Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (13): 2504-2521.doi: 10.3864/j.issn.0578-1752.2025.13.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Characterization of Maize Germplasm Resistance to Common Smut and Analysis of Physiological Differences

LI XiangYu1(), LIU JianZhuo1, HU DanDan1, LIU GengYu1, CHEN LiangYu1, LI Bing2,3, DU WanLi1, SONG Bo1,2,3,4()   

  1. 1 College of Agronomy, Shenyang Agricultural University, Shenyang 110866
    2 East Asia Seed Industry Co., Ltd., Shenyang 110164,
    3 State Key Laboratory of Maize Bio-Breeding, Shenyang 110164
    4 Affiliated Experimental Farm, Shenyang Agricultural University, Shenyang 110866
  • Received:2025-01-20 Accepted:2025-03-03 Online:2025-07-01 Published:2025-07-05

Abstract:

【Objective】 Common smut (Mycosarcoma maydis) is a major fungal disease affecting maize production in China. This study aimed to screen for resistant germplasm resources and analyze their physiological and biochemical responses to pathogen infection, providing scientific support for disease resistance breeding. 【Method】 A total of 425 maize germplasm resources were selected and systematically screened for their resistance to common smut. Sugar metabolism, oxidative stress responses, and photosynthetic parameters were analyzed to identify high-resistant, moderate-resistant, and susceptible inbred lines. WGA-AF488/PI staining was used to analyze the hyphal proliferation to reveal the disease resistance traits of different inbred lines. 【Result】 The study found significant annual differences in the disease index and incidence of common smut in 2021 and 2022, primarily influenced by temperature and precipitation. Principal component analysis showed that the disease index on day 4, 8, and 12 post-inoculation was a key indicator of disease severity, while the disease incidence at the grain filling stage (R2) and wax ripening stage (R4) revealed differences across growth stages. Additionally, 6 high-resistance inbred lines (e.g., Q319), 67 medium-resistance inbred lines (e.g., D599), and 171 susceptible inbred lines (e.g., M407) were identified. Sugar metabolism analysis showed significant differences in sucrose, fructose, and glucose contents across inbred lines with different disease resistance, indicating the critical role of sugar metabolism in the competition between the pathogen and the host. Oxidative stress analysis revealed significant increases in H₂O₂ and O2- contents post-infection, with the high-resistant inbred line Q319 exhibiting the strongest OH- scavenging capacity. SOD and POD activities were significantly increased on days 4 and 8 post-inoculation, with the SOD activity of D599 increasing by 114.98% on day 8 and the SOD activity of Q319 increasing by 96.08%. On day 12, the POD activity of D599 and Q319 increased by 164.27% and 160.91%, respectively, indicating strong antioxidant defense capabilities in resistant materials. WGA staining showed that hyphal extension was limited in Q319, primarily concentrated near the vascular bundles, suggesting strong cell wall defense. D599 exhibited intermediate hyphal expansion speed and range, representing moderate defense capacity, while M407 displayed extensive hyphal spread with large intercellular infection, indicating weak cell wall defense. Post-inoculation, the net photosynthetic rate of Q319, D599, and M407 decreased by 52.5%, 52.8%, and 100.2%, respectively, compared to the control group, with significant reductions in photosynthetic pigment content; however, the decline decreased from 4 to 12 d. 【Conclusion】 This study reveals significant differences in sugar metabolism, oxidative stress responses, antioxidant capacity, and photosynthesis among different maize inbred lines under Mycosarcoma maydis infection. The high-resistance inbred line Q319 exhibits strong disease resistance through low sucrose, high fructose and glucose metabolism, along with higher chlorophyll and carotenoid content and efficient antioxidant ability. The high-susceptible inbred line M407 shows increased sucrose accumulation and insufficient antioxidant response, resulting in significantly decreased net photosynthetic rate and transpiration rate, leading to increased disease susceptibility. The medium-resistance inbred line D599 displays intermediate photosynthetic function and pigment accumulation, with disease resistance between Q319 and M407.

