Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (17): 3458-3468.doi: 10.3864/j.issn.0578-1752.2024.17.011

• HORTICULTURE • Previous Articles     Next Articles

Occurrence Rules of Citrus Fruit Shape and Peel Cracks

WANG XianDa1(), ZHANG LiJie1, WU XingMing2, CHENG DeMing3, LI Jian1()   

  1. 1 Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013
    2 Agricultural and Rural Bureau of Yong’an City, Yong’an 366000, Fujian
    3 Fujian Academy of Mechanical Sciences, Fuzhou 350005
  • Received:2024-01-26 Accepted:2024-05-08 Online:2024-09-01 Published:2024-09-04
  • Contact: LI Jian

Abstract:

【Objective】The occurrence rules of cracks in citrus fruits with different fruit shapes were fully investigated to provide a new perspective for understanding the swelling and cracking of citrus fruits caused by field water imbalance before harvest.【Method】Based on the hierarchical characteristics of citrus peel structure, the fruit shell was considered a closed pressure vessel. By using the stress analysis method for the pressure vessel wall, the distribution of shell swelling pressure and the occurrence rules of peel cracks in different types of fruit shapes were evaluated.【Result】The shape of fruit shells affected the distribution of swelling pressure and the occurrence rules of cracks. (1) While the fruit shape index FSI in oval fruit was <1, the stress at the top of the fruit shell (i.e., σTop) was>equatorial meridional stress (i.e., σΦ-Mid) and>equatorial circumferential stress (i.e., σθ-Mid), which explained why the cracks in the oval-shaped fruit were often observed at the top of the fruit, e.g., the case for the early maturing cultivar Citrus reticulata Satsuma. If the fruit shape index FSI was >1, the stress at the top of the fruit shell (i.e., σTop) was<equatorial meridional stress (i.e., σΦ-Mid) and<equatorial circumferential stress (i.e., σθ-Mid), which could be frequently found in the elongated oval-shaped fruit with many longitudinal cracks like in the cultivar C. sinensis Navelina Navel. As for the fruit shape index FSI was =1, the cracks in the nearly spherical fruit shell were often located at the thinnest part of the fruit shell, and the ratio of stress at the top of the fruit to equatorial stress was inversely proportional to the thickness of the corresponding part of the fruit shell (i.e., σTopMid=dMid/dTop). For example, the cultivar Spring-sweet Tangelo often had circular transverse cracks at the thinnest part of the fruit waist, while the cultivar C. sinensis Newhall Navel cracks started at the thinnest part of the navel top. (2) The concave part of the nearly heart-shaped pomelo fruit was prone to forming a stress concentration condition for swelling, showing a great overlap with the point of maximum swelling pressure at the top of the sand sac, which led to a regular cracking at the top of the fruit as observed in C. grandis Duweiwendan. (3) Over the period with a dramatic increase of water potential in the field, the volume swelling ratio and fruit cracking rate in high-sugar fruits were higher than those in low-sugar fruits.【Conclusion】The cracks in citrus peel started at the point where the shell had the highest swelling pressure, while the direction of crack extension was perpendicular to the direction of maximum stress. Moreover, the more severe the non-sphericity and the more significant the difference in fruit shell thickness, the less the swelling pressure distribution and the higher the cracking rate of the fruit. A higher cracking rate of fruits with high sugar content than that of fruits with low sugar content was probably attributed to the unexpected increase in water potential.

Key words: citrus, fruit shape, shell swelling pressure, fruit cracking, crack pattern

Table 1

Correlation between quality indexes of various citrus varieties"

