Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (21): 4175-4191.doi: 10.3864/j.issn.0578-1752.2024.21.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize

HAN XuDong(), YANG ChuanQi(), ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu(), LIU JianChao()   

  1. College of Agronomy, Northwest A&F University/Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling 712100, Shaanxi
  • Received:2024-04-27 Accepted:2024-07-22 Online:2024-11-01 Published:2024-11-10

Abstract:

【Objective】Genetic improvement for efficient utilization of maize nutrients represents a crucial method to ensure national food security. Exploring quantitative trait locus (QTL) and related candidate genes of nitrogen use efficiency can provide a theoretical basis for improving the efficiency of nitrogen fertilizer in maize and cultivating high-yield and high-efficiency maize varieties. 【Method】In this study, QTL mapping analysis in one recombinant inbred line (RIL) population constructed by KA105 and KB024 was performed for grain yield under two different nitrogen treatments, including the derived traits partial factor productivity from applied nitrogen (PFPN), low nitrogen tolerance coefficient (LNTC) and nitrogen agronomic efficiency (NAE). Concurrently, integrating the seedling transcriptome data of the parent KA105 under nitrogen treatment, differentially expressed genes were identified, and candidate genes associated with maize nitrogen use efficiency were mined through co-expression analysis. Subsequently, the selected candidate genes were validated using qRT-PCR. 【Result】Through mapping analysis, a total of 36 QTLs distributed across different chromosomes were detected, explaining 1.63% to 17.26% of the phenotypic variation. Among these, eight major QTLs with a phenotypic variation explanation rate exceeding 10% were identified, along with seven genetically stable QTLs commonly identified across different traits or environments. Notably, qNNGYP1 located on chromosome 1 has been repeatedly detected in previous studies, with a phenotypic explanation rate of up to 11.73%. Additionally, other QTLs (qNNGYP1, qPFPN1) co-located in this interval across different environments, suggesting it as a focal region for further investigation. Combining transcriptome data of seedlings under low nitrogen stress, 39 differentially expressed genes within these QTL intervals were identified, and 6 key genes were identified through co-expression network prediction. The result of qRT-PCR indicated that the expression trends of the candidate genes under both nitrogen treatments were consistent with the transcriptome data. Specifically, GRMZM2G366873 was involved in the regulation of auxin homeostasis and may participate in maize responses to low nitrogen stress, drought stress, and boron stress through auxin signal transduction, also regulating ear length. GRMZM2G414192 was involved in the response of the photosynthetic system to low nitrogen stress and was regulated by brassinosteroids. GRMZM2G414043 was associated with maize grain length and biomass, while GRMZM2G040642 may be involved in the long-distance signal transduction of nitrogen. 【Conclusion】In summary, a total of 36 QTLs were identified, distributed across chromosomes 1, 4, 5, 7, 8, and 9, including eight major QTLs (PVE>10%). The candidate genes GRMZM2G366873, GRMZM2G414192, GRMZM2G414043, and GRMZM2G040642 were identified as potential genes for maize nitrogen efficiency.

Key words: maize, nitrogen use efficiency, QTL, transcriptome, candidate genes

Table 1

Base nutrient status of the test soil"

环境
Environment
总氮
Total-N (g·kg-1)
速效磷
Available-P (mg·kg-1)
速效钾
Available-K (mg·kg-1)
有机质
Organic (g·kg-1)
pH
杨凌 YL 0.93 20.98 114.00 16.70 8.46
渭南 WN 0.89 17.87 148.50 16.48 9.04

Table 2

qRT-PCR primers of candidate genes"

引物名称Primer name 正向引物Forward primers (5′-3′) 反向引物Reverse primers (5′-3′)
GRMZM2G172758 GGCTCGATGAGTGTCGGAT GAGGTTCAGGCTCTCTACGG
GRMZM2G414192 ACCAGACCACCAGCTTCCTC TCGGAGAACGGGCCAAGATA
GRMZM2G414043 TGACGTTAGTTTGCAGCGGA GGTGTGCTTTCAACCTGCAC
GRMZM2G366873 AGCATCGACTCCGACAAGA CCAGAACAGCACGTAGTGG
GRMZM2G040642 GGAGTATTTGATGGTCATGGAGG GACCCAACCCCAACATGAAT
GRMZM2G179696 ACTGTCAAGGAGTGATGGTCC CAATCGTCACCACAAGCCAG