Key words: maize, germplasm, common smut, disease resistance, sugar metabolism, oxidative stress

Table 1

Classification of incidence in maize infected by Mycosarcoma maydis"

病情分级Disease grading 描述 Description
0级 Level 0 无症状感染 Without infection symptoms
1级 Level 1 叶片黄化 Chlorosis
3级 Level 3 叶片上出现小肿瘤(<1 mm)或非常少量的较大肿瘤(>1 mm)
Small tumors (<1 mm) on leaves or very few tumors (>1 mm)
5级 Level 5 叶片和/或茎上出现正常大小的肿瘤 Normal tumors on leaves and/or stem
7级 Level 7 茎基部出现大量肿瘤和/或植株生长轴改变 Heavy tumors on base of stem and/or change of growth axis
9级 Level 9 植物出现死亡 Dead plants

Table 2

Evaluation criteria of maize resistance to Mycosarcoma maydis"

发病率Morbidity (%) 抗性Resistance
0—1 高抗Highly resistant (HR)
1—5 抗Resistant (R)
5—10 中抗Moderately resistant (MR)
10—40 感Susceptible (S)
40—100 高感Highly susceptible (HS)

Fig. 1

Criteria for evaluating the severity of the disease A1: Disease level 1; A2: Disease level 3; A3: Disease level 5; A4: Disease level 7; A5: Disease level 9"

Table 3

Statistics on the incidence of field inoculation with Mycosarcoma maydis from 2021 to 2022"

年份
Years
指标
Index
病情指数Disease index 发病率Morbidity
4dDI 8dDI 12dDI 12dMR R2MR R4MR
2021 最大值Max 0.144 0.574 0.617 1.000 1.000 1.000
平均值Mean 0.007 0.236 0.273 0.620 0.039 0.063
标准差SD 0.017 0.104 0.122 0.202 0.105 0.134
变异系数CV 2.429 0.441 0.447 0.326 2.692 2.127
2022 最大值Max 0.078 0.662 0.778 0.950 0.400 0.673
均值Mean 0.003 0.177 0.221 0.621 0.004 0.009
标准差SD 0.008 0.072 0.075 0.154 0.032 0.055
变异系数CV 2.667 0.407 0.339 0.248 8.000 6.111

Fig. 2

Correlation between disease index and morbidity at different stages *, ** and *** indicate the significant at P<0.05, P<0.01and P<0.001 level. The same as below"

Table 4

Statistics of Mycosarcoma maydis infection in field inoculations (2021-2022)"

指标
Index
因子载荷Factor loading
主成分1 PC1 主成分2 PC2
第4天病情指数4dDI 0.73 0.18
第8天病情指数8dDI 0.97 -0.02
第12 天病情指数12dDI 0.98 -0.04
第12 天发病率12MR 0.89 -0.13
灌浆期发病率R2MR 0.05 0.97
蜡熟期发病率R4MR -0.01 0.97
特征值Eigenvalue 3.21 1.925
方差贡献率Variance contribution rate (%) 53.48 32.09
累计贡献率Cumulative contribution rate (%) 53.48 85.57
因子权重Factor weight 0.63 0.38

Fig. 3

Analysis of resistance to common smut in different inbred lines and resistance level of representative inbred lines A: Analysis of resistance to common smut in maize inbred lines; B: Resistance to common smut in representative inbred lines"

Fig. 4

Changes of glucose, fructose and sucrose contents in different inbred lines after inoculation with Mycosarcoma maydis A: Glucose content; B: Fructose content; C: Sucrose content"

Fig. 5

Changes of hydrogen peroxide and superoxide anion of different inbred lines inoculation with Mycosarcoma maydis A: Hydrogen peroxide; B: Superoxide anion; ns: No significance. Different alphabets indicate the significance at 0.05 level. The same as below"

Fig. 6

Changes of hydrogen per peroxide staining of different inbred lines inoculation with Mycosarcoma maydis A: Q319; B: D599; C: M407; 1, 2, 3, 4, 5 represents day 0, 2, 4, 8 and 12 after inoculation. The same as below"