品种
Variety
果实品质指标Fruit quality index 相关系数r 最佳回归方程
Optimal regression equation
因子
Factor
平均值
Mean
变异系数
CV (%)
SFW FSI TSS rP
‘甜春桔柚’
Spring-sweet Tangelo
单果质量SFW (g)
果形指数FSI
可溶性固形物TSS (%)
194.3
0.851
11.24
26.75
4.94
9.46
1.000
-0.117
-0.449
-0.117
1.000
0.043
-0.449
0.043
1.000
n=206
r0.05=0.137
r0.01=0.179
TSS%=12.14-2.243E-5×SFW2
F=55.7、P=2.4E-12
‘纽荷尔’脐橙
C. sinensis Newhall navel orange
单果质量SFW (g)
果形指数FSI
可溶性固形物TSS (%)
215.8
1.004
12.86
27.00
5.25
12.55
1.000
0.016
-0.312
0.016
1.000
-0.040
-0.312
-0.040
1.000
n=545
r0.05=0.084
r0.01=0.110
TSS%=13.81-1.892E-5×SFW2
F=61.7、P=2.2E-14
‘奈维林娜’脐橙
C. sinensis Navelina navel orange
单果质量SFW (g)
果形指数FSI
可溶性固形物TSS (%)
331.2
1.129
11.38
18.59
6.04
7.02
1.000
0.099
-0.154
0.099
1.000
-0.180
-0.154
-0.180
1.000
n=360
r0.05=0.103
r0.01=0.136
TSS%=13.22-0.1018×SFW1/2
F=17.8、P=3.1E-5
‘卡拉卡拉’脐橙
C. sinensis CaraCara navel orange
单果质量SFW (g)
果形指数FSI
可溶性固形物TSS (%)
190.6
0.958
16.33
34.22
4.44
16.46
1.000
-0.051
-0.363
-0.051
1.000
-0.038
-0.363
-0.038
1.000
n=210
r0.05=0.135
r0.01=0.177
TSS%=18.07-4.289E-5×SFW2
F=47.8、P=5.4E-11
柳橙
C. sinensis Liucheng
单果质量SFW (g)
果形指数FSI
可溶性固形物TSS (%)
109.7
0.980
13.90
24.48
6.96
9.28
1.000
-0.023
-0.269
-0.023
1.000
0.128
-0.269
0.128
1.000
n=214
r0.05=0.134
r0.01=0.176
TSS%=14.69-6.184E-5×SFW2
F=19.9、P=1.3E-5
特早熟温州蜜柑‘稻叶’
C.reticulata Satsuma Inaba
单果质量SFW (g)
果形指数FSI
固形物TSS (%)
89.07
0.651
11.11
19.52
9.75
8.60
1.000
-0.047
0.387
-0.047
1.000
-0.105
-0.387
-0.105
1.000
n=192
r0.05=0.142
r0.01=0.186
TSS%=12.05-1.135E-4×SFW2
F=33.93、P=2.4-8
特早熟温州蜜柑‘市文’
C.reticulata Satsuma Ichifumi
单果质量SFW (g)
果形指数FSI
可溶性固形物TSS (%)
101.9
0.630
10.10
12.56
5.81
7.90
1.000
-0.095
-0.315
-0.095
1.000
-0.059
-0.315
-0.059
1.000
n=168
r0.05=0.151
r0.01=0.198
TSS%=11.08-9.319E-5×SFW2
F=17.9、P=3.8E-5
早熟温州蜜柑‘兴津’
C.reticulata Satsuma
Okitsu
单果质量SFW (g)
果形指数FSI
可溶性固形物TSS (%)
113.9
0.762
10.90
23.39
7.21
13.27
1.000
-0.026
-0.306
-0.026
1.000
-0.063
-0.306
-0.063
1.000
n=760
r0.05=0.071
r0.01=0.093
TSS%=15.25-0.3959×SFW1/2
F=83.16、P<1.0E-16

Fig. 1

Cracking of oval shaped fruits A: C.reticulata Satsuma fruit with transverse cracking at the top; B. C. sinensis Navelina Navel fruit with longitudinal split waist"

Fig. 2

Symmetric cracks between the peduncle and the top of Duweiwendan"

Fig. 3

Crack was perpendicular to the max"

Table 2

Investigation and analysis on cracking of Spring-sweet Tangelo (Youyang, Xianyou County, 2019)"

裂果
Crack fruit
纵裂/横裂
LC/TC
果实数
Fruit quantity
单果质量
SFW (g)
t0.01 F P
Normal正常 - 477 188.1 A 53.51 1.3E-12
Crack裂果 - 373 136.8 B - -
横裂TC 278 146.5 A 6.78 0.0096
纵裂LC 95 108.4 B - -

Fig. 4

Circumferential transverse cracking of Spring-sweet Tangelo"

Table 3

Analysis of differences in peel thickness of different parts of Tangelo and Navel Orange"

