Scientia Agricultura Sinica ›› 2010, Vol. 43 ›› Issue (1): 79-86 .

• PLANT PROTECTION • Previous Articles     Next Articles

HrcJ is Involved in Type-Ⅲ Apparatus Formation of Xanthomonas oryzae pv. oryzicola for Hypersensitive Response in Nonhost Tobacco and Pathogenicity in Rice

ZHAO Wen-xiang, HAN Yang-chun, CUI Yi-ping, ZHAO Mei-qin, LI Yu-rong,ZOU Li-fang, CHEN Gong-you
  

  1. (南京农业大学植物保护学院/农业部病虫监测与治理重点开放实验室)

  • Received:2009-05-04 Revised:2009-06-08 Online:2010-01-10 Published:2010-01-10
  • Contact: CHEN Gong-you

Abstract:

【Objective】 Repertoires of pathogenicity effectors in Xanthomonas oryzae pv. oryzicola are injected into plant cells through type-Ⅲ secretion system (T3SS) which is encoded by the hrp (hypersensitive response and pathogenicity) genes, but it is unclear what roles the hrcJ gene plays in pathogen pathogenesis in rice and in T3SS formation. 【Method】 In this report, the hrcJ gene was knocked out by marker exchange method. 【Result】 It was found that the mutant had lost the ability to trigger HR in tobacco and pathogenicity in rice. Protein-protein interactions, revealed by yeast two-hybrid system, demonstrated that the lipoprotein domain at N-terminal of HrcJ interacted with HrcC and the transmembrane domain at C-terminal interacted with HrcV, indicating that HrcJ was a linker protein between the inner and out membranes of the pathogen cell for T3SS formation. Complementation assays in planta showed that either the deletion in the lipoprotein domain or in the transmembrane domain did not restore HR induction in tobacco and pathogenicity in rice to the hrcJ mutant. The reverse transcriptional polymerase chain reaction (RT-PCR) revealed that the hrcJ gene expression was regulated by the hrpX gene and the expression of the effector gene hpa1 was not affected in the hrcJ mutant. 【Conclusion】 These results suggest that the hrcJ gene is required not only for HR induction in tobacco and pathogenicity in rice, but also in T3SS formation through which pathogenicity determinants are secreted into plant cells.

Key words: Xanthomonas oryzae pv.oryzicola, hrcJ, type-Ⅲ secretion system, pathogenicity, hypersensitive response

[1] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[2] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[5] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[6] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[7] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[8] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[9] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[10] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[11] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[12] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[13] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
[14] SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton [J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
[15] QI Yue,LÜ JunYuan,ZHANG Yue,WEI Jie,ZHANG Na,YANG WenXiang,LIU DaQun. Puccinia triticina Effector Protein Pt18906 Triggered Two-Layer Defense Reaction in TcLr27+31 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2371-2384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!