Table 3

Analysis of comprehensive variance for the yield of 195 maize recombinant inbred lines and their two parents"

来源 Source of variation 平方和 Sum of squares 自由度 DF 均方 Mean squares FF-value
地点Environment (E) 25183.24 2 12591.62 747.07**
处理Treatment (T) 20072.27 1 20072.27 1190.90**
材料Genotype (G) 82811.52 196 422.51 25.07**
地点×处理E×T 1677.65 2 838.82 49.77**
处理×材料T×G 7854.66 193 40.70 2.47**
地点×材料E×G 55993.96 383 146.20 8.68**
误差Error 5713.75 339 16.86
总计Sum 2928126.42 1117

Table 4

The performance of various traits of parents and recombinant inbred line populations"

性状
Trait
地点
Site
亲本Parents 重组自交系群体RILs
KA105 KB024 平均值
Average
标准差
SD
变异范围
Range
变异系数
CV (%)
峰度
Kurt
偏度
Skew
遗传力
H2 (%)
正常氮下单株产量
NNGYP (g)
WN 82.94 58.64 59.40 15.13 22.93-93.51 25.47 -0.47 -0.34 76.92
YL 58.97 42.15 48.17 12.57 17.44-79.67 26.10 0.01 0.14
BLUP 61.73 50.10 51.76 6.14 38.10-69.40 11.86 -0.33 0.06
低氮下单株产量
LNGYP (g)
WN 78.77 57.33 49.90 16.44 13.40-85.93 32.95 -0.55 -0.24 68.29
YL 51.66 29.12 36.88 10.99 13.95-65.01 29.80 -0.31 0.04
BLUP 58.48 46.04 46.34 5.78 31.70-60.76 12.47 -0.20 0.07
耐低氮系数
LNTC
WN 0.95 0.98 0.83 0.14 0.32-1.00 16.87 0.75 -1.09 65.50
YL 0.88 0.69 0.78 0.16 0.43-1.00 20.51 -1.10 -0.52
BLUP 0.95 0.92 0.90 0.08 0.72-1.13 8.89 0.14 0.15
氮肥偏生产力
PFPN
WN 27.65 19.55 19.80 5.04 7.64-31.17 25.45 -0.47 -0.34 76.92
YL 19.66 14.05 16.06 4.19 5.81-26.56 26.09 0.01 0.14
BLUP 20.58 16.70 17.25 2.05 12.70-23.13 11.88 -0.33 0.06
氮肥农学利用效率
NAE
WN 1.39 0.44 3.17 2.59 0.01-10.40 81.70 0.04 0.95 69.70
YL 2.43 1.34 3.76 3.04 0.02-9.93 80.85 -1.02 0.63
BLUP 1.08 1.35 1.90 1.22 0.15-5.05 64.21 -0.54 0.52

Fig. 1

Correlation analysis and phenotypic distribution of different nitrogen efficiency traits in recombinant inbred line population NNGYP:正常氮下单株产量;LNGYP:低氮下单株产量;LNTC:耐低氮系数;PFPN:氮肥偏生产力;NAE:氮肥农学利用效率;BLUP:最佳线性无偏差预测。下同 NNGYP: Normal nitrogen grain yield per plant; LNGYP: Low nitrogen grain yield per plant; LNTC: Low nitrogen tolerance coefficient; PFPN: Partial factor productivity from applied nitrogen; NAE: Nitrogen agronomic efficiency; BLUP: Best linear unbiased prediction. The same as below"

Fig. 2

QTL mapping results of nitrogen use efficiency related traits A: QTL distribution of traits related to nitrogen use efficiency; B: The source of additive effect in RIL population"

Table 5

QTL mapping results of nitrogen efficiency related traits"

