[1] |
WU Y Q, HAN T Y, YANG H, LYU L F, LI W L, WU W L. Known and potential health benefits and mechanisms of blueberry anthocyanins: A review. Food Bioscience, 2023, 55: 103050.
|
[2] |
O’HARA L E, PAUL M J, WINGLER A. How do sugars regulate plant growth and development new insight into the role of trehalose-6-phosphate. Molecular Plant, 2013, 6(2): 261-274.
|
[3] |
杜姣林, 蔺新兰, 马豫皖, 陈己任, 陈海霞, 李玉帆. 植物海藻糖-6-磷酸合成酶基因研究进展. 植物科学学报, 2023, 41(3): 411-420.
|
|
DU J L, LIN X L, MA Y W, CHEN J R, CHEN H X, LI Y F. Research progress in plant Trehalose-6-phosphate synthase genes. Plant Science Journal, 2023, 41(3): 411-420. (in Chinese)
|
[4] |
VICHAIYA T, FAIYUE B, ROTARAYANONT S, UTHAIBUTRA J, SAENGNIL K. Exogenous trehalose alleviates chilling injury of ‘Kim Ju’ guava by modulating soluble sugar and energy metabolisms. Scientia Horticulturae, 2022, 301: 111138.
|
[5] |
GUO H L, XU Y, CHEN H Y, SI X Y, ZHOU M H, ZHU E L. Antagonistic yeast and trehalose-enriched gelatin film: A bioactive antifungal packaging film for cherry tomato preservation. Food Packaging and Shelf Life, 2024, 42: 101258.
|
[6] |
ELBEIN A D, PAN Y T, PASTUSZAK I, CARROLL D. New insights on trehalose: A multifunctional molecule. Glycobiology, 2003, 13(4): 17R-27R.
|
[7] |
YANG Y Z, WANG C, LIANG Y T, XIAO D D, FU T T, YANG X Q, LIU J H, WANG S L, WANG Y W. PagTPS1 and PagTPS10, the trehalose-6-phosphate synthase genes, increase trehalose content and enhance drought tolerance. International Journal of Biological Macromolecules, 2024, 279(Pt 4): 135518.
|
[8] |
YANG H L, LIU Y J, WANG C L, ZENG Q Y. Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice. PLoS ONE, 2012, 7(8): e42438.
|
[9] |
ISLAM M O, KATO H, SHIMA S, TEZUKA D, MATSUI H, IMAI R. Functional identification of a rice trehalase gene involved in salt stress tolerance. Gene, 2019, 685: 42-49.
doi: S0378-1119(18)31115-6
pmid: 30393190
|
[10] |
KAASEN I, FALKENBERG P, STYRVOLD O B, STRØM A R. Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: Evidence that transcription is activated by katF (AppR). Journal of Bacteriology, 1992, 174(3): 889-898.
|
[11] |
DELORGE I, FIGUEROA C M, FEIL R, LUNN J E, VAN DIJCK P. Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis thaliana. The Biochemical Journal, 2015, 466(2): 283-290.
|
[12] |
VANDESTEENE L, RAMON M, LE ROY K, VAN DIJCK P, ROLLAND F. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. Molecular Plant, 2010, 3(2): 406-419.
|
[13] |
RAMON M, DE SMET I, VANDESTEENE L, NAUDTS M, LEYMAN B, VAN DIJCK P, ROLLAND F, BEECKMAN T, THEVELEIN J M. Extensive expression regulation and lack of heterologous enzymatic activity of the Class II trehalose metabolism proteins from Arabidopsis thaliana. Plant, Cell & Environment, 2009, 32(8): 1015-1032.
|
[14] |
SCHLUEPMANN H, BERKE L, SANCHEZ-PEREZ G F. Metabolism control over growth: A case for trehalose-6-phosphate in plants. Journal of Experimental Botany, 2012, 63(9): 3379-3390.
doi: 10.1093/jxb/err311
pmid: 22058405
|
[15] |
OSZVALD M, PRIMAVESI L F, GRIFFITHS C A, COHN J, BASU S S, NUCCIO M L, PAUL M J. Trehalose 6-phosphate regulates photosynthesis and assimilate partitioning in reproductive tissue. Plant Physiology, 2018, 176(4): 2623-2638.
doi: 10.1104/pp.17.01673
pmid: 29437777
|
[16] |
FICHTNER F, BARBIER F F, ANNUNZIATA M G, FEIL R, OLAS J J, MUELLER-ROEBER B, STITT M, BEVERIDGE C A, LUNN J E. Regulation of shoot branching in Arabidopsis by trehalose 6-phosphate. New Phytologist, 2021, 229(4): 2135-2151.
