Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (24): 4854-4870.doi: 10.3864/j.issn.0578-1752.2024.24.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Application Status and Development Suggestion of Direct-Seeding Rice Cultivation in China

LIAO Ping(), WENG WenAn, GAO Hui, ZHANG HongCheng()   

  1. Yangzhou University/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Industrial Engineering Research Center of High Quality Japonica Rice/Research Institute of Rice Industrial Engineering Technology, Yangzhou 225009, Jiangsu
  • Received:2024-04-19 Accepted:2024-07-31 Online:2024-12-16 Published:2024-12-23
  • Contact: ZHANG HongCheng

Abstract:

With the continuous improvement in rice cultivation techniques, China has maintained a high rice production level of about 210 million tons over the past decade. Direct-seeding rice cultivation technology, recognized for its efficiency and simplicity, has been favored by Chinese farmers. However, controversies persist regarding direct-seeding rice compared to transplanted rice in national-scale production. Thus, this study employed meta-analysis techniques to quantify disparities in grain yield, economic benefit, rice quality, lodging characteristic, and greenhouse gas emissions between direct-seeding rice and transplanted rice. Our results indicated that direct-seeding rice significantly reduced grain yield by an average of 6.3% relative to transplanted rice, which was main due to the reduced total spikelet (-3.8%) and filled-grain percentage (-1.8%). In different planting systems in China, the yield of direct-seeding rice had significantly decreased compared to transplanted rice, and the direct-seeding rice-induced reductions in yield of single rice (-10.9%) and late rice (-13.1%) were higher than those of middle rice (-4.8%) and early rice (-4.4%). The grain yield reductions for direct-seeding rice were from 10% to 20% in Jilin, Liaoning, Xinjiang, Ningxia, Shandong, Jiangsu, and Zhejiang provinces, meanwhile Heilongjiang and Jiangxi provinces saw reductions of 5% to 10%, but it had no significant effect in other provinces. Direct-seeding rice resulted in comparable net economic return relative to transplanted rice (p> 0.05). Direct-seeding rice reduced milled rice rate (-3.1%) and gel consistency (-3.5%), improved appearance quality (chalkiness percentage and chalkiness degree, which decreased by 25.3% and 22.5%, respectively), whereas no significant effects were observed on nutrition quality and taste value. Direct-seeding rice increased lodging index at base of the first (+12.4%) and third (+10.3%) internodes, but not at the second internode, indicating an increase in risk of lodging relative to transplanted rice. In terms of greenhouse gas emissions, direct-seeding rice fields showed reductions in methane emissions (-42.8%), global warming potential (-36.2%), and greenhouse gas intensity (-41.1%) compared to transplanted rice fields, while promoting nitrous oxide emissions (+29.1%). In addition, a review was recounted on nitrogen utilization and its loss, water and energy use efficiency, and weed incidence. Finally, the recommendations for the future advancement of direct-seeding rice were proposed, main focusing on rice variety breeding, rice cultivation technique optimization, rice planting area layout, as well as policies and services with the goal of technological innovation and regionalized application of direct-seeding rice cultivation technology in China.

Key words: direct-seeding rice, cultivation technology, application status, development suggestion, food security

Fig. 1

Geographic locations of experimental sites included in the meta-analysis (n = 188)"

Fig. 2

Effects of direct-seeding rice cultivation technology on grain yield and its components, and net economic return in China Transplanted rice cultivation technology as the control, and direct-seeding rice cultivation technology as the treatment groups. Numbers in the parentheses to the right of each bar indicate the number of observation within each category. Error bars represent 95% confidence intervals (CI). If the 95% CI of experimental classes include zero, indicating that the effect sizes to be not significant (P>0.05). If the 95% CI to the left of zero indicate a significant reduction in effect sizes, whereas the 95% CI to the right of zero indicate increased effect sizes (P≤0.05). The same as below"

Fig. 3

Effect of direct-seeding rice cultivation technology on grain yield under different rice cropping systems in China P-values indicate grain yield in response to direct-seeding as affected by rice cropping systems"

Fig. 4

Effects of direct-seeding rice cultivation technology on grain quality in China"

Fig. 5

Effects of direct-seeding rice cultivation technology on stem lodging risk in China"

Fig. 6

Effects of direct-seeding rice cultivation technology on greenhouse gas emissions in China"

Table 1

Effect of direct-seeding rice cultivation technology on grain yield in various provinces of China"

