Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (12): 2310-2321.doi: 10.3864/j.issn.0578-1752.2016.12.007

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Extreme High Temperature on Survival Rate, Reproduction, Trehalose and Sorbitol of Frankliniella occidentalis

JIANG Shan1, LI Shuai1, ZHANG Bin1, LI Hong-gang1,2, WAN Fang-hao1,3, ZHENG Chang-ying1   

  1. 1Key Laboratory for Insect Ecology of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, Shandong
    2Plant Protection Station of Shandong Province, Jinan 250100
    3Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2016-01-22 Online:2016-06-16 Published:2016-06-16

Abstract: 【Objective】The western flower thrips (Frankliniella occidentalis) is an important invasive and quarantine pest in China which created massive economic losses in vegetables and flowers. The objective of this study is to explore the influence of extreme high temperature (EHT) on survival rate, fecundity and content of trehalose and sorbital of F. occidentalis, and to provide a basis for the control of F. occidentalis. 【Method】After 2nd nymphs and adults exposed to 45℃ for 2 h twice (24 h interval under variable temperatures 22℃ (4 h)-25 (8 h)-28 (4 h)-25 (8 h) between two heat treatments), the survival rate, female adult longevity, offspring population dynamics, sex ratio and content of trehalose and sorbital were detected and analyzed. 【Result】In comparison with the control, the survival rate of each stage was less than 50% (0 for 3rd and 4th nymph, 41.38% for female adults, 5% for 1st nymphs and 21.36% for 2nd nymphs), parental and offspring female adult longevity and fecundity significantly reduced (P<0.05), the content of trehalose in 2nd nymphs and adults significantly declined (P<0.05), and the content of sorbital in 2nd nymphs and female adults significantly increased after heat-shocked on parental 2nd nymphs and female adults (P<0.05). Meanwhile, higher female adult longevity and fecundity, lower content of trehalose, higher content of sorbital in F. occidentalis sufferred from twice 45℃ for 2 h heat shock on parental adults was expressed more than those in F. occidentalis sufferred from heat-shock on parental 2nd nymphs. Interestingly, the influence of twice 45℃ for 2 h heat shock not only occurred on parental generation but subsequent generations (F1 and F2 generations), and the trend of F1 and F2 generations was the same as the parental generation.【Conclusion】Twice 45℃ for 2 h exposes on parental F. occidentalis significantly affected the development, reproduction and physiology of present and offspring generations. The changes of trehalose and sorbital content had a correlation with the population dynamics of F. occidentalis

Key words: extreme high temperature;Frankliniella occidentalis, fecundity, trehalose, sorbitol