|
[17] |
LIU Z Y, SHI Y T, XUE Y Q, WANG X P, HUANG Z, XUE J Q, ZHANG X X. Non-structural carbohydrates coordinate tree peony flowering both as energy substrates and as sugar signaling triggers, with the bracts playing an essential role. Plant Physiology and Biochemistry, 2021, 159: 80-88.
doi: 10.1016/j.plaphy.2020.12.012
pmid: 33341082
|
[18] |
ZHAI Z Y, KEEREETAWEEP J, LIU H, FEIL R, LUNN J E, SHANKLIN J. Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. The Plant Cell, 2018, 30(10): 2616-2627.
doi: 10.1105/tpc.18.00521
pmid: 30249634
|
[19] |
YADAV U P, IVAKOV A, FEIL R, DUAN G Y, WALTHER D, GIAVALISCO P, PIQUES M, CARILLO P, HUBBERTEN H M, STITT M, LUNN J E. The sucrose-trehalose 6-phosphate (Tre6P) nexus: Specificity and mechanisms of sucrose signalling by Tre6P. Journal of Experimental Botany, 2014, 65(4): 1051-1068.
doi: 10.1093/jxb/ert457
pmid: 24420566
|
[20] |
NUCCIO M L, WU J, MOWERS R, ZHOU H P, MEGHJI M, PRIMAVESI L F, PAUL M J, CHEN X, GAO Y, HAQUE E, BASU S S, LAGRIMINI L M. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 2015, 33(8): 862-869.
pmid: 26473199
|
[21] |
GABRIEL C, FERNHOUT J J, FICHTNER F, FEIL R, LUNN J E, KOSSMANN J, LLOYD J R, VAN DER VYVER C. Genetic manipulation of trehalose-6-phosphate synthase results in changes in the soluble sugar profile in transgenic sugarcane stems. Plant Direct, 2021, 5(11): e358.
doi: 10.1002/pld3.358
pmid: 34765864
|
[22] |
GÓMEZ L D, GILDAY A, FEIL R, LUNN J E, GRAHAM I A. AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. The Plant Journal, 2010, 64(1): 1-13.
doi: 10.1111/j.1365-313X.2010.04312.x
pmid: 20659274
|
[23] |
GOMEZ L D, BAUD S, GRAHAM I A. Metabolite sensing in plants: A role for trehalose metabolism in seed development and embryo development. FEBS JOURNAL, 2005, 2721:460.
|
[24] |
VAN DIJKEN A J H, SCHLUEPMANN H, SMEEKENS S C M. Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiology, 2004, 135(2): 969-977.
doi: 10.1104/pp.104.039743
pmid: 15181208
|
[25] |
FENG X, WU X L, WU H L, LI Y, ZHOU B J, JIANG Y, ZHANG S L, WEI J L, SU S C, HOU Z X. Short-photoperiod induces floral induction involving carbohydrate metabolism and regulation by VcCO3 in greenhouse blueberry. Plant, Cell & Environment, 2025, 48(3): 2145-2161.
|
[26] |
DU L S, QI S Y, MA J J, XING L B, FAN S, ZHANG S W, LI Y M, SHEN Y W, ZHANG D, HAN M Y. Identification of TPS family members in apple (Malus×domestica Borkh.) and the effect of sucrose sprays on TPS expression and floral induction. Plant Physiology and Biochemistry, 2017, 120: 10-23.
|
[27] |
SU Z X, XIAO Q S, SHEN J Y, CHEN H B, YAN S J, HUANG W J. Metabolomics analysis of Litchi leaves during floral induction reveals metabolic improvement by stem girdling. Molecules, 2021, 26(13): 4048.
|
[28] |
WU H L, ZHANG S L, FENG X, ZHANG Y Q, ZHOU B J, CAO M, WANG Y P, GUO B S, HOU Z X. Possible mechanism of sucrose and trehalose-6-phosphate in regulating the secondary flower on the strong upright spring shoots of blueberry planted in greenhouse. Plants, 2024, 13(17): 2350.
|
[29] |
张鹤华, 刘嘉欣, 罗朝兵, 张凌云. 青杄转录因子PwERF8及其启动子序列的克隆与分析. 林业科学, 2018, 54(3): 48-60.
|
|
ZHANG H H, LIU J X, LUO C B, ZHANG L Y. Cloning and analysis of a transcription factor PwERF8 and the promoter sequences in Picea wilsonii. Scientia Silvae Sinicae, 2018, 54(3): 48-60. (in Chinese)
|
[30] |
YANG J F, SHI W J, LI B B, BAI Y C, HOU Z X. Preharvest and postharvest UV radiation affected flavonoid metabolism and antioxidant capacity differently in developing blueberries (Vaccinium corymbosum L.). Food Chemistry, 2019, 301: 125248.