品种
Variety
因子
Factor
成对比较分析Paired comparative analysis 相关系数r
平均值 Mean 标准差 Std t P 单果重 SFW P
‘甜春桔柚’
Spring-sweet Tangelo
果基部皮厚dBase (mm) 6.07 1.06 - - 0.694 <0.0001
果腰部皮厚dMid (mm) 3.63 0.62 - - 0.556 <0.0001
果顶部皮厚dTop (mm) 4.98 0.92 - - 0.683 <0.0001
dBase-dMid 2.44 0.78 26.0 <0.0001 0.483 <0.0001
dTop-dMid 1.35 0.60 18.7 <0.0001 0.482 <0.0001
dTop/dMid 1.38 0.17 - - 0.257 0.0002
‘纽荷尔’脐橙
C. sinensis Newhall Navel
果基部皮厚dBase (mm) 5.70 1.50 - - 0.517 <0.0001
果腰部皮厚dMid (mm) 4.37 1.06 - - 0.498 <0.0001
脐顶部皮厚dTop (mm) 2.18 0.90 - - 0.051 0.3963
dBase-dMid 1.33 1.30 12.3 <0.0001 0.188 0.0013
dMid-dTop 2.22 1.35 19.5 <0.0001 0.344 <0.0001
dMid/dTop 2.43 1.40 - - 0.147 0.0138
[1]
COHEN A, GOELL A. Fruit growth and dry matter accumulation in grapefruit during periods of water withholding and after reirrigation. Functional Plant Biology, 1988, 15(5): 633.
[2]
LEZ-ALTOZANO P G, CASTEL J R. Regulated deficit irrigation in `Clementina de Nules’ citrus trees. I. Yield and fruit quality effects. The Journal of Horticultural Science and Biotechnology, 1999, 74(6): 706-713.
[3]
王贤达, 范国成. 文旦柚品种群果实裂果研究概况. 东南园艺, 2019, 7(6): 60-65.
WANG X D, FAN G C. Review on research of fruit cracking of Wendan pomelo cultivar groups. Southeast Horticulture, 2019, 7(6): 60-65. (in Chinese)
[4]
GARCı́A-LUIS A, DUARTE A M M, KANDUSER M, GUARDIOLA J L. The anatomy of the fruit in relation to the propensity of citrus species to split. Scientia Horticulturae, 2001, 87(1/2): 33-52.
[5]
王贤达, 范国成, 刘坤泳, 李健. 辨形疏果和水分调节对‘度尾文旦柚’果实裂顶的防控效果. 福建农林大学学报(自然科学版), 2021, 50(2): 184-190.
WANG X D, FAN G C, LIU K Y, LI J. Effect of shape-based fruit thinning and water regulation on the prevention and control of fruit cracking of ‘Duweiwendan’ pomelo. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(2): 184-190. (in Chinese)
[6]
王贤达, 范国成, 李健. 文旦柚果顶裂宽指数优化算法及受果园因素影响评价. 中国南方果树, 2020, 49(3): 12-16, 20.
WANG X D, FAN G C, LI J. Optimization algorithm of fruit top crack width index of Wendan pomelo and its evaluation influenced by orchard factors. South China Fruits, 2020, 49(3): 12-16, 20. (in Chinese)
[7]
王贤达, 范国成, 李健. 度尾文旦柚辨形疏果最佳FSI阈值研究. 福建农业学报, 2020, 35(3): 280-285.
WANG X D, FAN G C, LI J. Threshold fruit shape index for optimal pomelo thinning on Duweiwendan trees. Fujian Journal of Agricultural Sciences, 2020, 35(3): 280-285. (in Chinese)
[8]
王贤达, 范国成, 李健. 度尾文旦柚叶片矿质元素含量的适宜值. 中国农业科学, 2020, 53(17): 3576-3586. doi: 10.3864/j.issn.0578-1752.2020.17.014.
WANG X D, FAN G C, LI J. Optimum content of mineral elements in the leaves of Duweiwendan pomelo (Citrus grandis (L.) osbeck. cv. Duweiwendan). Scientia Agricultura Sinica, 2020, 53(17): 3576-3586. doi: 10.3864/j.issn.0578-1752.2020.17.014. (in Chinese)
[9]
王贤达, 范国成, 李健. 度尾文旦柚鲜果分级与果顶开裂评价规范研究. 中国南方果树, 2018, 47(2): 27-31, 35.
WANG X D, FAN G C, LI J. Study on evaluation criteria of fresh fruit grading and top cracking of Duwei Wendan pomelo. South China Fruits, 2018, 47(2): 27-31, 35. (in Chinese)