省/直辖市/自治区
Province/City/Region
效应值
Effect size (%)
95%置信区间下限
95% CI lower
95%置信区间上限
95% CI upper
P
P value
观测值数
Observation
安徽Anhui 4.58 -1.13 10.63 0.1182 42
福建Fujian 10.45 -2.43 25.04 0.1161 8
广东Guangdong -0.87 -7.46 6.18 0.8036 131
广西Guangxi 4.96 -5.11 16.09 0.3464 16
贵州Guizhou -3.70 -12.65 6.16 0.4482 13
黑龙江Heilongjiang -7.36 -12.72 -1.68 0.0119 35
河南Henan -13.42 -26.68 2.24 0.0894 15
湖北Hubei -0.24 -4.62 4.33 0.9147 106
湖南Hunan -1.27 -5.25 2.87 0.5414 113
江苏Jiangsu -11.92 -14.61 -9.14 <0.0001 288
江西Jiangxi -7.70 -14.62 -0.21 0.0442 44
吉林Jilin -17.85 -27.96 -6.32 0.0033 12
辽宁Liaoning -11.30 -17.44 -4.70 0.0011 37
宁夏Ningxia -13.02 -22.05 -2.96 0.0125 21
山东Shandong -17.37 -29.85 -2.66 0.0224 4
上海Shanghai -4.30 -13.91 6.39 0.4162 13
四川Sichuan -3.16 -8.12 2.07 0.2315 89
天津Tianjin -11.64 -27.40 7.55 0.2174 4
新疆Xinjiang -18.94 -31.18 -4.52 0.0119 4
浙江Zhejiang -10.97 -14.96 -6.80 <0.0001 177
[1]
ALEXANDRATOS N, BRUINSMA J. World agriculture towards 2030/2050: The 2012 revision, ESA Working paper No. 12-3, June, Food and Agriculture Organization of the United Nations, Rome, 2012. Available at https://www.fao.org/3/ap106e/ap106e.pdf.
[2]
张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7): 1273-1289. doi: 10.3864/j.issn.0578-1752.2014.07.004.
ZHANG H C, GONG J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Scientia Agricultura Sinica, 2014, 47(7): 1273-1289. doi: 10.3864/j.issn.0578-1752.2014.07.004. (in Chinese)
[3]
曹晓风, 孙波, 陈化榜, 周俭民, 宋显伟, 刘小京, 邓向东, 李秀军, 赵玉国, 张佳宝, 李家洋. 我国边际土地产能扩增和生态效益提升的途径与研究进展. 中国科学院院刊, 2021, 36(3): 336-348.
CAO X F, SUN B, CHEN H B, ZHOU J M, SONG X W, LIU X J, DENG X D, LI X J, ZHAO Y G, ZHANG J B, LI J Y. Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China. Bulletin of Chinese Academy of Sciences, 2021, 36(3): 336-348. (in Chinese)
[4]
万克江. 我国水稻生产技术发展与展望. 中国稻米, 2021, 27(4): 50-52.

doi: 10.3969/j.issn.1006-8082.2021.04.010
WAN K J. Development status and suggestions of rice cultivation technology in China. China Rice, 2021, 27(4): 50-52. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2021.04.010
[5]
朱德峰, 张玉屏, 陈惠哲, 王亚梁. 中国水稻栽培技术发展与展望. 中国稻米, 2021, 27(4): 45-49.

doi: 10.3969/j.issn.1006-8082.2021.04.009
ZHU D F, ZHANG Y P, CHEN H Z, WANG Y L. Development and prospect of cultivation technology of rice in China. China Rice, 2021, 27(4): 45-49. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2021.04.009
[6]
张洪程, 胡雅杰, 戴其根, 邢志鹏, 魏海燕, 孙成明, 高辉, 胡群. 中国大田作物栽培学前沿与创新方向探讨. 中国农业科学, 2022, 55(22): 4373-4382. doi: 10.3864/j.issn.0578-1752.2022.22.004.
ZHANG H C, HU Y J, DAI Q G, XING Z P, WEI H Y, SUN C M, GAO H, HU Q. Discussions on frontiers and directions of scientific and technological innovation in China’s field crop cultivation. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382. doi: 10.3864/j.issn.0578-1752.2022.22.004. (in Chinese)
[7]
LIAO P, SUN Y N, ZHU X C, WANG H Y, WANG Y, CHEN J, ZHANG J, ZENG Y H, ZENG Y J, HUANG S. Identifying agronomic practices with higher yield and lower global warming potential in rice paddies: a global meta-analysis. Agriculture, Ecosystems & Environment, 2021, 322: 107663.
[8]
XIA L L, CAO L, YANG Y, TI C P, LIU Y Z, SMITH P, VAN GROENIGEN K J, LEHMANN J, LAL R, BUTTERBACH-BAHL K, KIESE R, ZHUANG M H, LU X, YAN X Y. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nature Food, 2023, 4: 236-246.

doi: 10.1038/s43016-023-00694-0 pmid: 37118263
[9]
张卫建, 严圣吉, 张俊, 江瑜, 邓艾兴. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021, 54(18): 3892-3902. doi: 10.3864/j.issn.0578-1752.2021.18.009.
ZHANG W J, YAN S J, ZHANG J, JIANG Y, DENG A X. Win-win strategy for national food security and agricultural double-carbon goals. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902. doi: 10.3864/j.issn.0578-1752.2021.18.009. (in Chinese)
[10]
赵正洪, 戴力, 黄见良, 潘晓华, 游艾青, 赵全志, 陈光辉, 周政, 胡文彬, 纪龙. 长江中游稻区水稻产业发展现状、问题与建议. 中国水稻科学, 2019, 33(6): 553-564.
ZHAO Z H, DAI L, HUANG J L, PAN X H, YOU A Q, ZHAO Q Z, CHEN G H, ZHOU Z, HU W B, JI L. Status, problems and solutions in rice industry development in the middle reaches of the Yangtze River. Chinese Journal of Rice Science, 2019, 33(6): 553-564. (in Chinese)

doi: 10.16819/j.1001-7216.2019.9061
[11]
WANG W Q, PENG S B, LIU H Y, TAO Y, HUANG J L, CUI K H, NIE L X. The possibility of replacing puddled transplanted flooded rice with dry seeded rice in central China: A review. Field Crops Research, 2017, 214: 310-320.
[12]
LIAO P, HUANG S, ZENG Y J, SHAO H, ZHANG J, VAN GROENIGEN K J. Liming increases yield and reduces grain cadmium concentration in rice paddies: A meta-analysis. Plant and Soil, 2021, 465(1): 157-169.
[13]
张洪程, 邢志鹏, 翁文安, 田晋钰, 陶钰, 程爽, 胡群, 胡雅杰, 郭保卫, 魏海燕. 生育约束型直播水稻生育特征与稳产关键技术. 中国农业科学, 2021, 54(7): 1322-1337. doi: 10.3864/j.issn.0578-1752.2021.07.002.
ZHANG H C, XING Z P, WENG W A, TIAN J Y, TAO Y, CHENG S, HU Q, HU Y J, GUO B W, WEI H Y. Growth characteristics and key techniques for stable yield of growth constrained direct seeding rice. Scientia Agricultura Sinica, 2021, 54(7): 1322-1337. doi: 10.3864/j.issn.0578-1752.2021.07.002. (in Chinese)
[14]
伍龙梅, 张悦, 刘妍, 邹积祥, 杨陶陶, 包晓哲, 黄庆, 陈青春, 蒋耀智, 梁巧丽, 张彬. 直播稻研究进展及发展对策分析. 中国农学通报, 2023, 39(6): 1-5.