|
[31] |
GALLEGO-GIRALDO L, GARCÍA-MARTÍNEZ J L, MORITZ T, LÓPEZ-DÍAZ I. Flowering in tobacco needs gibberellins but is not promoted by the levels of active GA1 and GA4 in the apical shoot. Plant and Cell Physiology, 2007, 48(4): 615-625.
|
[32] |
DE OLIVEIRA L P, NAVARRO B V, DE JESUS PEREIRA J P, LOPES A R, MARTINS M C M, RIAÑO-PACHÓ N D M, BUCKERIDGE M S. Bioinformatic analyses to uncover genes involved in trehalose metabolism in the polyploid sugarcane. Scientific Reports, 2022, 12: 7516.
doi: 10.1038/s41598-022-11508-x
pmid: 35525890
|
[33] |
WANG W P, CUI H, XIAO X F, WU B J, SUN J L, ZHANG Y X, YANG Q Y, ZHAO Y P, LIU G X, QIN T F. Genome-wide identification of cotton (Gossypium spp.) trehalose-6-phosphate phosphatase (TPP) gene family members and the role of GhTPP22 in the response to drought stress. Plants, 2022, 11(8): 1079.
|
[34] |
LUNN J E. Gene families and evolution of trehalose metabolism in plants. Functional Plant Biology, 2007, 34(6): 550-563.
doi: 10.1071/FP06315
pmid: 32689383
|
[35] |
RAHMAN M M, RAHMAN M M, EOM J S, JEON J S. Genome-wide identification, expression profiling and promoter analysis of trehalose-6-phosphate phosphatase gene family in rice. Journal of Plant Biology, 2021, 64(1): 55-71.
|
[36] |
孙汉青, 陶红霞, 宋雪娜, 郭延平, 赵政阳. 干旱诱导的海藻糖和脱落酸对苹果品质的影响. 西北农业学报, 2019, 28(2): 204-212.
|
|
SUN H Q, TAO H X, SONG X N, GUO Y P, ZHAO Z Y. Effects of drought induced trehalose and abscisic acid on apple quality. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(2): 204-212. (in Chinese)
|
[37] |
FAN S H, WANG Z, XIAO Y S, LIANG J H, ZHAO S L, LIU Y H, PENG F T, GUO J. Genome-wide identification of trehalose-6- phosphate synthase (TPS) gene family reveals the potential role in carbohydrate metabolism in peach. Genes, 2024, 15(1): 39.
|
[38] |
MOLLAVALI M, BÖRNKE F. Characterization of trehalose-6- phosphate synthase and trehalose-6-phosphate phosphatase genes of tomato (Solanum lycopersicum L.) and analysis of their differential expression in response to temperature. International Journal of Molecular Sciences, 2022, 23(19): 11436.
|
[39] |
GAO Y H, YANG X Y, YANG X, ZHAO T Y, AN X M, CHEN Z. Characterization and expression pattern of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase gene families in Populus. International Journal of Biological Macromolecules, 2021, 187: 9-23.
|
[40] |
YUAN P, YU M Z, LIU H J, HAMMOND J P, CAI H M, DING G D, WANG S L, XU F S, WANG C, HONG D F, SHI L. Overexpression of oilseed rape trehalose-6-phosphate synthesis gene BnaC02.TPS8 confers sensitivity to low nitrogen and high sucrose-induced anthocyanin accumulation in Arabidopsis. Planta, 2024, 259(5): 122.
|
[41] |
林孟飞. 辣木海藻糖-6-磷酸合成酶的功能与进化分析[D]. 广州: 华南农业大学, 2020.
|
|
LIN M F. Functional and evolutionary analysis of trehalose-6- phosphate synthase in Moringa[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
|
[42] |
FICHTNER F, OLAS J J, FEIL R, WATANABE M, KRAUSE U, HOEFGEN R, STITT M, LUNN J E. Functional features of TREHALOSE-6-PHOSPHATE SYNTHASE1, an essential enzyme in Arabidopsis. The Plant Cell, 2020, 32(6): 1949-1972.
|
[43] |
ALMEIDA A M, SANTOS M, VILLALOBOS E, ARAÚJO S S, VAN DIJCK P, LEYMAN B, CARDOSO L A, SANTOS D, FEVEREIRO P S, TORNÉ J M. Immunogold localization of trehalose-6-phosphate synthase in leaf segments of wild-type and transgenic tobacco plants expressing the AtTPS1 gene from Arabidopsis thaliana. Protoplasma, 2007, 230(1): 41-49.
|
[44] |
ZHANG Y X, YUAN Y C, LIU Z J, ZHANG T, LI F, LIU C Y, GAI S P. GA 3 is superior to GA4 in promoting bud endodormancy release in tree peony (Paeonia suffruticosa) and their potential working mechanism. BMC Plant Biology, 2021, 21(1): 323.