[10]
戴哲保, 陈潜, 王光裕, 陈青英. “楚门文旦”裂果原因及其防治研究初报. 浙江柑桔, 1987(3): 15-18.
DAI Z B, CHEN Q, WANG G Y, CHEN Q Y. Preliminary report on the causes and prevention of fruit cracking in Chumen Wendan. Zhejiang Ganju, 1987(3): 15-18. (in Chinese)
[11]
彭廷海, 罗明, 漆巨容. 四川部份良种名柚品种裂果原因及对策初探. 四川果树, 1994, 22(3): 12-13.
PENG T H, LUO M, QI J R. Preliminary study on the causes and countermeasures of fruit cracking in some excellent and famous pomelo varieties in Sichuan province. Southwest Horticulture, 1994, 22(3): 12-13. (in Chinese)
[12]
温明霞, 吴韶辉, 王鹏, 石学根. 温州蜜柑裂果的形态结构特征研究. 浙江农业科学, 2016, 57(7): 1096-1098.
WEN M X, WU S H, WANG P, SHI X G. Study on morphological and structural characteristics of cracked fruit of Satsuma Citrus. Journal of Zhejiang Agricultural Sciences, 2016, 57(7): 1096-1098. (in Chinese)
[13]
朱博, 汪小华, 李文富, 周国振. 南丰蜜桔裂果问题的研究. 现代园艺, 2008(11): 6-8.
ZHU B, WANG X H, LI W F, ZHOU G Z. Study on fruit cracking of Nanfeng tangerine. Contemporary Horticulture, 2008(11): 6-8. (in Chinese)
[14]
LI J, CHEN J Z. Citrus fruit-cracking: Causes and occurrence. Horticultural Plant Journal, 2017, 3(6): 255-260.
[15]
陈力耕. 脐橙裂果原因新探. 南方园艺, 1995(3): 1-2.
CHEN L G. A new exploration of the causes of navel orange fruit cracking. Southern Horticulture, 1995(3): 1-2. (in Chinese)
[16]
江碧英, 何永强. 脐橙裂果研究概述. 四川果树, 1994, 22(4): 2.
JIANG B Y, HE Y Q. Overview of research on navel orange fruit cracking. Southwest Horticulture, 1994, 22(4): 2. (in Chinese)
[17]
王法格, 吴振旺, 陈其寿. 脐橙裂果发生规律及控制措施. 浙江柑桔, 2000(2): 23-24.
WANG F, WU Z W, CHEN Q S. The occurrence pattern and control measures of navel orange fruit cracking. Zhejiang Ganju, 2000(2): 23-24. (in Chinese)
[18]
周继芬, 张伟永, 王秀琪, 刘新强, 赵小婧. 特殊气候下脐橙裂果分析. 四川农业科技, 2014(3): 27.
ZHOU J F, ZHANG W Y, WANG X Q, LIU X Q, ZHAO X J. Analysis of navel orange cracking under special climate conditions. Sichuan Agricultural Science and Technology, 2014(3): 27. (in Chinese)
[19]
陈杰忠. 柑桔采前裂果研究概述. 中国南方果树, 1993, 22(2): 30-33.
CHEN J Z. Overview of research on preharvest cracking of citrus fruits. South China Fruits, 1993, 22(2): 30-33. (in Chinese)
[20]
高飞飞, 黄辉白. 红江橙裂果原因的探讨. 华南农业大学学报, 1994, 15(1): 34-39.
GAO F F, HUANG H B. An investigation on the cause of fruit-crack in ‘Hongjiang’ orange. Journal of South China Agricultural University, 1994, 15(1): 34-39. (in Chinese)
[21]
TREEBY M T, STOREY R, BEVINGTON K B. Rootstock, seasonal, and fruit size influences on the incidence and severity of albedo breakdown in Bellamy navel oranges. Australian Journal of Experimental Agriculture, 1995, 35(1): 103.
[22]
邹志远. 武汉地区温州蜜柑裂果的调查分析. 湖北农业科学, 1985(6): 20-22.
ZOU Z Y. Investigation and analysis of cracked fruit of Wenzhou honey citrus in Wuhan area. Hubei Agricultural Sciences, 1985(6): 20-22. (in Chinese)
[23]
李景辰, 冯铗中, 沈行道, 李学潜. 压力容器基础知识. 北京: 劳动人事出版社, 1986.