Fig. 7

Changes of superoxide anion staining in different inbred lines inoculation with Mycosarcoma maydis"

Fig. 8

Changes of SOD, POD and OH- of different inbred lines inoculation with Mycosarcoma maydis A: SOD activity; B: POD activity; C: Hydroxyl radical scavenging ability"

Fig. 9

Changes of WGA staining in different inbred lines inoculation with Mycosarcoma maydis"

Fig. 10

Effects of inoculation with Mycosarcoma maydis on net photosynthetic rate, intercellular CO2 concentration, transpiration rate, and stomatal conductance in different inbred lines A: Net photosynthetic rate; B: Transpiration rate; C: Stomatal conductance; D: Intercellular CO2 concentration"

Fig. 11

Effects of Mycosarcoma maydis inoculation on chlorophyll a, chlorophyll b, total chlorophyll a+b, and carotenoid content in different inbred lines A: Chlorophyll a content; B: Chlorophyll b content; C: Total chlorophyll a+b content; D: Carotenoid content"

[1]
常卫格, 高建昊, 张小杰, 洪流, 王林英, 周天旺, 王春明, 郭成. 甘肃省玉米瘤黑粉病菌交配型测定及遗传多样性. 应用与环境生物学报, 2024, 30(6): 1230-1237.
CHANG W G, GAO J H, ZHANG X J, HONG L, WANG L Y, ZHOU T W, WANG C M, GUO C. Mating type determination and genetic diversity analysis of Ustilago maydis in Gansu Province. Chinese Journal of Applied and Environmental Biology, 2024, 30(6): 1230-1237. (in Chinese)
[2]
郭致杰, 李国权, 周天旺, 王春明, 洪流, 郭成. 58份鲜食玉米品种对瘤黑粉病和丝黑穗病的抗性评价. 玉米科学, 2023, 31(6): 143-150.
GUO Z J, LI G Q, ZHOU T W, WANG C M, HONG L, GUO C. Evaluation of resistance to Ustilago maydis and Sporisorium reilianum in 58 fresh maize varieties. Journal of Maize Sciences, 2023, 31(6): 143-150. (in Chinese)
[3]
王晓鸣. 六种重要玉米病害病原名称的厘定. 中国农业科学, 2018, 51(18): 3497-3507. doi: 10.3864/j.issn.0578-1752.2018.18.006.
WANG X M. Collation of scientific names of six maize disease pathogens. Scientia Agricultura Sinica, 2018, 51(18): 3497-3507. doi: 10.3864/j.issn.0578-1752.2018.18.006. (in Chinese)
[4]
段灿星, 曹言勇, 董怀玉, 夏玉生, 李红, 胡清玉, 杨知还, 王晓鸣. 玉米种质资源抗腐霉茎腐病和镰孢茎腐病精准鉴定. 中国农业科学, 2022, 55(2): 265-279. doi: 10.3864/j.issn.0578-1752.2022.02.003.
DUAN C X, CAO Y Y, DONG H Y, XIA Y S, LI H, HU Q Y, YANG Z H, WANG X M. Precise characterization of maize germplasm for resistance to Pythium stalk rot and Gibberella stalk rot. Scientia Agricultura Sinica, 2022, 55(2): 265-279. doi: 10.3864/j.issn.0578-1752.2022.02.003. (in Chinese)
[5]
薛春生, 姜晓颖, 高颖, 薛玉梅, 石磊, 滕涛. 19种骨干自交系对5种玉米主要病害的抗性鉴定研究初报. 玉米科学, 2009, 17(3): 124-126.
XUE C S, JIANG X Y, GAO Y, XUE Y M, SHI L, TENG T. The preliminary study on resistant identification of 19 main inbred lines on five kinds of corn diseases. Journal of Maize Sciences, 2009, 17(3): 124-126. (in Chinese)
[6]
段灿星, 董怀玉, 李晓, 李红, 李春辉, 孙素丽, 朱振东, 王晓鸣. 玉米种质资源大规模多年多点多病害的自然发病抗性鉴定. 作物学报, 2020, 46(8): 1135-1145.

