Scientia Agricultura Sinica ›› 2007, Vol. 40 ›› Issue (11): 2488-2494 .

• PLANT PROTECTION • Previous Articles     Next Articles

Dynamics in kanamycin-resistant bacterial population and shift of nptII gene in the phyllosphere of insect-resistant transgenic cotton

  

  1. 中国农业科学院植物保护研究所/植物病虫害生物学国家重点实验室
  • Received:2006-10-30 Revised:1900-01-01 Online:2007-11-10 Published:2007-11-10

Abstract: 【Objective】To study the Dynamics in kanamycin-resistant bacterial population and monitor shift of nptII gene in the phyllosphere of insect-resistant transgenic cotton.【Method】Insect-resistant transgenic cotton 33B, SGK321 and GK12,and corresponding receptor cotton 33, Shiyuan 321 and No.3 Simian cotton were sampled at different growing stages. Dynamics and diversity among kanamycin-resistant bacterial populations in the phyllosphere were analyzed with the conventional culture methods. In addition, the shift of nptII gene was monitored by germ PCR, and the unique primer was designed from the sequence of nptII gene, the CK is pBI121 plasmids.【Result】at different sample time,significant differences were found among the total number and diversity index of phyllospere kanamycin-resistant bacterial population each cotton variety, but little differences between Insect-resistant transgenic cotton and corresponding receptor cotton at the same time. we discovered the positive segment from kanamycin-resistant bacteria in the phyllosphere of insect-resistant transgenic cotton SKG321, GK12 and receptor cotton No.3 Simian cotton.【Conclusion】We suggested that little differences were found among the total number and diversity index of phyllospere kanamycin-resistant bacterial population between Insect-resistant transgenic cotton and corresponding receptor cotton,and nptII gene in insect-resistant transgenic cottons could drift into the phyllosphere bacteria.

Key words: insect-resistant transgenic cotton, phyllosphere bacteria, kanamycin-resistant, population, biosafety, nptII

[1] LIU ZhenShan, TU HongXia, ZHOU JingTing, MA Yan, CHAI JiuFeng, WANG ZhiYi, YANG PengFei, YANG XiaoQin, Kumail Abbas, WANG Hao, WANG Yan, WANG XiaoRong. Genetic Analysis of Fruits Characters in Reciprocal Cross Progenies of Chinese Cherry [J]. Scientia Agricultura Sinica, 2023, 56(2): 345-356.
[2] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[3] ZHANG TianPeng,YAN TieZhu,JIN PingZhong,LEI QiuLiang,LIAN HuiShu,LI Ying,LI XiaoHong,OU HuiPing,ZHOU JiaoGen,DU XinZhong,WU ShuXia,LIU HongBin. Net Anthropogenic Nitrogen Inputs and Its Influencing Factors in Three Typical Watersheds of China [J]. Scientia Agricultura Sinica, 2022, 55(23): 4678-4687.
[4] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[5] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[6] LIU YouChun,LIU WeiSheng,WANG XingDong,SUN Bin,LIU XiuLi,YANG YanMin,WEI Xin,YANG YuChun,ZHANG Duo,LIU Cheng,LI TianZhong. Identification of F1 Hybrids in Blueberry (Vaccinium corymbosum L.) Based on Specific-Locus Amplified Fragment Sequencing (SLAF-seq) [J]. Scientia Agricultura Sinica, 2021, 54(2): 370-378.
[7] ZHANG MaoNing,HUANG BingYan,MIAO LiJuan,XU Jing,SHI Lei,ZHANG ZhongXin,SUN ZiQi,LIU Hua,QI FeiYan,DONG WenZhao,ZHENG Zheng,ZHANG XinYou. Genetic Analysis of Peanut Kernel Traits in a Nested-crossing Population by Major Gene Plus Polygenes Mixed Model [J]. Scientia Agricultura Sinica, 2021, 54(13): 2916-2930.
[8] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[9] ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755.
[10] ZHANG Jian,YANG Jing,WANG Hao,LI DongXiu,YANG GuiLi,HUANG CuiHong,ZHOU DanHua,GUO Tao,CHEN ZhiQiang,WANG Hui. QTL Mapping for Grain Size Related Traits Based on a High-Density Map in Rice [J]. Scientia Agricultura Sinica, 2020, 53(2): 225-238.
[11] LIU YouChun,LIU WeiSheng,WANG XingDong,YANG YanMin,WEI Xin,SUN Bin,ZHANG Duo,YANG YuChun,LIU Cheng,LI TianZhong. Screening and Inheritance of Fruit Storage-Related Traits Based on Reciprocal Cross of Southern×Northern High Bush Blueberry (Vaccinium Linn) [J]. Scientia Agricultura Sinica, 2020, 53(19): 4045-4056.
[12] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
[13] ZHAO XuSheng,QI YongZhi,ZHEN WenChao. Composition and Distribution Characteristics of Pathogens Causing Wheat Sharp Eyespot in Wheat and Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2020, 53(16): 3269-3279.
[14] Jing LIU,Chao LI,JinXiong LIU,Rui HE,YanRong SUN. The Role of High-Level Biosafety Laboratories in Biosafety and Consideration About Their Development [J]. Scientia Agricultura Sinica, 2020, 53(1): 74-80.
[15] ZHAO Man, TANG JinRong, NIU LinLin, CHEN Lin, LIANG GeMei. Ecological Safety Evaluation of Different Bt Proteins on the Predator Chrysopa pallens [J]. Scientia Agricultura Sinica, 2019, 52(9): 1541-1552.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!