性状
Trait
位点
QTL
地点
Location
染色体
Chromosome
两侧标记物理位置
Physical position of the beside markers (bp)
LOD 表型解释率
PVE (%)
加性效应
Additive effect
正常施氮下单株产量
NNGWP
qNNGYP1 WN 1 35995804-36424242 5.15 11.73 5.31
qNNGYP1 BLUP 1 35995804-36424242 6.84 7.56 2.32
qNNGYP7-1 BLUP 7 131382844-131410325 9.38 10.49 2.74
qNNGYP7-2 BLUP 7 162437502-162997059 4.69 4.90 -1.87
qNNGYP7-3 WN 7 165055895-165294994 4.40 9.77 -4.83
qNNGYP9 BLUP 9 3283059-3562938 4.77 5.02 1.89
低氮下单株产量
LNGWP
qLNGYP1-1 WN 1 34719687-34815083 8.94 4.14 6.05
qLNGYP1-2 WN 1 253561747-253822941 27.33 17.26 12.35
qLNGYP1-3 WN 1 246413563-249477487 14.04 7.45 -8.14
qLNGYP1-4 WN 1 257856595-258579921 15.38 7.91 -8.36
qLNGYP4 WN 4 225263551-225495039 5.29 2.34 -4.61
qLNGYP7-1 YL 7 108562462-112964730 11.37 11.64 -6.51
qLNGYP7-2 YL 7 82754779-108730885 8.09 7.70 5.29
qLNGYP7-3 YL 7 129914065-129964901 4.30 4.09 3.85
qLNGYP7-4 BLUP 7 165497988-165833830 6.54 8.51 -1.96
qLNGYP7-5 WN 7 167024420-167263154 3.89 1.64 -3.82
qLNGYP8-1 WN 8 142064004-144623033 6.33 2.78 4.97
qLNGYP8-2 BLUP 8 125629874-126267369 4.78 5.99 1.64
qLNGYP9 BLUP 9 3283059-3562938 4.35 5.44 1.57
耐低氮系数
LNTC
qLNTC1-1 BLUP 1 4445103-4538029 7.82 5.41 0.03
qLNTC1-2 BLUP 1 8534228-8452804 3.91 2.63 -0.02
qLNTC1-3 WN 1 70738546-71034049 4.87 5.98 -0.05
qLNTC1-4 WN 1 86368227-90237055 9.72 12.92 0.07
qLNTC5 WN 5 184392272-185547677 4.46 5.48 -0.04
qLNTC8-1 BLUP 8 120298869-123737924 5.95 4.00 0.02
qLNTC8-2 WN 8 145442273-147617047 4.61 5.66 0.04
qLNTC8-3 BLUP 8 125629874-126267369 14.02 10.66 -0.04
氮肥偏生产力
PFPN
qPFPN1 BLUP 1 35995804-36424242 5.15 11.73 1.77
qPFPN1 WN 1 35995804-36424242 6.84 7.56 0.77
qPFPN7-1 BLUP 7 131382844-131410325 9.38 10.49 0.91
qPFPN7-2 BLUP 7 162437502-162997060 4.69 4.91 -0.62
qPFPN7-3 WN 7 165055895-165294994 4.40 9.77 -1.61
qPFPN9 BLUP 9 3283059-3562938 4.77 5.02 0.63
氮肥农学利用效率
NAE
qNAE1 BLUP 1 4445103-4538029 6.26 7.51 0.47
qNAE9-1 YL 9 147632676-148309394 3.85 6.22 -1.02
qNAE9-2 BLUP 9 148309394-148346218 5.29 6.35 -0.43

Fig. 3

Transcriptome data analysis A: Differentially expressed gene expression heat map in QTL interval; B: GO enrichment of differentially expressed genes in QTL interval; C: KEGG enrichment of differentially expressed genes in QTL interval; D: Co-expression network of differentially expressed genes in QTL interval; E: qRT-PCR analysis of candidate genes"

Table 6

Differentially expressed genes in key or all QTL interval"