LI J C, FENG J Z, SHEN X D, LI X Q. Basic Knowledge of Pressure Vessels. Beijing: Labor and Personnel Publishing House, 1986. (in Chinese)
[24]
陈复明. 曲率半径在压力容器设计中的应用. 天津轻工业学院学报, 1990(2): 80-84.
CHEN F M. The application of curvature radius in pressure vessel design. Journal of Tianjin Institute of Light Industry, 1990(2): 80-84. (in Chinese)
[25]
刘丽. 心形线与抛物线双曲拱坝的应力对比分析. 水利规划与设计, 2016(2): 59-62.
LIU L. Comparative analysis of stress between heart-shaped line and parabolic hyperbolic arch dam. Water Resources Planning and Design, 2016(2): 59-62. (in Chinese)
[26]
黄泽, 郑津洋, 刘鹏飞, 缪存坚, 施建峰. 内压圆筒厚度计算公式分析讨论. 压力容器, 2012, 29(8): 18-21, 59.
HUANG Z, ZHENG J Y, LIU P F, MIAO C J, SHI J F. Discussion on thickness formula of cylindrical shell under internal pressure. Pressure Vessel Technology, 2012, 29(8): 18-21, 59. (in Chinese)
[27]
陈苑虹, 李三玉, 董继新. 玉环柚果实特性与裂果的关系. 浙江大学学报(农业与生命科学版), 1999, 25(4): 414-416.
CHEN Y H, LI S Y, DONG J X. The relationship between the characteristics of “Yuhuan” pomelo fruit and fruit cracking. Journal of Zhejiang University (Agriculture and Life Sciences), 1999, 25(4): 414-416. (in Chinese)
[28]
束怀瑞. 果树栽培生理学. 北京: 农业出版社, 1993.
SHU H R. Fruit Tree Cultivation Physiology. Beijing: China Agriculture Press, 1993. (in Chinese)
[29]
熊自立, 王法格, 张淑东, 饶立兵. 立柱式水培樱桃番茄夏季裂果原因及防治. 蔬菜, 2002(3): 24-25.
XIONG Z L, WANG F G, ZHANG S D, RAO L B. Causes and control of fruit cracking of cherry tomato in column hydroponics in summer. Vegetables, 2002(3): 24-25. (in Chinese)
[30]
滕林. 番茄果实品质形成特征及其与环境关系的模拟研究[D]. 杨凌: 西北农林科技大学, 2010.
TENG L. Simulation study on the formation characteristics of tomato fruit quality and its relationship with environment[D]. Yangling: Northwest A & F University, 2010. (in Chinese)
[31]
黄日升, 朱东煌, 林锦星, 沈虹, 李健. 琯溪蜜柚果实分级标准研究. 中国南方果树, 2015, 44(3): 28-31, 34.
HUANG R S, ZHU D H, LIN J X, SHEN H, LI J. Study on grading standard of Guanxi honey pomelo fruit. South China Fruits, 2015, 44(3): 28-31, 34. (in Chinese)
[32]
孙双双, 杜晓云, 王欢, 王玉霞, 张序, 李延菊. 甜樱桃裂果与果实主要性状的相关性研究. 中国果树, 2023(6): 26-32.
SUN S S, DU X Y, WANG H, WANG Y X, ZHANG X, LI Y J. Analysis of fruit characters and cracking ability of sweet cherry. China Fruits, 2023(6): 26-32. (in Chinese)
[33]
李泓利, 刘港帅, 田慧琴, 傅达奇. 果实开裂研究进展. 生物工程学报, 2021, 37(8): 2737-2752.
LI H L, LIU G S, TIAN H Q, FU D Q. Fruit cracking: A review. Chinese Journal of Biotechnology, 2021, 37(8): 2737-2752. (in Chinese)
[34]
李会佳. 番茄裂果性状的遗传分析及QTL定位[D]. 哈尔滨: 东北农业大学, 2016.
LI H J. Genetic analysis and QTL mapping of fruit cracking traits in tomato[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese)
[35]
马晓丽, 向苹苇, 袁项成, 宗洪霞, 胡万芬, 刘雪峰. 李果实性状动态变化与裂果的关系. 分子植物育种, 2022, 20(21): 7229-7235.
MA X L, XIANG P W, YUAN X C, ZONG H X, HU W F, LIU X F. Relationship between dynamic changes of fruit characters and fruit cracking in Prunus salicina Lindl. Molecular Plant Breeding, 2022, 20(21): 7229-7235. (in Chinese)
