Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (24): 5032-5039.

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Anti-Fungal Transgenic Rice on the Target Fungal Diseases and the Non-Target Bacterial Diseases and Insect Pests in Paddy Fields

 LI  Wei, GUO  Jian-Fu, YUAN  Hong-Xu, LI  Yue-Ren, LIU  Yue-Lian, HUANG  Yong-Xiang, JIANG  Shi-He   

  1. 1.Agricultural College, Guangdong Ocean University, Zhanjiang 524088, Guangdong
    2.Life Science and Technology School, Zhanjiang Normal University, Zhanjiang 524048, Guangdong
    3.Central Laboratory, Fujian Academy of Agricultural       Sciences, Fuzhou 350003
  • Received:2012-08-16 Online:2012-12-15 Published:2012-11-13

Abstract: 【Objective】The study aimed at the effects of transgenic rice with four anti-fungal genes on the target fungal diseases and the non-target bacterial diseases and insect pests in paddy fields. 【Method】 Two transgenic rice lines, E122-1 and E127-1, which were overexpression of rice acidic chitinase gene (RAC22) and rice basic chitinase gene (RCH10) and transformed with alfalfa β-1,3- glucanase gene (β-Glu) and barley ribosome inactivating protein gene (B-RIP), were tested for their effects on the target fungal diseases (rice blast, rice false smut and rice brown spot) and the non-target bacterial diseases (rice bacterial blight and rice bacterial leaf streak and insect pests (rice yellow stem borer and rice leaf roller) by means of innoculation in greenhouse and investigation in paddy fields, compared with their untransformed counterpart E32. 【Result】Both E122-1 and E127-1 showed broad spectrum of resistance against rice blast isolates and were significantly lower in the percentages of infected plants and the disease index resulted from rice false smut or rice brown spot, but had no significant difference in the percentages of susceptible plants and the disease index resulted from rice bacterial blight or rice bacterial leaf streak, the percentages of “dead heart” plants resulted from rice yellow stem borer and the percentages of leaf-rolled plants resulted from rice leaf roller in comparison with the counterpart E32. On the plants with resistance to rice bacterial blight, both E122-1 and E127-1 had significant higher number plants with no infected symptom and had significant lower number plants with the 3rd scale infected symptom than that of the counterpart E32. 【Conclusion】 Both E122-1 and E127-1 exhibited a high resistance to rice blast, rice false smut and rice brown spot, and did not cause obvious population increase of rice bacterial blight, rice bacterial leaf streak, rice yellow stem borer and rice leaf roller as compared to their counterpart during growing period in paddy fields.

Key words: transgenic rice , anti-fungal gene , non-target organism , disease , insect pest

[1]Kim J K, Jang I C, Wu R, Zuo W N, Boston R S, Lee Y H, Ahn I P, Nahm B H. Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Research, 2003, 12: 475-484.

[2]Zhu H C, Xu X P, Xiao G Y, Yuan L P, Li B L. Enhancing disease resistances of super hybrid rice with four antifungal genes. Science in China Series C, 2007, 50: 31-39.

[3]Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K. Combined expression of chitinase and beta-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Science, 2008, 175: 283-290.

[4]Ye G Y, Yao H W, Shu Q Y, Cheng X, Hu C, Xia Y W, Gao M W, Altosaar I. High levels of stable resistance in transgenic rice with a cry1Ab gene from Bacillus thuringiensis Berliner to rice leaffolder, Cnaphalocrocis medinalis (Guene′e) under field conditions.Crop Protection, 2003, 22: 171-178.

[5]Craig W, Tepfer M, Degrassi G, Ripandelli D. An overview of general features of risk assessments of genetically modified crops. Euphytica, 2008, 164: 853-880.

[6]卢宝荣. 我国转基因水稻的环境生物安全评价及其关键问题分析. 农业生物技术学报, 2008, 16(4): 547-554.

Lu B R. Potential commercialization of genetically modified rice in China: Key questions for environmental biosafety assessments. Journal of Agricultural Biotechnology, 2008, 16(4): 547-554. (in Chinese)

[7]Romeis J, Meissle M. Non-target risk assessment of Bt crops-cry protein uptake by aphids. Journal of Applied Entomology, 2011, 135: 1-6.

[8]Bernal C C, Aguda R M, Cohen M B. Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cyrtorhinus lividipennis. Entomologia Experimentalis et Applicata, 2002,102(1): 21-28.

[9]陈  茂, 叶恭银, 姚洪渭, 胡  萃, 舒庆尧. 抗虫转基因水稻对非靶标害虫褐飞虱取食与产卵行为影响的评价. 中国农业科学, 2004, 37(2): 222-226.

