Scientia Agricultura Sinica ›› 2006, Vol. 39 ›› Issue (06): 1102-1114 .

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES • Previous Articles     Next Articles

The Genetic Diversity among 27 Maize Populations Based on SSR Data

,,,,,,,   

  • Received:2005-03-15 Revised:2005-12-30 Online:2006-06-10 Published:2006-06-10

Abstract: The genetic diversity among 27 maize ( Zea mays L. ) populations has been analyzed based on the data of SSRs, which were from 4 bulk DNA samples for each population and extracted from leaf mixture of 10 individuals for each sample. The genetic diversity of 27 maize populations, including 13 domestic and 14 CIMMYT populations, were evaluated by 71 SSR primers, which are averagely distributed on 10 chromosomes of maize. On the 71 SSR loci, a total of 389 alleles had been detected in these populations. At each locus, 2 to 19 alleles could be detected, with an average of 5.48. Mean polymorphism information content was 0.66. There was nearly no difference in the proportion of polymorphic sites between domestic and CIMMYT populations, which were 92.5 for domestic and 92.2% for CIMMYT populations. The number of polymorphic alleles differed in domestic and CIMMY populations, which were 329 for domestic populations and 370 for CIMMYT populations. Cluster analysis was based on the genetic similarity coefficients. Two heterotic groups were determined among the 27 populations: group 1 was of CIMMYT germplasm including: Pob21, Pob32, Stay Green, Pob43, Pob49, Pool19, Pob28, Pob45, Pob46, Pob501, Pob502, and Suwan1. Group 2 was of domestic and temperate adaptive populations including : Jilin Syn A, Liaolv Syn, CSyn 5, CSyn3, CSyn4, Yu Syn5, Golden Queen, Shaan Syn1, Shaan Syn3, Dongnong Pop C5, WBM-C4, CPop13, CPop14, Pob69, and Pob70. The results basically were agreeable with the available pedigree data.

Key words: Maize (Zea mays L.), Population, SSRs, Bulk sampling, Genetic diversity

[1] LIU ZhenShan, TU HongXia, ZHOU JingTing, MA Yan, CHAI JiuFeng, WANG ZhiYi, YANG PengFei, YANG XiaoQin, Kumail Abbas, WANG Hao, WANG Yan, WANG XiaoRong. Genetic Analysis of Fruits Characters in Reciprocal Cross Progenies of Chinese Cherry [J]. Scientia Agricultura Sinica, 2023, 56(2): 345-356.
[2] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[3] ZHANG TianPeng,YAN TieZhu,JIN PingZhong,LEI QiuLiang,LIAN HuiShu,LI Ying,LI XiaoHong,OU HuiPing,ZHOU JiaoGen,DU XinZhong,WU ShuXia,LIU HongBin. Net Anthropogenic Nitrogen Inputs and Its Influencing Factors in Three Typical Watersheds of China [J]. Scientia Agricultura Sinica, 2022, 55(23): 4678-4687.
[4] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[5] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[6] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[9] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[10] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[11] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[12] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[13] LIU YouChun,LIU WeiSheng,WANG XingDong,SUN Bin,LIU XiuLi,YANG YanMin,WEI Xin,YANG YuChun,ZHANG Duo,LIU Cheng,LI TianZhong. Identification of F1 Hybrids in Blueberry (Vaccinium corymbosum L.) Based on Specific-Locus Amplified Fragment Sequencing (SLAF-seq) [J]. Scientia Agricultura Sinica, 2021, 54(2): 370-378.
[14] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[15] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!