doi: 10.3724/SP.J.1006.2020.03003
DUAN C X, DONG H Y, LI X, LI H, LI C H, SUN S L, ZHU Z D, WANG X M. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition. Acta Agronomica Sinica, 2020, 46(8): 1135-1145. (in Chinese)
[7]
严理, 李智敏, 陈佳, 高春生, 余永廷, 严准. 不同玉米品种对瘤黑粉病抗性的初步鉴定. 湖南农业大学学报(自然科学版), 2017, 43(1): 42-46.
YAN L, LI Z M, CHEN J, GAO C S, YU Y T, YAN Z. Primary identification of resistance in different maize varieties to Ustilago maydis. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(1): 42-46. (in Chinese)
[8]
赵丽娟, 闫素月, 史晓晶, 尉俊海, 张洪. 霜霉病菌侵染对藜麦叶片代谢的影响. 植物病理学报, 2021, 51(3): 334-339.

doi: 10.13926/j.cnki.apps.000477
ZHAO L J, YAN S Y, SHI X J, WEI J H, ZHANG H. Downy mildew-infection changes the metabolism of quinoa leaves. Acta Phytopathologica Sinica, 2021, 51(3): 334-339. (in Chinese)
[9]
赵文清, 金梓浩, 王婷, 王芳. 外源NO提高玉米瘤黑粉病抗性的效果和作用机制初探. 西北农业学报, 2024, 33(4): 744-751.
ZHAO W Q, JIN Z H, WANG T, WANG F. Effect and action mechanism of exogenous NO in enhancing maize resistance to Ustilago maydis. Acta Agriculturae Boreali-occidentalis Sinica, 2024, 33(4): 744-751. (in Chinese)
[10]
HORST R J, ENGELSDORF T, SONNEWALD U, VOLL L M. Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis. Journal of Plant Physiology, 2008, 165(1): 19-28.
[11]
YANG M Y, YANG X, YAN Z, CHAO Q, SHEN J, SHUI G H, GUO P M, WANG B C. OsTST1, a key tonoplast sugar transporter from source to sink, plays essential roles in affecting yields and height of rice (Oryza sativa L.). Planta, 2023, 258(1): 4.
[12]
LATA-TENESACA L F, OLIVEIRA M J B, BARROS A V, PICANÇO B B M, RODRIGUES F A. Physiological and biochemical aspects of silicon- mediated resistance in maize against Maydis leaf blight. Plants, 2024, 13(4): 531.
[13]
REDKAR A, DOEHLEMANN G. Ustilago maydis virulence assays in maize. Bio-Protocol, 2016, 6(6): 1760.
[14]
SCHURACK S. Mechanisms of quantitative disease resistance in the maize-Ustilago maydis interaction[D]. Universität zu Köln, 2021.
[15]
姬东华. 玉米瘤黑粉病基因初定位及产量相关性状遗传效应分析[D]. 保定: 河北农业大学, 2013.
JI D H. Preliminary mapping of maize smut gene and genetic effect analysis of yield-ralated traits[D]. Baoding: Hebei Agricultural University, 2013. (in Chinese)
[16]
MATEI A, ERNST C, GÜNL M, THIELE B, ALTMÜLLER J, WALBOT V, USADEL B, DOEHLEMANN G. How to make a tumour: Cell type specific dissection of Ustilago maydis-induced tumour development in maize leaves. New Phytologist, 2018, 217(4): 1681-1695.
[17]
刘帅, 徐学欣, 孟繁港, 徐宇凡, 郝天佳, 贾靖, 张玉璐, 赵长星. 滴灌水肥一体化下施氮量和追氮时期对夏玉米籽粒品质及淀粉糊化特性的影响. 西北农业学报, 2024, 33(3): 426-434.
LIU S, XU X X, MENG F G, XU Y F, HAO T J, JIA J, ZHANG Y L, ZHAO C X. Effects of nitrogen fertilization application and topdressing period on grain quality and starch pasting properties of summer maize under drip irrigation. Acta Agriculturae Boreali- occidentalis Sinica, 2024, 33(3): 426-434. (in Chinese)
[18]
夏宗良, 薛瑞丽, 武轲, 周朋, 吴建宇. 二氧化硫胁迫对不同抗性玉米幼苗活性氧代谢的影响. 生态环境学报, 2010, 19(5): 1078-1081.