Chen M, Ye G Y, Yao H W, Hu C, Shu Q Y. Evaluation of the impact of insect-resistant transgenic rice on the feeding and oviposition behavior of its non-target insect, the brown planthopper, Nilaparvata lugens (Homptera: Delphacidae). Scientia Agricultura Sinica, 2004, 37(2): 222-226. (in Chinese)

[10]蔡万伦, 石尚柏, 杨长举, 彭于发. 不同种植方式下转Bt基因水稻对稻田节肢动物群落的影响. 昆虫学报, 2005, 48(4): 537-543.

Cai W L, Shi S B, Yang C J, Peng Y F. Difference of arthropod communities in Bt rice paddies under different cropping patters. Acta Entomologica Sinica, 2005, 48(4): 537-543. (in Chinese)

[11]Chen M, Liu Z C, Ye G Y, Shen Z C, Hu C, Peng Y F, Altosaar I, Shelto A M. Impacts of transgenic cry1Ab rice on non-target planthoppers and their main predator Cyrtorhinus lividipennis (Hemiptera: Miridae)-A case study of the compatibility of Bt rice with biological counterpart. Biological Counterpart, 2007, 42: 242-250.

[12]刘雨芳, 贺  玲, 汪  琼, 胡斯琴, 刘文海, 陈康贵. 转cry1Ac/sck基因抗虫水稻对稻田主要非靶标害虫的田间影响评价. 中国农业科学, 2007, 40(6): 1181-1189.

Liu Y F, He L, Wang Q, Hu S Q, Liu W H, Chen K G. Effects of and ecological safety insect-resistant cry1Ac/sck transgenic rice on key non-target pests in paddy fields. Scientia Agricultura Sinica, 2007, 40(6): 1181-1189. (in Chinese)

[13]Gao M Q, Hou S P, Pu D Q, Shi M, Ye G Y, Chen X X. Multi-generation effects of Bt rice on Anagrus nilaparvatae, a parasitoid of the nontarget pest Nilapavarta lugens. Environmental Entomology, 2010, 39: 2039-2044.

[14]Chen M, Ye G Y, Liu Z C, Fang Q, Hu C, Peng Y F, Shelton A M. Analysis of cry1Ab toxin bioaccumulation in a food chain of Bt rice, an herbivore and a predator. Ecotoxicology, 2009, 18: 230-238.

[15]Xu X L, Han Y, Wu G, Cai W L, Yuan B Q, Wang H, Liu F Z, Wang M Q, Hua H X. Field evaluation of effects of transgenic cry1Ab/cry1Ac, cry1C and cry2A rice on Cnaphalocrocis medinalis and its arthropod predators. Science China Life Sciences, 2011, 54: 1019-1028.

[16]刘志诚, 叶恭银, 胡  萃. Bt水稻对主要非靶标害虫和蜘蛛优势种田间种群动态的影响. 植物保护学报, 2002, 29(2): 138-144.

Liu Z C, Ye G Y, Hu C. Effects of Bt transgenic rice on population dynamics of main non-target insect pests and dominant spider species in rice paddies. Acta Phytophylacica Sinica, 2002, 29(2): 138-144. (in Chinese)

[17]Akhtar Z R, Tian J C, Chen Y, Fang Q, Hu C, Chen M, Peng Y F, Ye G Y. Impacts of six Bt rice lines on non-target rice feeding thrips under laboratory and field conditions. Environmental Entomology, 2010, 39: 715-726.

[18]唐  健, 杨保军, 蒋跃南, 叶恭银, 舒庆尧. 稻蓟马危害转Bt基因水稻克螟稻2号研究初报. 中国水稻科学, 2000, 14(4): 241-242.

Tang J, Yang B J, Jiang Y N, Ye G Y, Shu Q Y. Preliminary study on trips oryzae virulence to Bt gene transformed rice Kemingdao 2. Chinese Journal of Rice Science, 2000, 14(4): 241-242. (in Chinese)

[19]姜永厚, 傅  强, 程家安, 祝增荣, 蒋明星, 张志涛. 转sck+cry1Ac基因水稻对二化螟及二化螟绒茧蜂存活和生长发育的影响. 昆虫学报, 2005, 48(4): 554-560.

Jiang Y H, Fu Q, Cheng J A, Zhu Z R, Jiang M X, Zhang Z T. Effect of transgenic sck + cry1Ac rice on the survival and growth of Chilo suppressalis (Walker)(Lepidoptera:Pyralidae) and its parasitoid Apanteles chilonis (Munakata) (Hymenoptera:Braconidae).Acta Entomologica Sinica,2005,48(4):554-560.(in Chinese)

[20]刘雨芳, 贺  玲, 汪  琼, 胡斯琴, 刘文海, 陈康贵, 尤民生. 转cry1Ac/sck基因抗虫水稻对稻田寄生蜂群落影响的评价. 昆虫学报, 2006, 49(6): 955-962.