|
[45] |
ZHU F M, LI M Y, SUN M L, JIANG X F, QIAO F. Plant hormone signals regulate trehalose accumulation against osmotic stress in watermelon cells. Protoplasma, 2022, 259(5): 1351-1369.
|
[46] |
LAN S S, GONG M, YANG S L. Osmoregulation is a crucial factor for methyl jasmonate to enhance chilling tolerance of Jatropha curcas L.. Tree Physiology, 2025, 45(4): tpaf037.
|
[47] |
JIANG W, FU F L, ZHANG S Z, WU L, LI W C. Cloning and characterization of functional trehalose-6-phosphate synthase gene in maize. Journal of Plant Biology, 2010, 53(2): 134-141.
|
[48] |
ZHANG Q, ZHANG M, ZHAO Y Q, HU H, HUANG Y X, JIA G X. Identification of trehalose-6-phosphate synthase (TPS)-coding genes involved in flowering induction of Lilium×formolongi. Plant Physiology and Biochemistry, 2022, 171: 84-94.
|
[49] |
PONNU J, WAHL V, SCHMID M. Trehalose-6-phosphate: Connecting plant metabolism and development. Frontiers in Plant Science, 2011, 2: 70.
doi: 10.3389/fpls.2011.00070
pmid: 22639606
|
[50] |
LIANG J H, ZHANG S H, YU W Y, WU X L, WANG W R, PENG F T, XIAO Y S. Overexpression alters the response to light and affects photosynthesis and carbon metabolism in tomato. Physiologia Plantarum, 2021, 173(4): 1808-1823.
|
[51] |
LUO J J, PENG F T, ZHANG S H, XIAO Y S, ZHANG Y F. The protein kinase FaSnRK1α regulates sucrose accumulation in strawberry fruits. Plant Physiology and Biochemistry, 2020, 151: 369-377.
doi: S0981-9428(20)30157-1
pmid: 32276220
|
[52] |
HU Y X, LIN Y, XIA Y Q, XU X M, WANG Z T, CUI X R, HAN L, LI J Y, ZHANG R T, DING Y F, CHEN L. Overexpression of OsSnRK1a through a green tissue-specific promoter improves rice yield by accelerating sheath-to-panicle transport of nonstructural carbohydrates and increasing leaf photosynthesis. Plant Physiology and Biochemistry, 2023, 203: 108048.
|
[53] |
OHTO M, ONAI K, FURUKAWA Y, AOKI E, ARAKI T, NAKAMURA K. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiology, 2001, 127(1): 252-261.
|
[54] |
LI X, HOU R Z, LI D, WANG L D, WANG T, CHEN Q L, QI X H, HOU L P, LI M L. Metabolism and transcriptional analyses reveal the mechanism of sucrose affecting the floral transition in pak choi (Brassica rapa ssp. Chinensis Makino). Scientia Horticulturae, 2024, 328: 112968.
|
[55] |
SHAH K, ZHU X Y, ZHANG T T, CHEN J Y, CHEN J X, QIN Y H. Transcriptome analysis reveals sugar and hormone signaling pathways mediating flower induction in pitaya (Hylocereus polyrhizus). International Journal of Molecular Sciences, 2025, 26(3): 1250.
|
[56] |
LEE J, LEE I. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany, 2010, 61(9): 2247-2254.
doi: 10.1093/jxb/erq098
pmid: 20413527
|
[57] |
WANG X X, HUANG Q Y, SHEN Z L, BARON G C, LI X Y, LU X Y, LI Y Q, CHEN W R, XU L S, LV J C, LI W J, ZONG Y, GUO W D. Genome-wide identification and analysis of the MADS-box transcription factor genes in blueberry (Vaccinium spp.) and their expression pattern during fruit ripening. Plants, 2023, 12(7): 1424.
|
[58] |
SONG G Q, WALWORTH A, ZHAO D Y, HILDEBRANDT B, LEASIA M. Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco. Plant Cell Reports, 2013, 32(11): 1819-1826.
|
[59] |
LUO M M, LIU X X, SU H Y, LI M L, LI M F, WEI J H. Regulatory networks of flowering genes in Angelica sinensis during vernalization. Plants, 2022, 11(10): 1355.
|
[60] |
XUAN L J, WANG Q Q, LIU Z G, XU B, CHENG S Y, ZHANG Y J, LU D Y, DONG B, ZHANG D M, ZHANG L, MA J J, SHEN Y M. Metabolic analysis of the regulatory mechanism of sugars on secondary flowering in Magnolia. BMC Molecular and Cell Biology, 2022, 23(1): 56.
|