[1] LI ChuXin, SONG ChenHu, ZHOU JinHuan, LI JiaXin, WANG XinLiang, TIAN XuBin, SONG Zhen. Research on Prevention and Control Technology of Citrus Yellow Vein Clearing Virus Based on VIGS [J]. Scientia Agricultura Sinica, 2024, 57(22): 4473-4482.
[2] WANG LuLu, ZHANG MingWei, YE JiaMin, ZHANG RuiFen, DENG Mei. Effects of Soluble and Insoluble Dietary Fiber from Shatianyu Pulp on Gut Microbiota [J]. Scientia Agricultura Sinica, 2024, 57(20): 4119-4129.
[3] CAO Peng, ZHOU JinHuan, WANG XinLiang, LI ChuXin, LI JiaXIN, JIANG Pei, LIU JinXiang, SONG Zhen. Optimization and Application of Rapid Evaluation System for Citrus Huanglongbing Resistance Mediated by Agrobacterium rhizogenes [J]. Scientia Agricultura Sinica, 2024, 57(16): 3182-3191.
[4] YE JiaMin, ZHANG MingWei, LU Qi, ZHANG RuiFen, DENG Mei. Effects of Semi-Solid Fermentation with Lactobacillus on the Bitterness and Active Components of Shatianyu (Citrus grandis L. Osbeck) Fruit Powder [J]. Scientia Agricultura Sinica, 2024, 57(13): 2662-2673.
[5] WANG ZhaoHao, GUO XingRu, ZHANG LeHuan, HE YongRui, CHEN ShanChun, YAO LiXiao. Expression Pattern of csi-miR399 in Response to Xanthomonas citri subsp. citri Infection and Its Disease Resistance Analysis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1484-1493.
[6] YAN PeiHan, LUO JianMing, HAO ChenXing, SUN ZiQing, YE RongChun, LI Yi, LIU Lian, SHENG Ling, MA XianFeng, DENG ZiNiu. Identification of the Transcription Factor WRKY75 of CmPR4A in Citron C-05 and Its Function Analysis in Resistance to Citrus Canker Disease [J]. Scientia Agricultura Sinica, 2023, 56(21): 4304-4317.
[7] LU YanQing, LIN YanJin, WANG XianDa, LU XinKun. A Transcriptome Analysis Identifies Candidate Genes Related to Fruit Cracking in Pomelo Fruits [J]. Scientia Agricultura Sinica, 2023, 56(20): 4087-4101.
[8] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[9] YANG ShengNan, CHENG Li, TAN YueXia, ZHU YanSong, JIANG Dong. Genome Wide Association Study for Resistance to Citrus Brown Spot Disease [J]. Scientia Agricultura Sinica, 2023, 56(18): 3642-3654.
[10] CAO Peng, XU JianJian, LI ChuXin, WANG XinLiang, WANG ChunQing, SONG ChenHu, SONG Zhen. Real-Time Quantitative PCR Detection of Citrus Yellow Mosaic Virus and Its Spatial and Temporal Distribution in Host Plants [J]. Scientia Agricultura Sinica, 2023, 56(18): 3574-3584.
[11] BIN Yu, ZHANG Qi, WANG ChunQing, ZHAO XiaoChun, SONG Zhen, ZHOU ChangYong. Screening of the Host Factors Interacting with CP of Citrus Yellow Vein Clearing Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2023, 56(10): 1881-1892.
[12] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[13] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[14] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[15] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!