Liu Y F, He L, Wang Q, Hu S Q, Liu W H, Chen K G, You M S. Evaluation of the effects of insect-resistant cry1Ac/sck transgenic rice on the parasitoid communities in paddy fields. Acta Entomologica Sinica,2006,49(6):955-962.(in Chinese)

[21]祝向钰, 李志毅, 常  亮, 袁一扬, 戈  峰, 吴  刚, 陈法军. 转Bt水稻土壤跳虫群落组成及其数量变化. 生态学报, 2012, 32(11): 3546-3554.

Zhu X Y, Li Z Y, Chang L, Yuan Y Y, Ge F, Wu G, Chen F J. Community structure and abundance dynamics of soil collembolans in transgenic Bt rice paddy fields. Acta Ecologica Sinica, 2012, 32(11): 3546-3554. (in Chinese)

[22]Wang Y Y, Li Y H, Romeis J, Chen X P, Zhang J, Chen H Y, Peng Y F. Consumption of Bt rice pollen expressing cry2Aa does not cause adverse effects on adult Chrysoperla sinica tjeder (Neuroptera: Chrysopidae). Biological Counterpart, 2012, 61: 246-251.

[23]Bai Y Y, Jiang M X,Cheng J A. Effects of transgenic cry1Ab rice pollen on fitness of Propylea japonica (Thunberg). Journal of Pest Science, 2005,78(3):123-128.

[24]余柳青, 渠开山, 周勇军, 李  迪, 刘小川, 张朝贤, 彭于发. 抗除草剂转基因水稻对稻田杂草种群的影响. 中国水稻科学, 2005, 19(1): 68-73.

Yu L Q, Qu K S, Zhou Y J, Li D, Liu X C, Zhang C X, Peng Y F. Effect of transgenic rice with glufosinate-resistance on weed populations in paddy field. Chinese Journal of Rice Science, 2005, 19(1): 68-73. (in Chinese)

[25]Tindall K V, Stout M J, Williams B J. Evaluation of the potential role of glufosinate-tolerant rice in integrated pest management programs for rice water weevil (Coleoptera: Curculionidae). Journal of Economic Entomology, 2004, 97: 1935-1942.

[26]蒋显斌, 肖国樱. 抗除草剂转基因水稻对稻纵卷叶螟田间自然种群的影响. 植物保护, 2011, 37(2): 50-54.

Jiang X B, Xiao G Y. Effects of genetically modified herbicide-tolerant rice on natural populations of rice leaf roller. Plant Protection, 2011, 37(2): 50-54. (in Chinese)

[27]蒋显斌, 肖国樱. 转基因抗除草剂水稻对稻田叶冠层节肢动物群落多样性的影响. 中国生态农业学报, 2010, 18(6): 1277-1283.

Jiang X B, Xiao G Y. Diversity of arthropod community in the canopy of genetically modified herbicide-tolerant rice (Oryza sativa L.). Chinese Journal of Eco-Agriculture, 2010, 18(6): 1277-1283. (in Chinese)

[28]郭建夫, 黄永相, 彭贤力, 袁红旭, 蒋世河, 许新萍, 张建中. 基因枪法转化水稻E32后代非目标农艺性状变异的研究. 热带亚热带植物学报, 2007, 15(4): 284-289.

Guo J F, Huang Y X, Peng X L, Yuan H X, Jiang S H, Xu X P, Zhang J Z. Variation of non-target agronomic traits in the offspring of transgenic rice line E32 by particle bombardmen. Journal of Tropical and Subtropical Botany, 2007, 15(4): 284-289. (in Chinese)

[29]周江鸿, 王久林, 蒋琬如, 雷财林, 凌忠专. 我国稻瘟病菌毒力基因的组成及其地理分布. 作物学报, 2003, 29(5): 646-651.

Zhou J H, Wang J L, Jiang W R, Lei C L, Ling Z Z. Virulence genes diversity and geographic distribution of pyricularia grisea in China. Acta Agronomica Sinica, 2003, 29(5): 646-651. (in Chinese)

[30]IRRI. Standard evaluation system for rice. Manila, Philippines: IRRI, 1996.

[31]唐春生, 高家樟, 曹国平, 黄守行, 刘二明, 刘承龙, 谢  伟, 罗学义, 肖  青. 稻曲病病情分级标准的研究和应用. 湖南农业大学学报: 自然科学版, 2000, 26(2): 122-124.

