Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (1): 190-204.doi: 10.3864/j.issn.0578-1752.2026.01.014

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Agroelementomics: Concept, Progress and Perspective in Analytical Techniques

LI Xue(), XU Yan, MAO XueFei*()   

  1. State Key Laboratory for Quality and Safety of Agro-Products/Institute of Quality Standards and Testing Technology for Agro- Products, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2025-04-29 Accepted:2025-10-17 Online:2026-01-01 Published:2026-01-07
  • Contact: MAO XueFei

Abstract:

Elements are fundamental constituents of matter, ubiquitous across agricultural systems-from crops and livestock to inputs such as fertilizers and pesticides-with profound implications for productivity and environmental quality. Responding to the need for precise element management in sustainable agriculture, this review proposed “Agroelementomics” as an interdisciplinary field. Agroelementomics characterizes the presence, concentration, distribution, and speciation of elements within agricultural organisms and matrices. It seeks to decode their roles in agricultural processes and their interactions with other omics layers, such as the genome and metabolome. Thus, its scope extends beyond individual elements to encompass the interplay of multiple elements and their collective impact on crop growth, food safety, and environmental health. Deciphering these complex interactions requires advanced elemental analysis. This review focused on analytical techniques for Agroelementomics, surveying cutting-edge methods- including spectroscopy, mass spectrometry, and synchrotron-based approaches-for ultra-sensitive, high-throughput elemental analysis, and their applications, advantages, and limitations in analyzing agricultural samples and outline future directions were discussed. The future advancement of Agroelementomics hinges on creating more robust analytical frameworks with greater interference resistance and wider elemental coverage. Critical breakthroughs are needed in high-resolution isotope analysis, direct solid sampling, non-destructive techniques, and the characterization of elemental species and macromolecular complexes. Pushing the resolution to micro/nano and even single-cell levels, coupled with integrating artificial intelligence for data processing, would be pivotal. In application, agroelementomics must be integrated with other omics platforms (e.g., genomics, proteomics, metabolomics). By building cross-omics networks and leveraging their combined strengths, those fundamental questions in agricultural biology were addressed. Ultimately, this integration would be key to advancing crop breeding, nutrient management, pollution source tracking, and food quality safety, thereby providing a scientific foundation for sustainable agriculture.

Key words: Agroelementomics, multielement analysis, mass spectrometry, atomic spectroscopy, energy spectroscopy, microanalysis

Fig. 1

Classification of elemental types and representative elements in Agroelementomics across agricultural production system"

Table 1

Application scope, advantages, and limitations of agricultural elemental omics analysis technology"