doi: 10.11924/j.issn.1000-6850.casb2022-0154
WU L M, ZHANG Y, LIU Y, ZOU J X, YANG T T, BAO X Z, HUANG Q, CHEN Q C, JIANG Y Z, LIANG Q L, ZHANG B. Direct seeding rice: Research progress and development strategy. Chinese Agricultural Science Bulletin, 2023, 39(6): 1-5. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-0154
[15]
FAROOQ M, SIDDIQUE K H M, REHMAN H, AZIZ T, LEE D J, WAHID A. Rice direct seeding: Experiences, challenges and opportunities. Soil and Tillage Research, 2011, 111(2): 87-98.
[16]
张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54(7): 1301-1321. doi: 10.3864/j.issn.0578-1752.2021.07.001.
ZHANG H C, HU Y J, YANG J C, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H, GUO B W, XING Z P, HU Q. Development and prospect of rice cultivation in China. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321. doi: 10.3864/j.issn.0578-1752.2021.07.001. (in Chinese)
[17]
XU L, LI X X, WANG X Y, XIONG D L, WANG F. Comparing the grain yields of direct-seeded and transplanted rice: A meta-analysis. Agronomy, 2019, 9(11): 767.
[18]
GUREVITCH J, KORICHEVA J, NAKAGAWA S, STEWART G. Meta-analysis and the science of research synthesis. Nature, 2018, 555: 175-182.
[19]
徐菊祯, 张梦璐, 何文清, 隋鹏, 陈源泉, 崔吉晓. 中国马铃薯地膜覆盖增产效应及其影响因素的Meta分析. 中国农业科学, 2023, 56(15): 2895-2906. doi : 10.3864/j.issn.0578-1752.2023.15.005.
XU J Z, ZHANG M L, HE W Q, SUI P, CHEN Y Q, CUI J X. Yield-increasing effects under plastic film mulching of potato in China based on meta-analysis. Scientia Agricultura Sinica, 2023, 56(15): 2895-2906. doi : 10.3864/j.issn.0578-1752.2023.15.005. (in Chinese)
[20]
孟轶, 翁文安, 陈乐, 胡群, 邢志鹏, 魏海燕, 高辉, 黄山, 廖萍, 张洪程. 节水灌溉对水稻产量和品质影响的荟萃分析. 中国农业科学, 2022, 55(11): 2121-2134. doi : 10.3864/j.issn.0578-1752.2022.11.004.
MENG Y, WENG W A, CHEN L, HU Q, XING Z P, WEI H Y, GAO H, HUANG S, LIAO P, ZHANG H C. Effects of water-saving irrigation on grain yield and quality: A meta-analysis. Scientia Agricultura Sinica, 2022, 55(11): 2121-2134. doi : 10.3864/j.issn.0578-1752.2022.11.004. (in Chinese)
[21]
廖萍, 孟轶, 翁文安, 黄山, 曾勇军, 张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析. 中国农业科学, 2022, 55(8): 1546-1556. doi : 10.3864/j.issn.0578-1752.2022.08.006.
LIAO P, MENG Y, WENG W A, HUANG S, ZENG Y J, ZHANG H C. Effects of hybrid rice on grain yield and nitrogen use efficiency: A meta-analysis. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556. doi : 10.3864/j.issn.0578-1752.2022.08.006. (in Chinese)
[22]
MAI W X, ABLIZ B, XUE X R. Increased number of spikelets per panicle is the main factor in higher yield of transplanted vs. direct-seeded rice. Agronomy, 2021, 11(12): 2479.
[23]
郭保卫, 唐闯, 王岩, 蔡嘉鑫, 唐健, 周苗, 景秀, 张洪程, 许轲, 胡雅杰, 邢志鹏, 李国辉, 陈恒. 两种机械化种植方式对优质晚籼稻产量和品质的影响. 中国农业科学, 2022, 55(20): 3910-3925. doi: 10.3864/j.issn.0578-1752.2022.20.004.
GUO B W, TANG C, WANG Y, CAI J X, TANG J, ZHOU M, JING X, ZHANG H C, XU K, HU Y J, XING Z P, LI G H, CHEN H. Effects of two mechanical planting methods on the yield and quality of high-quality late indica rice. Scientia Agricultura Sinica, 2022, 55(20): 3910-3925. doi: 10.3864/j.issn.0578-1752.2022.20.004. (in Chinese)
[24]
HUANG M, CAO J L, ZHANG R C, CHEN J N, CAO F B, FANG S L, ZHANG M, LIU L S. Late-stage vigor contributes to high grain yield in high-quality hybrid rice. Crop and Environment, 2022, 1(2): 115-118.
[25]
韩超, 许方甫, 卞金龙, 徐栋, 裘实, 赵晨, 朱盈, 刘国栋, 张洪程, 魏海燕. 淮北地区机械化种植方式对不同生育类型优质食味粳稻产量及品质的影响. 作物学报, 2018, 44(11): 1681-1693.