Tang C S, Gao J Z, Cao G P, Huang S X, Liu E M, Liu C L, Xie W, Luo X Y, Xiao Q. Research and application of classification standard of rice false smut. Journal of Hunan Agricultural University: Natural Science, 2000, 26(2): 122-124. (in Chinese)

[32]王连平, 董明灶, 郝中娜, 陶荣祥. 浙江省水稻品种抗稻曲病自然诱发鉴定初步研究. 江西农业学报, 2010, 22(7): 73-74.

Wang L P, Dong M Z, Hao Z N, Tao R X. Preliminary study on resistance of rice varieties to rice false smut by using method of natural infection in Zhejiang province. Acta Agriculturae Jiangxi, 2010, 22(7): 73-74. (in Chinese)

[33]金芜军, 黄世文, 傅  强, 彭于发, 刘  信, 王锡锋, 张永军, 宛煜嵩, 李  宁, 宋贵文, 沈  平, 汪其怀. 农业部953号公告-9-2007: 转基因植物及其产品环境安全检测-抗病水稻. 北京: 中国农业出版社, 2007.

Jin W J, Huang S W, Fu Q, Peng Y F, Liu X, Wang X F, Zhang Y J, Wan Y S, Li N, Song G W, Shen P, Wang Q H. Announcement of Ministry of Agriculture No. 953-9-2007: Evaluation of Environmental Impact of Genetically Modified Plants and Its Derived Products -disease-resistant Rice. Beijing: China Agriculture Press, 2007. (in Chinese)

[34]黄大辉, 岑贞陆, 刘  驰, 贺文爱, 陈英之, 马增凤, 杨  朗, 韦绍丽, 刘亚利, 黄思良, 杨新庆, 李容柏. 野生稻细菌性条斑病抗性资源筛选及遗传分析. 植物遗传资源学报, 2008, 9(1): 11-14.

Huang D H, Cen Z L, Liu C, He W A, Chen Y Z, Ma Z F, Yang L, Wei S L, Liu Y L, Huang S L, Yang X Q, Li R B. Identification and genetic analysis of resistance to bacterial leaf streak in wild rice. Journal of Plant Genetic Resources, 2008, 9(1): 11-14. (in Chinese)

[35]袁红旭, 张建中, 郭建夫, 许新萍, 李玥仁. 种植转双价抗真菌基因水稻对根际微生物群落及酶活性的影响. 土壤学报, 2005, 42(1): 122-126.

Yuan H X, Zhang J Z, Guo J F, Xu X P, Li Y R. Activities of microbes and enzymes in soil after growing transgenic rice with two extra anti-fungus genes. Acta Pedologica Sinica, 2005, 42(1): 122-126. (in Chinese)

[36]张  欣, 柯  欣, 毛碧增, 何祖华. 转几丁质酶和葡聚糖酶基因水稻对土壤三种弹尾目昆虫和一种环节动物的影响. 动物学研究, 2004, 25(4): 273-280.

Zhang X, Ke X, Mao B Z, He Z H. Effects of chitanase and glucanase transgenic rice on three species of soil collembola and one species of annelida. Zoological Research, 2004, 25(4): 273-280. (in Chinese)

[37]李本金, 李玥仁, 胡奇勇, 郑  宇, 胡习斌. 抗真菌转基因水稻对根际土壤微生物群落的影响.福建农林大学学报: 自然科学版, 2006, 35(3): 319-323.

Li B J, Li Y R, Hu Q Y, Zheng Y, Hu X B. Effects of transgenic fungus-resistant rice on microorganism populations in rhizospheric soils. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2006, 35(3): 319-323. (in Chinese)
[1] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[2] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[3] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[4] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[5] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[6] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[7] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[8] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[9] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[10] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[11] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[12] SUN YanYan,LI Xin,LIN Mi,LI FengSong,Bao YanFang,CHEN XiaHui,YANG Guang,ZENG QiaoYing,JIANG Tao. Establishment of a Novel Immunochromatographic Assay Based on Foot-and-Mouth Disease Virus Serotype A Labeled by Pt-Pd Bimetal Nanoparticles [J]. Scientia Agricultura Sinica, 2021, 54(3): 653-661.
[13] ZHAO LiQun,QIU YanHong,ZHANG XiaoFei,LIU Hui,YANG JingJing,ZHANG Jian,ZHANG HaiJun,XU XiuLan,WEN ChangLong. The Detection of Citrullus lanatus Cryptic Virus Using TaqMan-qPCR Method [J]. Scientia Agricultura Sinica, 2021, 54(20): 4337-4347.
[14] DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323.
[15] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!