候选基因ID
Candidate gene ID
差异倍数
log2FC
QTL名称
QTL name
基因注释
Gene annotation
GRMZM2G172758 -5.11 qLNTC1-2 类核仁素Nucleolin-like
GRMZM2G017011 -11.14 qLNTC1-4 花粉Ole e 1过敏原和扩展蛋白家族蛋白Pollen Ole e 1 allergen and extensin family protein
GRMZM2G469371 1.61 qLNTC1-4 环-H2指蛋白ATL57 RING-H2 finger protein ATL57
GRMZM2G090029 2.20 qLNTC1-4 类细胞周期蛋白依赖性蛋白激酶抑制剂SMR1
Cyclin-dependent protein kinase inhibitor SMR1-like
GRMZM2G046848 3.19 qLNTC1-4 含U-box结构域的蛋白质70 U-box domain-containing protein 70
GRMZM2G021055 -4.15 qLNGYP1-2 排毒蛋白29 Protein DETOXIFICATION 29
GRMZM2G414192 -1.52 qLNGYP1-3 叶绿素a-b结合蛋白Chlorophyll a-b binding protein
GRMZM2G171118 2.53 qLNGYP1-3 类环戊二烯C2-羟化酶Ent-cassadiene C2-hydroxylase-like
GRMZM2G046101 -3.978 qLNGYP1-4 葡聚糖内-1,3-beta-葡萄糖苷酶7 Glucan endo-1,3-beta-glucosidase 7
GRMZM2G055037 2.09 qLNGYP1-4 泛素蛋白配体/锌离子结合蛋白Ubiquitin-protein ligase/ zinc ion binding protein
GRMZM2G474119 1.78 qLNGYP4 -
GRMZM2G357371 -12.12 qLNGYP7-2 类严格甲素合成酶蛋白10 Protein STRICTOSIDINE SYNTHASE-LIKE 10
GRMZM2G057208 -6.09 qLNGYP7-2 细胞色素P450 Cytochrome P450
GRMZM2G129453 -3.77 qLNGYP7-2 δ(8)-脂肪酸去饱和酶2 Delta(8)-fatty-acid desaturase 2
GRMZM2G141679 -2.91 qLNGYP7-2 乙烯反应性转录因子RAP2-4 Ethylene-responsive transcription factor RAP2-4
GRMZM2G149295 -2.11 qLNGYP7-2 杯状蛋白,RmlC型Cupin, RmlC-type
GRMZM2G414813 -1.91 qLNGYP7-2 核碱基-抗坏血酸转运体6 Nucleobase-ascorbate transporter 6
GRMZM2G473001 -1.60 qLNGYP7-2 磷酸烯醇丙酮酸羧化酶4 Phosphoenolpyruvate carboxylase 4
GRMZM2G162396 -1.51 qLNGYP7-2 -
GRMZM2G074781 1.47 qLNGYP7-2 α-淀粉酶1 Alpha-amylase 1
GRMZM2G176721 2.08 qLNGYP7-2 主要协同转运蛋白超家族Major facilitator superfamily protein
GRMZM2G056875 2.20 qLNGYP7-2 富脯氨酸受体样蛋白激酶PERK7 Proline-rich receptor-like protein kinase PERK7
GRMZM2G479906 1.57 qLNGYP7-2 ABC转运体G家族成员53 ABC transporter G family member 53
GRMZM2G008665 9.97 qNNGYP7-2 qPFPN7-2 锌指SWIM结构域家族蛋白Zinc finger SWIM domain family protein
GRMZM2G116426 -1.80 qNNGYP7-3 qPFPN7-3 α/β-水解酶超家族蛋白Alpha/beta-Hydrolases superfamily protein
GRMZM2G414043 -2.91 qLNGYP7-4 -
GRMZM2G081857 -1.85 qLNGYP7-5 可能不活跃的受体激酶At5g10020 Probable inactive receptor kinase At5g10020
GRMZM2G366873 -12.20 qLNTC8-1 生长素酰胺合成酶12 Auxin amido synthetase12
GRMZM2G083016 -1.61 qLNTC8-1 Ⅱ型偏半胱天冬酶Metacaspase type Ⅱ
GRMZM2G034197 -11.51 qLNGYP8-1 叶绿体磷脂酶A1 PLIP1 Phospholipase A1 PLIP1, chloroplastic
GRMZM2G052844 -3.35 qLNGYP8-1 可能的聚半乳糖醛酸酶Probable polygalacturonase
GRMZM2G040642 -1.41 qLNGYP8-1 可能的蛋白磷酸酶2C7 Probable protein phosphatase 2C7
GRMZM2G025387 -1.39 qLNGYP8-1 钙依赖蛋白激酶Calcium-dependent protein kinase
GRMZM2G091358 2.89 qLNGYP8-1 推定DUF1221域含蛋白激酶家族蛋白
Putative DUF1221-domain containing protein kinase family protein
GRMZM2G094356 -3.15 qLNTC8-2 CASP样蛋白4U1 CASP-like protein 4U1
GRMZM2G179696 -1.23 qLNTC8-2 聚半乳糖醛酸酶Polygalacturonase
GRMZM2G094165 -1.06 qLNTC8-2 碳酸酐酶6 Carbonic anhydrase6
GRMZM2G432128 1.09 qLNTC8-2 细胞质异柠檬酸脱氢酶Cytosolic isocitrate dehydrogenase
GRMZM2G157334 1.66 qLNTC8-2 GTP结合核蛋白Ran-2 GTP-binding nuclear protein Ran-2
[1]
李俊茹, 姜长云. 中国粮食供需形势: 历史回顾、风险挑战与政策启示. 南京农业大学学报(社会科学版), 2023, 23(3): 168-179.
LI J R, JIANG C Y. China’s food supply and demand situation: historical review, risk challenges and policy implications. Journal of Nanjing Agricultural University (Social Sciences Edition), 2023, 23(3): 168-179. (in Chinese)
[2]
李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展. 遗传, 2021, 43(7): 629-640.
LI S, HUANG Y Z, LIU X Y, FU X D. Genetic improvement of nitrogen use efficiency in crops. Hereditas (Beijing), 2021, 43(7): 629-640. (in Chinese)
[3]
张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46(15): 3161-3171. doi: 10.3864/j.issn.0578-1752.2013.15.010.
ZHANG W F, MA L, HUANG G Q, WU L, CHEN X P, ZHANG F S. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Scientia Agricultura Sinica, 2013, 46(15): 3161-3171. doi: 10.3864/j.issn.0578-1752.2013.15.010. (in Chinese)
[4]
宁芳, 张元红, 温鹏飞, 王瑞, 王倩, 董朝阳, 贾广灿, 李军. 不同降水状况下旱地玉米生长与产量对施氮量的响应. 作物学报, 2019, 45(5): 777-791.