doi: 10.16258/j.cnki.1674-5906(2010)05-1078-04
XIA Z L, XUE R L, WU K, ZHOU P, WU J Y. Effects of sulfur dioxide stress on reactive oxygen species metabolism of maize seedlings with contrasting tolerance. Ecology and Environmental Sciences, 2010, 19(5): 1078-1081. (in Chinese)
[19]
LIU N, LIU F Y, SUN Z Y, WANG Z H, YANG L. Nitrogen addition changes the canopy biological characteristics of dominant tree species in an evergreen broad-leaved forest. Science of the Total Environment, 2023, 902: 165914.
[20]
QIAO C L, WANG X R, GAO Y W, LI J W, ZHAO J S, LUO H B, ZHANG S Y, HUO D Q, HOU C J. A novel colorimetric and fluorometric dual-signal identification of organics and Baijiu based on nanozymes with peroxidase-like activity. Food Chemistry, 2024, 439: 138157.
[21]
王晨芳. 小麦与条锈菌互作过程中活性氧迸发的组织学和细胞化学研究[D]. 杨凌: 西北农林科技大学, 2008.
WANG C F. Histological and cytochemical studies on reactive oxygen species generate in the interaction between wheat and Puccinia striiformis[D]. Yangling: Northwest A & F University, 2008. (in Chinese)
[22]
PATTERSON B D, MACRAE E A, FERGUSON I B. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Analytical Biochemistry, 1984, 139(2): 487-492.
[23]
刘天悦, 滕晓祎, 田永涛, 么亚妹, 王琰博, 王文蜀. 灯笼果叶片、宿萼和果实化学成分分析及抗氧化活性评价. 食品与发酵工业, 2024, 50(20): 243-251.

doi: 10.13995/j.cnki.11-1802/ts.037742
LIU T Y, TENG X Y, TIAN Y T, YAO Y M, WANG Y B, WANG W S. Chemical composition analysis and antioxidant activity evaluation of leaf, calyx, and fruit of Physalis peruviana L.. Food and Fermentation Industries, 2024, 50(20): 243-251. (in Chinese)
[24]
付佳琳, 蔡江平, 刘贺永, 姜勇, 张玉革. 内蒙古草甸草原植物叶片光合色素对极端干旱的响应. 中国草地学报, 2022, 44(4): 40-47.
FU J L, CAI J P, LIU H Y, JIANG Y, ZHANG Y G. The responses of plant leaves photosynthetic pigments to extreme drought in Inner Mongolian meadow grassland. Chinese Journal of Grassland, 2022, 44(4): 40-47. (in Chinese)
[25]
李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响. 作物学报, 2025, 51(3): 696-712.

doi: 10.3724/SP.J.1006.2025.43031
LI X Y, JI X J, WANG X L, LONG A R, WANG Z Y, YANG Z H, GONG X W, JIANG Y, QI H. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize. Acta Agronomica Sinica, 2025, 51(3): 696-712. (in Chinese)
[26]
REHMAN F U, ADNAN M, KALSOOM M, NAZ N, HUSNAIN M G, ILAHI H, ILYAS M A, YOUSAF G, TAHIR R, AHMAD U. Seed-borne fungal diseases of maize (Zea mays L.): A review. Agrinula: Jurnal Agroteknologi Dan Perkebunan, 2021, 4(1): 43-60.
[27]
WANG Y J, SUBEDI S, DE VRIES H, DOORNENBAL P, VELS A, HENSEL G, KUMLEHN J, JOHNSTON P A, QI X Q, BLILOU I, NIKS R E, KRATTINGER S G. Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nature Plants, 2019, 5(11): 1129-1135.