doi: 10.3724/SP.J.1006.2018.01681
HAN C, XU F F, BIAN J L, XU D, QIU S, ZHAO C, ZHU Y, LIU G D, ZHANG H C, WEI H Y. Effects of mechanical planting methods on yield and quality of japonica rice with good taste and different growth durations in Huaibei region. Acta Agronomica Sinica, 2018, 44(11): 1681-1693. (in Chinese)
[26]
李绍平, 邢志鹏, 田晋钰, 程爽, 胡群, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 机械旱直播方式对水稻产量和光合物质生产特征的影响. 农业工程学报, 2022, 38(7): 1-9.
LI S P, XING Z P, TIAN J Y, CHENG S, HU Q, HU Y J, GUO B W, WEI H Y, ZHANG H C. Effects of mechanical dry direct seeding ways on rice yield and photosynthetic material production characteristics. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(7): 1-9. (in Chinese)
[27]
柳开楼, 李亚贞, 秦江涛, 夏桂龙, 刘金花, 胡惠文, 周利军, 叶会财, 徐小林. 中亚热带稻田不同耕作栽培和施肥模式对土壤肥力的影响. 土壤, 2015, 47(2): 310-317.
LIU K L, LI Y Z, QIN J T, XIA G L, LIU J H, HU H W, ZHOU L J, YE H C, XU X L. Effects of different tillage, straw returning and transplanting methods on paddy soil fertility in middle subtropical region. Soils, 2015, 47(2): 310-317. (in Chinese)
[28]
杨振宇, 罗功文, 赵杭, 胡旺, 王艺哲, 张含丰, 张玉平. 种植方式对稻田氨挥发及氮磷流失风险的影响. 农业环境科学学报, 2021, 40(7): 1529-1537.
YANG Z Y, LUO G W, ZHAO H, HU W, WANG Y Z, ZHANG H F, ZHANG Y P. Effects of planting patterns on ammonia volatilization and nitrogen and phosphorus loss in paddy fields. Journal of Agro-Environment Science, 2021, 40(7): 1529-1537. (in Chinese)
[29]
刘现波, 万岚, 时红, 才硕, 王廷金, 王海媛, 万绍媛, 程婕. 灌溉和种植方式对双季稻田NH3挥发和N2O排放的影响. 水利水电技术(中英文), 2023, 54(12): 35-50.
LIU X B, WAN L, SHI H, CAI S, WANG T J, WANG H Y, WAN S Y, CHENG J. Effects of irrigation and planting methods on ammonia volatilization and nitrous oxide emissions from double-cropping rice. Water Resources and Hydropower Engineering, 2023, 54(12): 35-50. (in Chinese)
[30]
XING Z P, HUANG Z C, YAO Y, FU D H, CHENG S, TIAN J Y, ZHANG H C. Nitrogen use traits of different rice for three planting modes in a rice-wheat rotation system. Agriculture, 2022, 13(1): 77.
[31]
田青兰, 刘波, 钟晓媛, 赵敏, 孙红, 任万军. 不同播栽方式下杂交籼稻非结构性碳水化合物与枝梗和颖花形成及产量性状的关系. 中国农业科学, 2016, 49(1): 35-53. doi: 10.3864/j.issn.0578-1752.2016.01.004.
TIAN Q L, LIU B, ZHONG X Y, ZHAO M, SUN H, REN W J. Relationship of NSC with the formation of branches and spikelets and the yield traits of indica hybrid rice in different planting methods. Scientia Agricultura Sinica, 2016, 49(1): 35-53. doi: 10.3864/j.issn.0578-1752.2016.01.004. (in Chinese)
[32]
NIU Y N, CHEN T X, ZHAO C C, ZHOU M X. Lodging prevention in cereals: Morphological, biochemical, anatomical traits and their molecular mechanisms, management and breeding strategies. Field Crops Research, 2022, 289: 108733.
[33]
LIAO P, BELL S M, CHEN L, HUANG S, WANG H Y, MIAO J H, QI Y M, SUN Y N, LIAO B, ZENG Y J, WEI H Y, GAO H, DAI Q G, ZHANG H C. Improving rice grain yield and reducing lodging risk simultaneously: A meta-analysis. European Journal of Agronomy, 2023, 143: 126709.
[34]
WEI S B, LI X, LU Z F, ZHANG H, YE X Y, ZHOU Y J, LI J, YAN Y Y, PEI H C, DUAN F Y, WANG D Y, CHEN S, WANG P, ZHANG C, SHANG L G, ZHOU Y, YAN P, ZHAO M, HUANG J R, BOCK R, QIAN Q, ZHOU W B. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377(6604): eabi8455.
[35]
蒋鹏, 周虹, 徐富贤, 熊洪, 张林, 朱永川, 周兴兵, 郭晓艺, 刘茂. 川东南轻简栽培方式再生稻产量构成特征和经济效益分析. 中国稻米, 2021, 27(1): 80-84.