doi: 10.3724/SP.J.1006.2019.83055
NING F, ZHANG Y H, WEN P F, WANG R, WANG Q, DONG Z Y, JIA G C, LI J. Responses of maize growth and yield to nitrogen application in dryland under different precipitation conditions. Acta Agronomica Sinica, 2019, 45(5): 777-791. (in Chinese)

doi: 10.3724/SP.J.1006.2019.83055
[5]
冯洋, 陈海飞, 胡孝明, 周卫, 徐芳森, 蔡红梅. 我国南方主推水稻品种氮效率筛选及评价. 植物营养与肥料学报, 2014, 20(5): 1051-1062.
FENG Y, CHEN H F, HU X M, ZHOU W, XU F S, CAI H M. Nitrogen efficiency screening of rice cultivars popularized in South China. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1051-1062. (in Chinese)
[6]
MOLL R H, KAMPRATH E J, JACKSON W A. Analysis and interpretation of factors which contribute to efficiency of N utilization. Agronomy Journal, 1982, 74: 562-564.
[7]
赵化田, 王瑞芳, 许云峰, 安调过. 小麦苗期耐低氮基因型的筛选与评价. 中国生态农业学报, 2011, 19(5): 1199-1204.
ZHAO H T, WANG R F, XU Y F, AN D G. Screening and evaluating low nitrogen tolerant wheat genotype at seedling stage. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1199-1204. (in Chinese)
[8]
刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选. 中国农业科学, 2021, 54(7): 1397-1409. doi: 10.3864/j.issn.0578-1752.2021.07.007.
LIU Q Y, ZHOU L, TIAN J Y, CHENG S, TAO Y, XING Z P, LIU G D, WEI H Y, ZHANG H C. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe Japonica rice in the middle and lower reaches of Yangtze River. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409. doi: 10.3864/j.issn.0578-1752.2021.07.007. (in Chinese)
[9]
AGRAMA H A S, ZAKARIA A G, SAID F B, TUINSTRA M. Identification of quantitative trait loci for nitrogen use efficiency in maize. Molecular Breeding, 1999, 5(2): 187-195.
[10]
MANDOLINO C I, D'ANDREA K E, OLMOS S, OTEGUI M E, EYHÉRABIDE G. Maize nitrogen use efficiency: QTL mapping in a U.S. Dent × Argentine-Caribbean flint RILs population. Maydica, 2018, 63: 17.
[11]
LIU X, YUAN Y B, MARTINEZ C, BABU R, SUAREZ E A, ZHANG X C, NEIFF N, TRACHSEL S. Identification of QTL for early vigor and leaf senescence across two tropical maize doubled haploid populations under nitrogen deficient conditions. Euphytica, 2020, 216(3): 42.
[12]
NDLOVU N, SPILLANE C, MCKEOWN P C, CAIRNS J E, DAS B, GOWDA M. Genome-wide association studies of grain yield and quality traits under optimum and low-nitrogen stress in tropical maize (Zea mays L.). Theoretical and Applied Genetics, 2022, 135(12): 4351-4370.
[13]
HE K H, ZHANG Y K, REN W, CHEN P Y, LIU J C, MI G H, CHEN F J, PAN Q C. QTL mapping and transcriptome analysis identify candidate genes influencing water-nitrogen interaction in maize. The Crop Journal, 2023, 11(6): 1872-1883.
[14]
KIMUTAI C, NDLOVU N, CHAIKAM V, ERTIRO B T, DAS B, BEYENE Y, KIPLAGAT O, SPILLANE C, PRASANNA B M, GOWDA M. Discovery of genomic regions associated with grain yield and agronomic traits in Bi-parental populations of maize (Zea mays L.) under optimum and low nitrogen conditions. Frontiers in Genetics, 2023, 14: 1266402.
[15]