doi: 10.1038/s41477-019-0545-2 pmid: 31712760
[28]
王江浩, 王立伟, 张动敏, 郭瑞, 张全国, 李兴华, 魏剑锋, 宋炜, 王宝强, 李荣改. 基于分子标记技术玉米抗粗缩病种质资源的筛选与应用. 中国农业科学, 2023, 56(10): 1838-1847. doi: 10.3864/j.issn.0578-1752.2023.10.002.
WANG J H, WANG L W, ZHANG D M, GUO R, ZHANG Q G, LI X H, WEI J F, SONG W, WANG B Q, LI R G. Molecular marker assisted identification and application of maize germplasms for maize rough dwarf disease resistance. Scientia Agricultura Sinica, 2023, 56(10): 1838-1847. doi: 10.3864/j.issn.0578-1752.2023.10.002. (in Chinese)
[29]
NSIBO D L, BARNES I, BERGER D K. Recent advances in the population biology and management of maize foliar fungal pathogens Exserohilum turcicum, Cercospora zeina and Bipolaris maydis in Africa. Frontiers in Plant Science, 2024, 15: 1404483.
[30]
MORKUNAS I, RATAJCZAK L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum, 2014, 36(7): 1607-1619.
[31]
BERGER S, SINHA A K, ROITSCH T. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany, 2007, 58(15/16): 4019-4026.
[32]
ZHU Y X, TIAN Y, HAN S, WANG J, LIU Y Q, YIN J L. Structure, evolution, and roles of SWEET proteins in growth and stress responses in plants. International Journal of Biological Macromolecules, 2024, 263: 130441.
[33]
LEMOINE R, CAMERA S L, ATANASSOVA R, DEDALDECHAMP F, ALLARIO T, POURTAU N, BONNEMAIN J L, LALOI M, COUTOS-THEVENOT P, MAUROUSSET L, FAUCHER M, GIROUSSE C, LEMONNIER P, PARRILLA J, DURAND M. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 2013, 4: 272.