doi: 10.3969/j.issn.1006-8082.2021.01.015
JIANG P, ZHOU H, XU F X, XIONG H, ZHANG L, ZHU Y C, ZHOU X B, GUO X Y, LIU M. Analysis on yield components and economic efficiency of ratoon rice under simplified cultivation in southeast Sichuan province. China Rice, 2021, 27(1): 80-84. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2021.01.015
[36]
王飞, 彭少兵. 水稻绿色高产栽培技术研究进展. 生命科学, 2018, 30(10): 1129-1136.
WANG F, PENG S B. Research progress in rice green and high-yield management practices. Chinese Bulletin of Life Sciences, 2018, 30(10): 1129-1136. (in Chinese)
[37]
霍中洋, 李杰, 许轲, 戴其根, 魏海燕, 龚金龙, 张洪程. 高产栽培条件下种植方式对不同生育类型粳稻米质的影响. 中国农业科学, 2012, 45(19): 3932-3945. doi: 10.3864/j.issn.0578-1752.2012.19.004.
HUO Z Y, LI J, XU K, DAI Q G, WEI H Y, GONG J L, ZHANG H C. Effect of planting methods on quality of different growth and development types of Japonica rice under high-yielding cultivation condition. Scientia Agricultura Sinica, 2012, 45(19): 3932-3945. doi: 10.3864/j.issn.0578-1752.2012.19.004. (in Chinese)
[38]
ZENG Y H, TAN X M, ZENG Y J, XIE X B, PAN X H, SHI Q H, ZHANG J. Changes in the rice grain quality of different high-quality rice varieties released in Southern China from 2007 to 2017. Journal of Cereal Science, 2019, 87: 111-116.
[39]
LIAO P, MENG Y, CHEN Y Q, WENG W A, CHEN L, XING Z P, GUO B W, WEI H Y, GAO H, ZHANG H C. Potted-seedling machine transplantation simultaneously promotes rice yield, grain quality, and lodging resistance in China: A meta-analysis. Agronomy, 2022, 12(12): 3003.
[40]
邢志鹏, 朱明, 吴培, 钱海军, 曹伟伟, 胡雅杰, 郭保卫, 魏海燕, 许轲, 霍中洋, 戴其根, 张洪程. 稻麦两熟制条件下钵苗机插方式对不同类型水稻品种米质的影响. 作物学报, 2017, 43(4): 581-595.
XING Z P, ZHU M, WU P, QIAN H J, CAO W W, HU Y J, GUO B W, WEI H Y, XU K, HUO Z Y, DAI Q G, ZHANG H C. Effect of mechanical transplanting with pothole seedlings on grain quality of different types of rice in rice-wheat rotation system. Acta Agronomica Sinica, 2017, 43(4): 581-595. (in Chinese)
[41]
HUANG M, TAO Z, LEI T, CAO F B, CHEN J N, YIN X H, ZOU Y B, LIANG T F. Improving lodging resistance while maintaining high grain yield by promoting pre-heading growth in rice. Field Crops Research, 2021, 270: 108212.
[42]
邢志鹏, 吴培, 朱明, 钱海军, 曹伟伟, 胡雅杰, 郭保卫, 魏海燕, 许轲, 戴其根, 霍中洋, 张洪程. 机械化种植方式对不同品种水稻株型及抗倒伏能力的影响. 农业工程学报, 2017, 33(1): 52-62.
XING Z P, WU P, ZHU M, QIAN H J, CAO W W, HU Y J, GUO B W, WEI H Y, XU K, DAI Q G, HUO Z Y, ZHANG H C. Effect of mechanized planting methods on plant type and lodging resistance of different rice varieties. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 52-62. (in Chinese)
[43]
雷小龙, 刘利, 苟文, 马荣朝, 任万军. 种植方式对杂交籼稻植株抗倒伏特性的影响. 作物学报, 2013, 39(10): 1814-1825.

doi: 10.3724/SP.J.1006.2013.01814
LEI X L, LIU L, GOU W, MA R C, REN W J. Effects of planting methods on culm lodging resistance of indica hybrid rice (Oryza sativa L.). Acta Agronomica Sinica, 2013, 39(10): 1814-1825. (in Chinese)
[44]
LV R J, ZHANG W J, XIE X B, WANG Q J, GAO K G, ZENG Y H, ZENG Y J, PAN X H, SHANG Q Y. Foliar application uniconazole enhanced lodging resistance of high-quality indica rice (Oryza sativa L.) by altering anatomical traits, cell structure and endogenous hormones. Field Crops Research, 2022, 277: 108425.
[45]
LIU W Y, FAN X H, LIU Y Y, BAO S Y, LU Y Y, GAI D S, FU X K, DU J, GUO L Y, ZHANG Q, GENG Y Q, SHAO X W. Relationship between characteristics of basal internodes and lodging and its physiological mechanism in direct-seeded rice. Journal of Agronomy and Crop Science, 2023, 209(5): 632-650.
[46]
SHAH A N, TANVEER M, REHMAN A U, AHMAD ANJUM S, IQBAL J, AHMAD R. Lodging stress in cereal—effects and management: an overview. Environmental Science and Pollution Research, 2017, 24(6): 5222-5237.
[47]
SHAH L, YAHYA M, ALI SHAH S M, NADEEM M, ALI A, ALI A, WANG J, RIAZ M W, REHMAN S, WU W X, KHAN R M, ABBAS A, RIAZ A, ANIS G B, SI H Q, JIANG H Y, MA C X. Improving lodging resistance: using wheat and rice as classical examples. International Journal of Molecular Sciences, 2019, 20(17): 4211.
[48]
ALLAN R P, ACHUTARAO K M. Climate change 2021: the physical science basis:Working Group I contribution to the sixth assessment report of the Intergovernmental Panel on climate change.
[49]
YUAN S, LINQUIST B A, WILSON L T, CASSMAN K G, STUART A M, PEDE V, MIRO B, SAITO K, AGUSTIANI N, ARISTYA V E, et al. Sustainable intensification for a larger global rice bowl. Nature Communications, 2021, 12: 7163.