LIU X Y, HE K H, ALI F, LI D D, CAI H G, ZHANG H W, YUAN L X, LIU W X, MI G H, CHEN F J, PAN Q C. Genetic dissection of N use efficiency using maize inbred lines and test crosses. The Crop Journal, 2023, 11(4): 1242-1250.
[16]
WANG S S, CAO M, MA X, CHEN W K, ZHAO J, SUN C Q, TAN L B, LIU F. X Integrated RNA sequencing and QTL mapping to identify candidate genes from Oryza rufipogon associated with salt tolerance at the seedling stage. Frontiers in Plant Science, 2017, 8: 1427.
[17]
YANG J, SUN K, LI D X, LUO L X, LIU Y Z, HUANG M, YANG G L, LIU H, WANG H, CHEN Z Q, GUO T. Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice via high-density genetic mapping and RNA-Seq. BMC Genomics, 2019, 20(1): 355.

doi: 10.1186/s12864-019-5741-y pmid: 31072298
[18]
王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因. 作物学报, 2021, 47(12): 2407-2422.

doi: 10.3724/SP.J.1006.2021.04231
WANG R L, WANG L Y, LEI W, WU J Y, SHI H S, LI C Y, TANG Z L, LI J N, ZHOU Q Y, CUI C. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L.. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. (in Chinese)
[19]
杨媛, 刘亚苹, 王建华, 张红伟. 联合QTL定位和转录组分析揭示玉米开花期的遗传基础. 玉米科学, 2023, 31(1): 40-47.
YANG Y, LIU Y P, WANG J H, ZHANG H W. Combining QTL mapping and RNA sequencing analysis to dissect the genetic basis of flowering time in maize. Journal of Maize Sciences, 2023, 31(1): 40-47. (in Chinese)
[20]
ZHAO Z X, HE K H, FENG Z Q, LI Y N, CHANG L G, ZHANG X H, XU S T, LIU J C, XUE J Q. Evaluation of yield-based low nitrogen tolerance indices for screening maize (Zea mays L.) inbred lines. Agronomy, 2019, 9(5): 240.
[21]
BATES D, MÄCHLER M, BOLKER B, WALKER S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 2015, 67(1): 1-48.
[22]
CASSMAN K G, GINES G C, DIZON M A, SAMSON M I, ALCANTARA J M. Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen. Field Crops Research, 1996, 47(1): 1-12.
[23]
YANG H X, ZHANG Z R, ZHANG N, LI T, WANG J J, ZHANG Q, XUE J Q, ZHU W C, XU S T. QTL mapping for plant height and ear height using bi-parental immortalized heterozygous populations in maize. Frontiers in Plant Science, 2024, 15: 1371394.
[24]
MCCOUCH S, CHO Y G, YANO M, PAUL E, BLINSTRUB M, MORISHIMA H, KINOSHITA T. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14: 11-13.
[25]
LI T, XU S T, ZHAO J W, WANG Y P, ZHANG J, WEI X, QU J Z, YU R S, ZHANG X H, MA C, XUE J Q. Genome assembly of KA105, a new resource for maize molecular breeding and genomic research. The Crop Journal, 2023, 11(6): 1793-1804.
[26]
FENG J W, HAN L Q, LIU H, XIE W Z, LIU H, LI L, CHEN L L. MaizeNetome: A multi-omics network database for functional genomics in maize. Molecular Plant, 2023, 16(8): 1229-1231.
[27]
HAN L Q, ZHONG W S, QIAN J, JIN M L, TIAN P, ZHU W C, ZHANG H W, SUN Y H, FENG J W, LIU X G, CHEN G, FARID B, LI R N, XIONG Z M, TIAN Z H, LI J, LUO Z, DU D X, CHEN S J, JIN Q X, LI J X, LI Z, LIANG Y, JIN X M, PENG Y, ZHENG C, YE X N, YIN Y J, CHEN H, LI W F, CHEN L L, LI Q, YAN J B, YANG F, LI L. A multi-omics integrative network map of maize. Nature Genetics, 2023, 55(1): 144-153.

