Scientia Agricultura Sinica

Previous Articles    

Evaluation of blast resistance and genetic structure analysis of rice germplasm in Heilongjiang Province

ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University/Heilongjiang Plant Resistance Research Center, Daqing 163000, Heilongjiang
  • Published:2021-12-19

Abstract: ObjectiveRice blast seriously threatens rice production in Heilongjiang Province and the breeding and utilization of anti-blast varieties are the most economical, safe and effective measures to control it. This study explored the resistance of rice varieties in Heilongjiang Province; clarified the resistance effect of disease resistance genes, and provided a basis for the selection and utilization of germplasm resources of rice blast in Heilongjiang Province. MethodIn the autumn of 2018,134 monospore rice strains were collected from the main rice area in Heilongjiang Province, and the resistance of 50 dominant rice varieties was analyzed. For the reported 35 rice blast resistance genes, a comparison was made between the varieties and positive control varieties. Sequencing results of some positive control varieties were compared with the reference sequence published in the National Centre for Biotechnology Informationhttps://www.ncbi.nlm.nih.gov/ to analyze the existence of rice blast resistance genes in the corresponding varieties. Through the correlation analysis of gene aggregation type and breed resistance performance, the genotypes related to the resistance performance of rice varieties in Heilongjiang Province were clarified. ResultsAmong 50 rice varieties in Heilongjiang Province, Longgeng 20 had the best resistance (R). Longgeng 67, Longken 202, Longgeng 40, Longgeng 31, Longgeng 57 and Longgeng 43 had moderate disease resistance; whereas, 43 varieties such as Jiahe 1 had relatively low resistance. Through the analysis of variety combination resistance, we found that 33 pairs of Longgeng 20 + Longgeng 67 had a high RACresistance association coefficient) value, low VAC (virulence association coefficient) value and good combined disease resistance. The matching structure showed potential for application. The identification of resistance genes carried by specific primers showed that Pish, Pi36, Pi33 and Pi-CO39 were detected, and Pi63, Ptr, Pi37, Pi64, pi21, Pi9, Pi54, Pikh, Pia, Pikp, Pi35, Pikm and Pik were between 50–100% of occurences frequency, indicating that such genes were widely used in rice breeding in Heilongjiang Province. The detection rate of Pita, Pib, Pii, Pi5, Piz-t, Pi50 and Pi2 was between 10% and 50%; Pid2 was detected in in two varieties, and Pigm was detected in Jigeng 88. However, Pit, Pid3, Bsr-d1, Pi25, Pid3-A4, Pi56, Pi1, Pike and Pb1 were not detected in the cultivars, indicating that such genes are less distributed in rice varieties in Heilongjiang Province. The variety genotype analysis found that the varieties carried 12–19 resistant genes, with a total of 58 genotypes, indicating that the test varieties had rich blast resistance gene combination types. By analysis, the single gene and gene polymerization with disease resistance showed that the distribution frequency of Pi2, Piz-t, Pi50, Pi5 and Pii corresponded to frequency of resistance. We found that the more varieties carrying resistance genes, the higher the frequency resistance, and six varieties that carrying Pi2+Piz-t+Pi50 polymerization types showed resistance. ConclusionOur results have demonstrated the following: the resistance of rice germplasm resources in Heilongjiang province is low; combination planting of different varieties could be usefully applied; the distribution of blast resistance genes is different in the participating varieties; Pi2, Piz-t, Pi50, Pi5 and Pii play a leading role in disease resistance, and Pi2+Piz-t+Pi50+α gene polymerization type could contribute to improving rice blast resistance.


Key words: rice, rice blast, resistance frequency, blast resistance evaluation, blast resistance gene

[1] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[2] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[3] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[4] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[5] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[6] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[7] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[8] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[9] LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203 [J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
[10] LIU RUI, ZHAO YuHan, GU XinYi, WANG YanXia, JIN XueHui, WU WeiHuai, ZHANG YaLing. Distribution and Variation Analysis of AVR-Pita Family in Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(3): 466-480.
[11] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[12] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[13] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[14] XIE Xue, LU YanHong, LIAO YuLin, NIE Jun, ZHANG JiangLin, SUN YuTao, CAO WeiDong, GAO YaJie. Effects of Returning Chinese Milk Vetch and Rice Straw to Replace Partial Fertilizers on Double Season Rice Yield and Soil Labile Organic Carbon [J]. Scientia Agricultura Sinica, 2023, 56(18): 3585-3598.
[15] SANG ShiFei, CAO MengYu, WANG YaNan, WANG JunYi, SUN XiaoHan, ZHANG WenLing, JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!