doi: 10.1038/s41467-021-27424-z pmid: 34887412
[50]
QIAN H Y, ZHU X C, HUANG S, LINQUIST B, KUZYAKOV Y, WASSMANN R, MINAMIKAWA K, MARTINEZ-EIXARCH M, YAN X Y, ZHOU F, SANDER B O, ZHANG W J, SHANG Z Y, ZOU J W, ZHENG X H, LI G H, LIU Z H, WANG S H, DING Y F, VAN GROENIGEN K J, JIANG Y. Greenhouse gas emissions and mitigation in rice agriculture. Nature Reviews Earth & Environment, 2023, 4: 716-732.
[51]
JIANG Y, CARRIJO D, HUANG S, CHEN J, BALAINE N, ZHANG W J, VAN GROENIGEN K J, LINQUIST B. Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Research, 2019, 234: 47-54.
[52]
HANG X N, ZHANG X, SONG C L, JIANG Y, DENG A X, HE R Y, LU M, ZHANG W J. Differences in rice yield and CH4 and N2O emissions among mechanical planting methods with straw incorporation in Jianghuai area, China. Soil and Tillage Research, 2014, 144: 205-210.
[53]
LIU S W, ZHANG Y J, LIN F, ZHANG L, ZOU J W. Methane and nitrous oxide emissions from direct-seeded and seedling-transplanted rice paddies in Southeast China. Plant and Soil, 2014, 374(1): 285-297.
[54]
TAO Y, CHEN Q, PENG S B, WANG W Q, NIE L X. Lower global warming potential and higher yield of wet direct-seeded rice in Central China. Agronomy for Sustainable Development, 2016, 36(2): 24.
[55]
LIU Y Y, HE C Y, GAI D S, GENG Y Q, GUO L Y, SHAO X W. Morphological and physiological traits of roots and their relationships with shoot growth and grain yield in direct-seeded rice in Northeastern China. Crop & Pasture Science, 2022, 73(11): 1229-1244.
[56]
LIU Y Y, LIU W Y, GENG X Y, LIU B L, FU X K, GUO L Y, BAI J J, ZHANG Q, GENG Y Q, SHAO X W. Direct-seeded rice reduces methane emissions by improving root physiological characteristics through affecting the water status of paddy fields. Rhizosphere, 2022, 24: 100628.
[57]
霍中洋, 李杰, 张洪程, 戴其根, 许轲, 魏海燕, 龚金龙. 不同种植方式下水稻氮素吸收利用的特性. 作物学报, 2012, 38(10): 1908-1919.

doi: 10.3724/SP.J.1006.2012.01908
HUO Z Y, LI J, ZHANG H C, DAI Q G, XU K, WEI H Y, GONG J L. Characterization of nitrogen uptake and utilization in rice under different planting methods. Acta Agronomica Sinica, 2012, 38(10): 1908-1919. (in Chinese)
[58]
王春雨, 余华清, 何艳, 郭长春, 张绍文, 杨志远, 马均. 播栽方式与施氮量对杂交籼稻氮肥利用特征及产量的影响. 中国生态农业学报, 2017, 25(12): 1792-1801.
WANG C Y, YU H Q, HE Y, GUO C C, ZHANG S W, YANG Z Y, MA J. Characteristics of nitrogen accumulation and utilization in indica hybrid rice under different planting methods and nitrogen rates. Chinese Journal of Eco-Agriculture, 2017, 25(12): 1792-1801. (in Chinese)
[59]
XU L, YUAN S, WANG X Y, CHEN Z F, LI X X, CAO J, WANG F, HUANG J L, PENG S B. Comparison of yield performance between direct-seeded and transplanted double-season rice using ultrashort- duration varieties in Central China. The Crop Journal, 2022, 10(2): 515-523.
[60]
时红, 才硕, 孙占学, 万绍媛. 种植方式对稻田水肥利用及环境效应的影响. 江苏农业科学, 2022, 50(17): 229-235.
SHI H, CAI S, SUN Z X, WAN S Y. Influences of planting methods on water-fertilizer utilization and environmental impact in paddy fields. Jiangsu Agricultural Sciences, 2022, 50(17): 229-235. (in Chinese)
[61]
ZHANG Y F, LIU H J, GUO Z, ZHANG C S, SHENG J, CHEN L G, LUO Y Q, ZHENG J C. Direct-seeded rice increases nitrogen runoff losses in Southeastern China. Agriculture, Ecosystems & Environment, 2018, 251: 149-157.
[62]
KUMAR V, LADHA J K. Direct seeding of rice: Recent developments and future research needs. Advances in Agronomy, 2011, 111: 297-413.
[63]
吴汉, 吴含, 钱娜, 柯健, 郭爽爽. 江淮地区不同灌溉与种植方式对水稻产量及水分利用效率的影响. 灌溉排水学报, 2022, 41(6): 39-46, 71.
WU H, WU H, QIAN N, KE J, GUO S S. The effects of different combinations of irrigation and planting method on yield and water use efficiency of rice in Jianghuai Region. Journal of Irrigation and Drainage, 2022, 41(6): 39-46, 71. (in Chinese)
[64]
HE A B, YUAN B, JIN Z Q, MAN J G, PENG S B, ZHANG L, LIU H Y, NIE L X. Comparative study on annual yield, water consumption, irrigation water use efficiency and economic benefits of different rice-oilseed rape rotation systems in Central China. Agricultural Water Management, 2021, 247: 106741.
[65]
CHAKRABORTY D, LADHA J K, RANA D S, JAT M L, GATHALA M K, YADAV S, RAO A N, RAMESHA M S, RAMAN A. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Scientific Reports, 2017, 7(1): 9342.

doi: 10.1038/s41598-017-09742-9 pmid: 28839240
[66]
YUAN S, PENG S B. Food-energy-emission nexus of rice production in China. Crop and Environment, 2022, 1(1): 59-67.
[67]
YUAN S, ZHAN X W, XU L, LING X X, PENG S B. Increase energy use efficiency and economic benefit with reduced environmental footprint in rice production of Central China. Environmental Science and Pollution Research, 2022, 29(5): 7382-7392.
[68]
RAO A N, JOHNSON D E, SIVAPRASAD B, LADHA J K, MORTIMER A M. Weed management in direct-seeded rice. Advances in Agronomy, 2007, 93: 153-255.
[69]
周燕芝, 王文霞, 陈丽明, 曾勇军, 谭雪明, 胡水秀, 石庆华, 潘晓华, 曾研华. 直播稻田杂草发生与防除研究进展. 作物杂志, 2019(4): 1-9.
ZHOU Y Z, WANG W X, CHEN L M, ZENG Y J, TAN X M, HU S X, SHI Q H, PAN X H, ZENG Y H. Progress on weed occurrence and control in direct seeded rice fields. Crops, 2019(4): 1-9. (in Chinese)
[70]
LI J, HE R Y. Relationships among socioeconomic factors, rice planting method and pesticide use. Environment, Development and Sustainability, 2021, 23(5): 7358-7372.
[71]
DENG X, CHEN Y X, YANG Y, PENG L, SI L, ZENG Q R. The implications of planting mode on cadmium uptake and remobilization in rice: field experiments across growth stages. Frontiers of Environmental Science & Engineering, 2021, 15(6): 137.
[72]
张洪程, 郭保卫, 龚金龙. 加快发展水稻丰产栽培机械化稳步提升我国稻作现代化水平. 中国稻米, 2013, 19(1): 3-6.