doi: 10.1038/s41588-022-01262-1 pmid: 36581701
[28]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods, 2001, 25(4): 402-408.
[29]
LI P C, CHEN F J, CAI H G, LIU J C, PAN Q C, LIU Z G, GU R L, MI G H, ZHANG F S, YUAN L X. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. Journal of Experimental Botany, 2015, 66(11): 3175-3188.

doi: 10.1093/jxb/erv127 pmid: 25873660
[30]
LUO B W, TANG H T, LIU H L, SU S Z, ZHANG S Z, WU L, LIU D, GAO S B. Mining for low-nitrogen tolerance genes by integrating meta-analysis and large-scale gene expression data from maize. Euphytica, 2015, 206(1): 117-131.
[31]
ERTIRO B T, LABUSCHAGNE M, OLSEN M, DAS B, PRASANNA B M, GOWDA M. Genetic dissection of nitrogen use efficiency in tropical maize through genome-wide association and genomic prediction. Frontiers in Plant Science, 2020, 11: 474.

doi: 10.3389/fpls.2020.00474 pmid: 32411159
[32]
BHADMUS O A, BADU-APRAKU B, ADEYEMO O A, AGRE P A, QUEEN O N, OGUNKANMI A L. Genome-wide association analysis reveals genetic architecture and candidate genes associated with grain yield and other traits under low soil nitrogen in early-maturing white quality protein maize inbred lines. Genes, 2022, 13(5): 826.
[33]
XING J P, ZHANG J, WANG Y B, WEI X, YIN Z C, ZHANG Y Q, PU A Q, DONG Z Y, LONG Y, WAN X Y. Mining genic resources regulating nitrogen-use efficiency based on integrative biological analyses and their breeding applications in maize and other crops. The Plant Journal, 2024, 117(4): 1148-1164.
[34]
TEGEDER M, MASCLAUX-DAUBRESSE C. Source and sink mechanisms of nitrogen transport and use. The New Phytologist, 2018, 217(1): 35-53.
[35]
ZHANG Z Z, ZHONG Z C, XIONG Y. Sailing in complex nutrient signaling networks: Where I am, where to go, and how to go?. Molecular Plant, 2023, 16(10): 1635-1660.
[36]
LI S, TIAN Y H, WU K, YE Y F, YU J P, ZHANG J Q, LIU Q, HU M Y, LI H, TONG Y P, HARBERD N P, FU X D. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018, 560(7720): 595-600.
[37]
FENG S G, YUE R Q, TAO S, YANG Y J, ZHANG L, XU M F, WANG H Z, SHEN C J. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. Journal of Integrative Plant Biology, 2015, 57(9): 783-795.
[38]
LI R L, WANG Y L, LI D D, GUO Y H, ZHOU Z P, ZHANG M, ZHANG Y F, WÜRSCHUM T, LIU W X. Meta-quantitative trait loci analysis and candidate gene mining for drought tolerance-associated traits in maize (Zea mays L.). International Journal of Molecular Sciences, 2024, 25(8): 4295.
[39]
LIU Y, LI H N, LIU J, WANG Y B, JIANG C L, ZHOU Z Q, ZHUO L, LI W Q, FERNIE A R, JACKSON D, YAN J B, LUO Y. The additive function of YIGE2 and YIGE1 in regulating maize ear length. The Plant Journal, 2024, 119(3): 1327-1335.
[40]
LI Z L, CHEN Q, GAO F, MENG Q M, LI M Y, ZHANG Y, ZHANG P, ZHANG M, LIU Z G. Controlled-release urea combined with fulvic acid enhanced carbon/nitrogen metabolic processes and maize growth. Journal of the Science of Food and Agriculture, 2022, 102(9): 3644-3654.
[41]
LIANG Y Y, WANG J B, WANG Z P, HU D S, JIANG Y, HAN Y L, WANG Y. Fulvic acid alleviates the stress of low nitrogen on maize by promoting root development and nitrogen metabolism. Physiologia Plantarum, 2024, 176(2): e14249.
