN L. Overexpression of OsSnRK1a through a green tissue-specific promoter improves rice yield by accelerating sheath-to-panicle transport of nonstructural carbohydrates and increasing leaf photosynthesis. Plant Physiology and Biochemistry, 2023, 203: 108048.
[53]
OHTO M, ONAI K, FURUKAWA Y, AOKI E, ARAKI T, NAKAMURA K. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiology, 2001, 127(1): 252-261.
[54]
LI X, HOU R Z, LI D, WANG L D, WANG T, CHEN Q L, QI X H, HOU L P, LI M L. Metabolism and transcriptional analyses reveal the mechanism of sucrose affecting the floral transition in pak choi (Brassica rapa ssp. Chinensis Makino). Scientia Horticulturae, 2024, 328: 112968.
[55]
SHAH K, ZHU X Y, ZHANG T T, CHEN J Y, CHEN J X, QIN Y H. Transcriptome analysis reveals sugar and hormone signaling pathways mediating flower induction in pitaya (Hylocereus polyrhizus). International Journal of Molecular Sciences, 2025, 26(3): 1250.
[56]
LEE J, LEE I. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany, 2010, 61(9): 2247-2254.

doi: 10.1093/jxb/erq098 pmid: 20413527
[57]
WANG X X, HUANG Q Y, SHEN Z L, BARON G C, LI X Y, LU X Y, LI Y Q, CHEN W R, XU L S, LV J C, LI W J, ZONG Y, GUO W D. Genome-wide identification and analysis of the MADS-box transcription factor genes in blueberry (Vaccinium spp.) and their expression pattern during fruit ripening. Plants, 2023, 12(7): 1424.
[58]
SONG G Q, WALWORTH A, ZHAO D Y, HILDEBRANDT B, LEASIA M. Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco. Plant Cell Reports, 2013, 32(11): 1819-1826.
[59]
LUO M M, LIU X X, SU H Y, LI M L, LI M F, WEI J H. Regulatory networks of flowering genes in Angelica sinensis during vernalization. Plants, 2022, 11(10): 1355.
[60]
XUAN L J, WANG Q Q, LIU Z G, XU B, CHENG S Y, ZHANG Y J, LU D Y, DONG B, ZHANG D M, ZHANG L, MA J J, SHEN Y M. Metabolic analysis of the regulatory mechanism of sugars on secondary flowering in Magnolia. BMC Molecular and Cell Biology, 2022, 23(1): 56.
[1] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[2] LUO ZhengYing, HU Xin, LIU XinLong, WU CaiWen, WU ZhuanDi, LIU JiaYong, ZENG QianChun. Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth [J]. Scientia Agricultura Sinica, 2023, 56(21): 4208-4218.
[3] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[4] YU WeiDong,PAN BiYing,QIU LingYu,HUANG Zhen,ZHOU Tai,YE Lin,TANG Bin,WANG ShiGui. The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Two NlTret1s in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812.
[5] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[6] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[7] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[8] TANG Bin, ZHANG Lu, XIONG XuPing, WANG HuiJuan, WANG ShiGui . Advances in Trehalose Metabolism and Its Regulation of Insect Chitin Synthesis [J]. Scientia Agricultura Sinica, 2018, 51(4): 697-707.
[9] JIANG Shan, LI Shuai, ZHANG Bin, LI Hong-gang, WAN Fang-hao, ZHENG Chang-ying. Effects of Extreme High Temperature on Survival Rate, Reproduction, Trehalose and Sorbitol of Frankliniella occidentalis [J]. Scientia Agricultura Sinica, 2016, 49(12): 2310-2321.
[10] CHEN Hou-Bin, SU Zuan-Xian, ZHANG Rong, ZHANG Hong-Na, DING Feng, ZHOU Bi-Yan. Progresses in Research of Litchi Floral Differentiation [J]. Scientia Agricultura Sinica, 2014, 47(9): 1774-1783.
[11] LIU Xiu-Ming, HUANG Chen-Yang, CHEN Qiang, WU Xiang-Li, ZHANG Jin-Xia. Study on the Metabolic Pathway of Trehalose in Pleurotus pulmonarius During Heat Stress Recovery [J]. Scientia Agricultura Sinica, 2013, 46(24): 5188-5195.
[12] ZHAO Yu, LI Hai-Lan, DU Jun, ZHAN Ji-Cheng. Effect of Trehalose in Resistance of Wine Yeast to Copper Stress [J]. Scientia Agricultura Sinica, 2011, 44(23): 4867-4873.
[13] Fang Lei,GuiFen Zhang,FangHao Wan,Jun Ma. Effects of Plant Species Switching on Contents and Dynamics of Trehalose and Trehalase Activity of Bemisia tabaci B-biotype and Trialeurodes vaporariorum [J]. Scientia Agricultura Sinica, 2006, 39(7): 1387-1394 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!