doi: 10.3969/j.issn.1006-8082.2013.01.002
ZHANG H C, GUO B W, GONG J L. Accelerate the development of rice yield cultivation mechanization to improve China’s rice modernization level. China Rice, 2013, 19(1): 3-6. (in Chinese)
[73]
陈丽明, 周燕芝, 谭义青, 吴自明, 谭雪明, 曾勇军, 石庆华, 潘晓华, 曾研华. 双季机械直播早籼稻品种的丰产性和稳产性. 中国农业科学, 2020, 53(2): 261-272. doi: 10.3864/j.issn.0578-1752.2020.02.004.
CHEN L M, ZHOU Y Z, TAN Y Q, WU Z M, TAN X M, ZENG Y J, SHI Q H, PAN X H, ZENG Y H. High and stable yield of early indica rice varieties with double-season mechanical direct seeding. Scientia Agricultura Sinica, 2020, 53(2): 261-272. doi: 10.3864/j.issn.0578-1752.2020.02.004. (in Chinese)
[74]
时强, 周年兵, 胡金龙, 刘炳亮, 张洪程, 朱金燕. 一种芽期耐淹水稻品种的快速筛选方法及其应用. 安徽农业大学学报, 2021, 48(1): 21-25.
SHI Q, ZHOU N B, HU J L, LIU B L, ZHANG H C, ZHU J Y. A rapid method and its application for screening rice submergence tolerance at bud stage. Journal of Anhui Agricultural University, 2021, 48(1): 21-25. (in Chinese)
[75]
杨小艳, 张巫军, 段秀建, 雷开荣, 唐永群, 李经勇, 姚雄. 重庆地区晚熟中稻直播品种萌芽期耐淹能力鉴定研究. 杂交水稻, 2023, 38(1): 20-27.
YANG X Y, ZHANG W J, DUAN X J, LEI K R, TANG Y Q, LI J Y, YAO X. Identification of submergence tolerance of direct-seeding late-maturing medium rice varieties at germination stage in Chongqing. Hybrid Rice, 2023, 38(1): 20-27. (in Chinese)
[76]
钟艳平, 李祖军, 唐双勤, 武志峰, 舒金贵, 曾研华, 谭雪明, 曾勇军, 石庆华, 潘晓华, 吴自明. 直播早籼稻品种芽期耐淹性鉴定研究. 江西农业大学学报, 2020, 42(1): 1-9.
ZHONG Y P, LI Z J, TANG S Q, WU Z F, SHU J G, ZENG Y H, TAN X M, ZENG Y J, SHI Q H, PAN X H, WU Z M. Identification of flooding tolerance of direct-seeded early indica rice varieties at bud stage. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(1): 1-9. (in Chinese)
[77]
方志强, 陆展华, 王石光, 刘维, 卢东柏, 王晓飞, 巫浩翔, 陈浩, 何秀英. 不同种植模式对水稻生长的影响及适宜直播品种的筛选. 广东农业科学, 2022, 49(6): 1-10.
FANG Z Q, LU Z H, WANG S G, LIU W, LU D B, WANG X F, WU H X, CHEN H, HE X Y. Effects of different planting patterns on rice growth and selection of rice varieties suitable for direct seeding. Guangdong Agricultural Sciences, 2022, 49(6): 1-10. (in Chinese)
[78]
翁文安, 邢志鹏, 胡群, 魏海燕, 史扬杰, 奚小波, 李秀丽, 刘桂云, 陈娟, 袁风萍, 孟轶, 廖萍, 高辉, 张洪程. 无人化旱直播模式对水稻产量、品质和经济效益的影响. 中国农业科学, 2024, 57(17): 3350-3365. doi: 10.3864/j.issn.0578-1752.2024.17.004.
WENG W A, XING Z P, HU Q, WEI H Y, SHI Y J, XI X B, LI X L, LIU G Y, CHEN J, YUAN F P, MENG Y, LIAO P, GAO H, ZHANG H C. Effects of unmanned dry direct-seeded mode on yield, grain quality of rice and its economic benefits. Scientia Agricultura Sinica, 2024, 57(17): 3350-3365. doi: 10.3864/j.issn.0578-1752.2024.17.004. (in Chinese)
[79]
罗锡文, 王在满, 曾山, 臧英, 杨文武, 张明华. 水稻机械化直播技术研究进展. 华南农业大学学报, 2019, 40(5): 1-13.
LUO X W, WANG Z M, ZENG S, ZANG Y, YANG W W, ZHANG M H. Recent advances in mechanized direct seeding technology for rice. Journal of South China Agricultural University, 2019, 40(5): 1-13. (in Chinese)
[80]
YANG Z Y, CHENG Q Y, LIAO Q, FU H, ZHANG J Y, ZHU Y M, LV T F, SUN Y J, MA J, LI N. Can reduced-input direct seeding improve resource use efficiencies and profitability of hybrid rice in China? Science of the Total Environment, 2022, 833: 155186.
[81]
朱海滨, 马中涛, 徐栋, 凌宇飞, 魏海燕, 高辉, 邢志鹏, 胡群, 张洪程. 无人飞播水稻优质丰产“无人化”栽培技术体系探讨与展望. 中国稻米, 2021, 27(5): 5-11.