doi: 10.3389/fpls.2013.00272 pmid: 23898339
[34]
WAHL R, WIPPEL K, GOOS S, KAMPER J, SAUER N. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biology, 2010, 8(2): e1000303.
[35]
YUAN M H, NGOU B P M, DING P T, XIN X F. PTI-ETI crosstalk: An integrative view of plant immunity. Current Opinion in Plant Biology, 2021, 62: 102030.
[36]
KIM C Y, SONG H, LEE Y H. Ambivalent response in pathogen defense: A double-edged sword? Plant Communications, 2022, 3(6): 100415.
[37]
YOUSAF M I, RIAZ M W, SHEHZAD A, JAMIL S, SHAHZAD R, KANWAL S, GHANI A, ALI F, ABDULLAH M, ASHFAQ M, HUSSAIN Q. Responses of maize hybrids to water stress conditions at different developmental stages: Accumulation of reactive oxygen species, activity of enzymatic antioxidants and degradation in kernel quality traits. PeerJ, 2023, 11: 14983.
[38]
AKBAR M U, AQEEL M, SHAH M S, JEELANI G, IQBAL N, LATIF A, ELNOUR R O, HASHEM M, ALZOUBI O M, HABEEB T, QASIM M, NOMAN A. Molecular regulation of antioxidants and secondary metabolites act in conjunction to defend plants against pathogenic infection. South African Journal of Botany, 2023, 161: 247-257.
[39]
赵绪生, 齐永志, 闫翠梅, 甄文超. 小麦、玉米两熟秸秆还田土壤中6种有机酸对小麦纹枯病的化感作用. 中国农业科学, 2020, 53(15): 3095-3107. doi: 10.3864/j.issn.0578-1752.2020.15.010.
ZHAO X S, QI Y Z, YAN C M, ZHEN W C. Allelopathy of six organic acids on wheat sheath blight in the soil of winter wheat- summer maize double cropping straw returning system. Scientia Agricultura Sinica, 2020, 53(15): 3095-3107. doi: 10.3864/j.issn.0578-1752.2020.15.010. (in Chinese)
[40]
MEDINA-PUCHE L, TAN H, DOGRA V, WU M S, ROSAS-DIAZ T, WANG L P, DING X, ZHANG D, FU X, KIM C, LOZANO-DURAN R. A defense pathway linking plasma membrane and chloroplasts and co-opted by pathogens. Cell, 2020, 182(5): 1109-1124.
[41]
DU Y L, ZHANG H, JIA K P, CHU Z Y, XU S C, TRAN L P, GUO J G, LI W Q, LI K. Role of abscisic acid-mediated stomatal closure in responses to pathogens in plants. Physiologia Plantarum, 2024, 176(1): e14135.
[42]
LIU J X, LIU H H, TENG Y, QIN N B, REN X M, XIA X D. A high-sucrose diet causes microbiota composition shift and promotes the susceptibility of mice to Salmonella Typhimurium infection. Food & Function, 2023, 14(6): 2836-2846.
[1] LÜ Tao, SUN GuoQing, GUO DongCai, CHEN QuanJia, CAI YongSheng, FAN BiaoXing, QU YanYing, ZHENG Kai. Development and Effectiveness Evaluation of InDel Molecular Markers Closely Linked to Fiber Strength QTL in Gossypium barbadense [J]. Scientia Agricultura Sinica, 2025, 58(9): 1684-1701.
[2] TAN XiBei, LAN XuYing, LIU ChongHuai, FAN XiuCai, JIANG JianFu, SUN Lei, LI Peng, YU ShuXin, ZHANG Ying. Changes of Secondary Metabolites in Grapes with Different Resistance Levels in Response to White Rot Infection [J]. Scientia Agricultura Sinica, 2025, 58(9): 1767-1778.
[3] CHEN BingRu, TANG YuJie, ZHANG LiXia, ZHOU YuFei, YU Miao, SHI GuiShan, WANG XinDing, LI Yang, GAO ShiJie, LU XiaoChun, WANG Nai, DIAO XianMin. The Green Revolution of Chinese Grain Hybrid Sorghum [J]. Scientia Agricultura Sinica, 2025, 58(8): 1494-1507.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[7] WANG Wei, LUO ChunHai, JIA HongDou, LIU JiaJin, LI DanYang, FU ShiXin. Effect of Gln on Endoplasmic Reticulum Stress in Retained Fetal Membranes Cows Under Oxidative Stress via the PI3K/AKT Pathway [J]. Scientia Agricultura Sinica, 2025, 58(7): 1451-1462.
[8] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[9] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[10] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[11] YANG YongQing, HU PengJu, SONG YaHui, JIN XinXin, SU Qiao, WANG Jin. QTL Mapping of Quality Traits for A Peanut Germplasm SW9721-3 with Ultra-High Oil Content [J]. Scientia Agricultura Sinica, 2025, 58(4): 635-646.
[12] ZHOU GuangFei, MA Liang, MA Lu, ZHANG ShuYu, ZHANG HuiMin, SONG XuDong, ZHANG ZhenLiang, LU HuHua, HAO DeRong, MAO YuXiang, XUE Lin, CHEN GuoQing. Genome-Wide Association Study of Husk Traits in Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 431-442.
[13] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[14] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[15] CAO ShiLiang, ZHANG JianGuo, YU Tao, YANG GengBin, LI WenYue, MA XueNa, SUN YanJie, HAN WeiBo, TANG Gui, SHAN DaPeng. Heterosis Groups Research in Maize Inbred Lines Based on Machine Learning [J]. Scientia Agricultura Sinica, 2025, 58(2): 203-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!