[42]
MATTHES M S, BEST N B, ROBIL J M, MCSTEEN P. Enhancement of developmental defects in the boron-deficient maize mutant tassel-less1 by reduced auxin levels. Journal of Plant Nutrition and Soil Science, 2023. doi:10.1002/jpln.202300155.
[43]
PENG H, GAO J, SONG X. Transcriptome analyses reveal photosynthesis-related genes involved in chloroplast development of the EMS-induced maize mutant. Plant Biotechnology Reports, 2022, 16(5): 565-578.
[44]
MU X H, CHEN Q W, CHEN F J, YUAN L X, MI G H. A RNA-seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf. International Journal of Molecular Sciences, 2017, 18(12): 2624.
[45]
LI H, HE X W, GAO Y F, LIU W J, SONG J, ZHANG J J. Integrative analysis of transcriptome, proteome, and phosphoproteome reveals potential roles of photosynthesis antenna proteins in response to brassinosteroids signaling in maize. Plants, 2023, 12(6): 1290.
[46]
LIU J, HUANG J, GUO H, LAN L, WANG H Z, XU Y C, YANG X H, LI W Q, TONG H, XIAO Y J, PAN Q C, QIAO F, RAIHAN M S, LIU H J, ZHANG X H, YANG N, WANG X Q, DENG M, JIN M L, ZHAO L J, LUO X, ZHOU Y, LI X, ZHAN W, LIU N N, WANG H, CHEN G S, LI Q, YAN J B. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiology, 2017, 175(2): 774-785.

doi: 10.1104/pp.17.00708 pmid: 28811335
[47]
ABE Y, MIEDA K, ANDO T, KONO I, YANO M, KITANO H, IWASAKI Y. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. Genes & Genetic Systems, 2010, 85(5): 327-339.
[48]
MA Y T, YANG W Y, ZHANG H W, WANG P X, LIU Q, DU W L. Identification of allele-specific expression genes associated with maize heterosis. Agronomy, 2023, 13(11): 2722.
[49]
WEI K, PAN S. Maize protein phosphatase gene family: Identification and molecular characterization. BMC Genomics, 2014, 15(1): 773.
[50]
WU H, ZHU L, CAI G, LV C, YANG H, REN X, HU B, ZHOU X, JIANG T, XIANG Y, WEI R, LI L, LIU H, MUHAMMAD I, XIA C, LAN H. Genome-wide identification and characterization of the PP2C family from Zea mays and its role in long-distance signaling. Plants, 2023, 12(17): 3513.
[1] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[2] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[3] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[4] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[5] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[6] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[7] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[8] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[9] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[10] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[11] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[12] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[13] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[14] CAO WenZhuo, YU ZhenWen, ZHANG YongLi, ZHANG Zhen, SHI Yu, WANG YongJun. The Difference of Grain Starch Accumulation Dynamics and Yield Formation of Spring Maize Under Different Nitrogen Application Rates in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(22): 4431-4443.
[15] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!