doi: 10.3969/j.issn.1006-8082.2021.05.002
ZHU H B, MA Z T, XU D, LING Y F, WEI H Y, GAO H, XING Z P, HU Q, ZHANG H C. Discussion and expectation of “unmanned” cultivation technology system for rice with high quality and yield suitable for UAV seeding. China Rice, 2021, 27(5): 5-11. (in Chinese)
[82]
朱海滨, 胡群, 陆喜瞻, 翁文安, 邢志鹏, 高辉, 魏海燕, 张洪程. 无人飞播水稻生育特征与丰产关键技术研究进展. 农业工程学报, 2024, 40(11): 1-13.
ZHU H B, HU Q, LU X Z, WENG W A, XING Z P, GAO H, WEI H Y, ZHANG H C. Research progress in growth characteristics and key techniques for the high yield of unmanned aerial seeding rice. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(11): 1-13. (in Chinese)
[83]
ZHOU Z Y, JIN J M, WANG L M. Modeling the effects of elevation and precipitation on Rice (Oryza sativa L.) production considering multiple planting methods and cultivars in Central China. Science of the Total Environment, 2022, 813: 152679.
[84]
MCDANIEL M D, TIEMANN L K, GRANDY A S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 2014, 24(3): 560-570.

pmid: 24834741
[85]
HONG W Y, CHEN Y J, HUANG S H, LI Y Z, WANG Z M, TANG X R, PAN S G, TIAN H, MO Z W. Optimization of nitrogen-silicon (N-Si) fertilization for grain yield and lodging resistance of early-season indica fragrant rice under different planting methods. European Journal of Agronomy, 2022, 136: 126508.
[86]
XIA B, HUANG M, ZOU Y B, JIANG P, FENG Y H, CHENG Z W, MO Y L. Internal nitrogen efficiency of super hybrid rice grown under different tillage and crop establishment methods. Research on Crops, 2012, 13(2): 401-407.
[87]
CHEN S, GE Q Y, CHU G, XU C M, YAN J X, ZHANG X F, WANG D Y. Seasonal differences in the rice grain yield and nitrogen use efficiency response to seedling establishment methods in the Middle and Lower reaches of the Yangtze River in China. Field Crops Research, 2017, 205: 157-169.
[1] ZHANG WeiJian, SHANG ZiYin, ZHANG Jun, YAN ShengJi, DENG AiXing, ZHANG Xin, ZHENG ChengYan, SONG ZhenWei. Standardized Establishment and Improvement of Accounting System of Agriculture Greenhouse Gas Emission [J]. Scientia Agricultura Sinica, 2023, 56(22): 4467-4477.
[2] ZHANG HongCheng, HU YaJie, DAI QiGen, XING ZhiPeng, WEI HaiYan, SUN ChengMing, GAO Hui, HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[3] YANG ShiQi. Thought of Pollution Comprehensive Prevention and Control System of Non-Point Sources Based on National Food Security [J]. Scientia Agricultura Sinica, 2022, 55(17): 3380-3394.
[4] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[5] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[6] CHEN Kevin,BI JieYing,NIE FengYing,FANG XiangMing,FAN ShengGen. New Vision and Policy Recommendations for Nutrition-Oriented Food Security in China [J]. Scientia Agricultura Sinica, 2019, 52(18): 3097-3107.
[7] CHEN Yin-jun, YI Xiao-yan, FANG Lin-na, YANG Rui-zhen. Analysis of Cultivated Land and Grain Production Potential in China [J]. Scientia Agricultura Sinica, 2016, 49(6): 1117-1131.
[8] LI Bao-guo, HUANG Feng. Defining the Baselines for China Agricultural Water Use in Green and Blue Water Approach [J]. Scientia Agricultura Sinica, 2015, 48(17): 3493-3503.
[9] SHI Wen-Jiao, TAO Fu-Lu. Climate Change and Agricultural Production in Africa: A Review of Impacts and Adaptations [J]. Scientia Agricultura Sinica, 2014, 47(16): 3157-3166.
[10] CHEN Wen-Fu, ZHANG Wei-Ming, MENG Jun. Advances and Prospects in Research of Biochar Utilization in Agriculture [J]. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333.
[11] ZHANG Wei-Jian, CHEN Jin, XU Zhi-Yu, CHEN Chang-Qing, DENG Ai-Xing, QIAN Chun-Rong, DONG Wen-Jun. Actual Responses and Adaptations of Rice Cropping System to Global Warming in Northeast China [J]. Scientia Agricultura Sinica, 2012, 45(7): 1265-1273.
[12] TANG Hua-Jun, LI Zhe-Min. Study on Per Capita Grain Demand Based on Chinese Reasonable Dietary Pattern [J]. Scientia Agricultura Sinica, 2012, 45(11): 2315-2327.
[13] LI Chen,YAN Xiao-hong,YANG Jie,YANG Qing,WEI Wen-hui
. Plant Artificial Chromosome: The Vector for the Next Generation of Genetic Engineering [J]. Scientia Agricultura Sinica, 2011, 44(4): 657-663 .
[14] ZOU Ying-bin. Development of Cultivation Technology for Double Cropping Rice Along the Changjiang River Valley
[J]. Scientia Agricultura Sinica, 2011, 44(2): 254-262 .
[15] YU Qiang-Yi, WU Wen-Bin, TANG Hua-Jun, CHEN You-Qi, YANG Peng. A Food Security Assessment in APEC Based on Grain Productivity [J]. Scientia Agricultura Sinica, 2011, 44(13): 2838-2848 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!