[1]    Hallman G J, Denlinger D L. Introduction: temperature sensitivity and integrated pest management//Hallman G J, Denlinger D L. Temperature Sensitivity in Insects and Application in Integrated Pest Management. Boulder, CO: Westview Press, 1998: 1-5.
[2]    Bale J S, Hayward S A L. Insect overwintering in a changing climate. The Journal of Experimental Biology, 2010, 213: 980-994.
[3]    Fields P G. The control of stored-product insects and mites with extreme temperatures. Journal of Stored Products Research, 1992, 28(2): 89-118.
[4]    Mourier H, Poulsen K P. Control of insects and mites in grain using a high temperature/short time (HTST) technique. Journal of Stored Products Research, 2000, 36: 309-318.
[5]    Denlinger D L, Yocum G D. Physiology of heat sensitivity// Hallman G J, Denlinger D L. Temperature Sensitivity in Insects and Application in Integrated Pest Management. Boulder, CO: Westview Press, 1998: 11-18.
[6]    Rinehart J R, Yocum G D, Denlinger D L. Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiological Entomology, 2000, 25: 330-336.
[7]    Gullan P J, Cranston P S. The Insects: An Outline of Entomology. 3rd ed. Davis, USA: Blackwell Publishing Ltd., 2005.
[8]    戴秀玉, 程苹, 周坚, 江慧修. 海藻糖的生理功能、分子生物学研究及应用前景. 微生物学通报, 1995, 22(2): 102-103.
Dai X Y, Cheng P, Zhou J, Jiang H X. Physiological function, molecular biology and applications of trehalose. Microbiology Bulletin, 1995, 22(2): 102-103. (in Chinese)
[9]    聂凌鸿, 宁正祥. 海藻糖的生物保护作用. 生命的化学, 2001, 21(3): 206-209.
Nie L H, Ning Z X. Biological protective function of the trehalose. Chemistry of Life, 2001, 21(3): 206-209. (in Chinese)
[10]   Crowe J, Crowe L, Chapman D. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science, 1984, 223(4637): 701-703.
[11]   Salvucci M E, Hendrix D L, Wolfe G R. Effect of high temperature on the metabolic processes affecting sorbitol synthesis in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 1999, 45(1): 21-27.
[12]   Salvucci M E, Stecher D S, Henneberry T J. Heat shock proteins in whiteflies, an insect that accumulates sorbitol in response to heat stress. Journal of Thermal Biology, 2000, 25: 363-371.
[13]   Hendrix D L, Salvucci M E. Polyol metabolism in homopterans at high temperatures: accumulation of mannitol in aphids (Aphididae: Homoptera) and sorbitol in whiteflies (Aleyrodidae: Homoptera). Comparative Biochemistry and Physiology, A, 1998, 120(3): 487-494.
[14]   Kirk W D J, Terry L I. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agricultural and Forest Entomology, 2003, 5: 301-310.
[15]   Childers C C, Achors D S. Thrips feeding and oviposition injuries to economic plants, subsequent damage and host response to infestation//Parker B L, Skinner M, Lewis T. Thrips Biology and Management. New York and London: Plenum Press, 1995: 31-50.
[16]   周永丰, 唐峻岭. 高温对南美斑潜蝇的致死作用. 昆虫知识, 2003, 40(4): 372-373.
Zhou Y F, Tang J L. Lethal effect of high temperature on the leafminer fly, Liriomyza huidobrensis in a greenhouse. Entomological knowledge, 2003, 40(4): 372-373. (in Chinese)
[17]   杜尧. 高温模式对麦蚜实验种群影响的生态机制研究[D]. 北京: 中国农业科学院, 2007.
DU Y. Ecological mechanism of effects of high temperature patterns on laboratory population of cereal aphid[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007. (in Chinese)
[18]   Yoder J A, Chambers M J, Tank J L, Keeney G D. High temperature effects on water loss and survival examining the hardiness of female adults of the spider beetles, Mezium affine and Gibbium aequinoetiale. Journal of Insect Science, 2009, 9: Article 68.
[19]   Chown S L, Nicholson S W. Insect Physiological Ecology: Mechanisms and Patterns. New York: Oxford Press, 2004.
[20]   Robertson R M. Modulation of neural circuit operation by prior environmental stress. Integrative and Comparative Biology, 2004, 44(1): 21-27.
[21]   Chown S L, Terblanche J S. Physiological diversity in insects: Ecological and evolutionary contexts. Advances in Insect Physiology, 2006, 33: 50-152.
[22]   Rinehart J R, Yocum G D, Denlinger D L. Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiological Entomology, 2000, 25: 330-336.
[23]   Drost Y C, van Lenteren J C, van Roermund H J W. Life-history parameters of Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to temperature and host plant: a selective review.Bulletin of Entomological Research, 1998, 88(3): 219-229.
[24]   刘芸, 阮传清, 刘波, 朱育菁. 温度对小菜蛾成虫繁殖和寿命的影响. 中国农学通报, 2013, 29(12): 190-193.
Liu Y, Ruan C Q, Liu B, Zhu Y J. Effects of temperature on oviposition and longevity of adult diamondback moth (Plutella xylostella L.). Chinese Agricultural Science Bulletin, 2013, 29(12): 190-193. (in Chinese)
[25]   Wang J C, Zhang B, Wang J P, Li H G, Wang S F, Sun L J, Zheng C Y. Effects of heat stress on survival of Frankliniella occidentalis (Thysanptera: Thripidae) and Thrips tabaci (Thysanoptera: Thripidae). Journal of Economic Entomology, 2014, 107(4): 1426-1433.
[26]   Mironidis G K, Savopoulou-Soultani M. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) adults. Journal of Thermal Biology, 2010, 35: 59-69.
[27]   朱绍光, 李照会, 万方浩. 短时高温暴露对Q型烟粉虱存活和生殖适应性的影响. 昆虫知识, 2010, 47(6): 1141-1144.
Zhu S G, Li Z H, Wan F H. Effects of brief exposure to high temperature on survival and reproductive adaptation of Bemisia tabaci Q-biotype. Chinese Bulletin of Entomology, 2010, 47(6): 1141-1144. (in Chinese)
[28]   崔旭红, 谢明, 万方浩. 短时高温暴露对B型烟粉虱和温室白粉虱存活以及生殖适应性的影响. 中国农业科学, 2008, 41(2): 424-430.
Cui X H, Xie M, Wan F H. Effects of brief exposure to high temperature on survival and fecundity of two whitefly species: Bemisia tabaci B-biotype and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Scientia Agricultura Sinica, 2008, 41(2): 424-430. (in Chinese)
[29]   Ma C S, Hau B, Poehling B H. Effects of pattern and timing of high temperature exposure on reproduction of the rose grain aphid, Metopolophium dirhodum. Entomologia Experimentalis et Applicata, 2004, 110: 65-71.
[30]   Mahroof R, Zhu K Y, Subramanyam b. Changes in expression of heat shock proteins in Tribolium castaneum (Coleoptera: Tenebrionidae) in relation to developmental stage, exposure time, and temperature. Annals of the Entomological Society of America, 2005, 98(1): 100-107.
[31]   Cui X, Wan F H, Xie M, Liu T X. Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Journal of Insect Science , 2008, 8(24): Article 24.
[32]   Scott M, Berrigan D, Hoffmann A A. Costs and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomologia Experimentalis et Applicata, 1997, 85: 211-219.
[33]   赵鑫, 傅建炜, 万方浩, 郭建英, 王进军. 短时高温暴露对莲草直胸跳甲生殖特性的影响. 昆虫学报, 2009, 52(10): 1110-1114.
Zhao X, Fu J W, Wan F H, Guo J Y, Wang J J. Effect of brief high temperature exposure on reproduction characteristics of Agasicles hygrophila (Coleoptera: Chrysomelidae). Acta Entomologica Sinica, 2009, 52(10): 1110-1114. (in Chinese)
[34]   Enkegaard A. Encarsia formosa parasitizing the poinsettia-strain of the cotton whitefly, Bemisia tabaci, on poinsettia: bionomics in relation to temperature. Entomologia Experimentalis et Applicata, 1993, 69(3): 251-261.
[35]   Chown S L, Sorensen J G, Terblanche J S. Water loss in insects: An environmental change perspective. Journal of Insect Physiology, 2011, 57(8): 1070-1084.
[1] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[2] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[3] LI FeiFei,WANG BeiBei,LAI YingFang,YANG FeiYing,YOU MinSheng,HE WeiYi. Knockout of Single Allele of fl(2)d Significantly Decreases the Fecundity and Fertility inPlutella xylostella [J]. Scientia Agricultura Sinica, 2021, 54(14): 3029-3042.
[4] YU WeiDong,PAN BiYing,QIU LingYu,HUANG Zhen,ZHOU Tai,YE Lin,TANG Bin,WANG ShiGui. The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Two NlTret1s in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812.
[5] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[6] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[7] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[8] TANG Bin, ZHANG Lu, XIONG XuPing, WANG HuiJuan, WANG ShiGui . Advances in Trehalose Metabolism and Its Regulation of Insect Chitin Synthesis [J]. Scientia Agricultura Sinica, 2018, 51(4): 697-707.
[9] DING JinFeng, XU ChunMei, ZHANG ZhengQun, ZHAO YunHe, LIU Feng, MU Wei. Effects of Cyantraniliprole on Development, Fecundity and Nutritional Utilization of Athetis dissimilis [J]. Scientia Agricultura Sinica, 2017, 50(22): 4307-4315.
[10] LI Gan-jin, XU Xian-hao, ZHANG Hai-liang, ZHU Min, CUI Xu-hong. Effects of Short-Term Exposure to High Temperature on the Survival and Fecundity of the Brown Planthopper (Nilaparvata lugens) [J]. Scientia Agricultura Sinica, 2015, 48(9): 1747-1755.
[11] CHEN Zhen-Zhen, LI Ming-Gui, GUO Ya-Nan, YIN Xiang-Chu, ZHANG Fan, XU Yong-Yu. Effects of Photoperiod and Temperature on the Post-Diapause Biology of Chrysoperla sinica (Tjeder) Adults in Different Overwintering Periods [J]. Scientia Agricultura Sinica, 2013, 46(8): 1610-1618.
[12] LIU Xiu-Ming, HUANG Chen-Yang, CHEN Qiang, WU Xiang-Li, ZHANG Jin-Xia. Study on the Metabolic Pathway of Trehalose in Pleurotus pulmonarius During Heat Stress Recovery [J]. Scientia Agricultura Sinica, 2013, 46(24): 5188-5195.
[13] JIN Shan, SUN Xiao-Ling, CHEN Zong-Mao, XIAO Bin. Resistance of Different Tea Cultivars to Empoasca vitis Göthe [J]. Scientia Agricultura Sinica, 2012, 45(2): 255-265.
[14] LIANG Dong, WU Shan, WANG Su-Fang, MA Feng-Wang. Cloning and Expression of the Sorbitol Dehydrogenase Gene Family in Apple [J]. Scientia Agricultura Sinica, 2012, 45(1): 102-110.
[15] ZHAO Yu, LI Hai-Lan, DU Jun, ZHAN Ji-Cheng. Effect of Trehalose in Resistance of Wine Yeast to Copper Stress [J]. Scientia Agricultura Sinica, 2011, 44(23): 4867-4873.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!