分类 Classification 方法
Method
元素范围
Elemental range
检测限
Detection limit
应用场景
Application scenarios
优势
Advantage
局限性
Limitation
高灵敏和多元素分析技术High-sensitivity and multi- element analysis technology ICP-MS 多元素(包括金属、非金属、同位素,范围覆盖Li—U多达80余个元素)
Multiple elements (including metals, non-metals, and isotopes, and covering more than 80 elements ranging from Li to U)
ng·L-1-pg·g-1 农产品多元素定量、产地溯源、土壤重金属监测等多场景
Multi-element quantification of agricultural products, origin traceability, soil heavy metal monitoring and other scenarios
高灵敏度、广泛的元素覆盖、多元素同时检测能力
High sensitivity, broad element coverage, and simultaneous multi- element detection capability
基质干扰需要处理,前处理较为复杂,对轻元素(H、He、C、N、O等)检测能力较弱
Matrix interference requires treatment, and pretreatment is relatively complex. Detection capabilities for light elements (H, He, C, N, O, etc.) are relatively weak
TIMS 重金属和稳定同位素(如Sr、Pb、Nd、U、Th、Os、Re、Hf、W、Mo、Ca、K、Mg、Fe、Ni、Cu、Zn、Cd、Sn、Ba、La、Ce、Pr、Sm、Eu、Gd、Dy、Er、Yb、Lu等稀土元素和放射性元素)
Heavy metals and stable isotopes (such as Sr, Pb, Nd, U, Th, Os, Re, Hf, W, Mo, Ca, K, Mg, Fe, Ni, Cu, Zn, Cd, Sn, Ba, La, Ce, Pr, Sm, Eu, Gd, Dy, Er, Yb, Lu, and other rare earth elements and radioactive elements)
ppm级精度
ppm-level accuracy
食品地理来源鉴别、元素生物利用度等研究
Research on food geographic origin identification and elemental bioavailability
极高同位素测量精度
Extremely high isotope measurement accuracy
前处理复杂,成本高。对轻元素(如C、N、O、H)和挥发性元素检测能力较弱、不适合多元素总量分析
Complex pretreatment and high costs. Limited detection capability for light elements (e.g., C, N, O, H) and volatile elements; unsuitable for multi-element total analysis
ICP-OES / MP-AES 金属及非金属(如P、S、Si、Fe、Mn、Na、K、Ca、Mg等常量元素)
Metals and non-metals (such as macroelements including P, S, Si, Fe, Mn, Na, K, Ca, Mg, etc.)
ppb-%级
ppb-% level
复杂样品常量分析、现场土壤养分检测、肥料元素测定等多场景
Constant analysis of complex samples, on-site soil nutrient testing, fertilizer element determination, and other scenarios
快速、成本较低、可现场分析、抗分子离子干扰
Rapid, cost-effective, on-site analysis, resistant to molecular ion interference
灵敏度低于ICP-MS,难测痕量,易受光谱干扰且需要背景校正
Compared to ICP-MS, it exhibits lower sensitivity, faces challenges in detecting trace amounts, is susceptible to spectral interference, and requires background correction
LTP(DBD等) 蒸发温度相对较低的元素(如Hg、Cd、Pb、As、Se、Sb等)
Elements with relatively low evaporation temperatures (such as Hg, Cd, Pb, As, Se, Sb, etc.)
ng·g-1
ng·g-1 level
便携式固体样品检测、动植物中重金属监测、现场元素分析等多场景
Portable solid sample analyzing, heavy metal monitoring in plants and animals, on-site elemental analysis, and other scenarios
便携、简单、无需复杂前处理、常压操作
Portable, simple, requires no complex pretreatment, operates at atmospheric pressure
元素范围有限,易受环境干扰,需优化仪器各系统结构,灵敏度中等
The element range is limited and susceptible to environmental interference, requiring optimization of the instrument's system architecture. Sensitivity is moderate
XRF(EDXRF, TXRF) 中重元素(如Cd、Pb、As、Mn、Zn、Fe、Cu、K、Ca等,从Na—U)
Medium-to-heavy elements (such as Cd, Pb, As, Mn, Zn, Fe, Cu, K, Ca, etc., from Na to U)
ppm-%级
ppm-% level
(TXRF: 10-7-10-12 g)
非破坏性土壤/植物分析、污染现场监测、产地溯源等多场景
Non-destructive soil/plant analysis, contaminated site monitoring, origin tracing, and other scenarios
非破坏性、便捷、可现场监测、多元素定量
Non-destructive, convenient, field- monitorable, multi- element quantitative analysis
对轻元素(如C、N、O)灵敏度差,痕量元素检测有局限性
Poor sensitivity to light elements (such as C, N, O), with limitations in detecting trace elements
固体直接进样辅助分析技术(GD-MS/ ETV) 多元素(与检测器有关,可测金属、非金属和稀土元素等60余种元素)
Multi-element (detector-dependent, capable of measuring over 60 elements including metals, non-metals, and rare earth elements)
ng·g-1
ng·g-1 level
固体直接进样(如植物、土壤、粮油、水产等复杂介质中元素的快速检测),液体样品也适用
Solid direct sampling (e.g., rapid detection of elements in complex media such as plants, soil, grains, oils, and aquatic products) is also suitable for liquid samples.
直接分析固体,减少前处理、快速高灵敏
Direct analysis of solid samples with minimal pretreatment enables rapid and highly sensitive detection.
基质效应大,定量难度高。
对于GD-MS限于导电性样品
Significant matrix effects make quantitative analysis challenging. GD-MS is limited to conductive samples
EA/EA-
IRMS
生源元素(如C、H、N、S、P)及同位素(如δ13C、δ15N、δ34S)
Source elements (e.g., C, H, N, S, P) and isotopes (e.g., δ13C, δ15N, δ34S)
%级(同位素可达‰级)
Percentage level (isotopes can reach parts per thousand level)
土壤碳氮循环、产地溯源、植物δ13C追踪等多场景
Soil carbon and nitrogen cycles, origin tracing, plant δ13C tracking, and other scenarios
高精度同位素分析、总量检测简便
High-precision isotope analysis, simple total quantity detection
仅限轻元素,样品需预处理,挥发性样品易损失
Only light elements are applicable. Samples need to be pre-treated. Volatile samples are prone to loss
INAA 多元素(如植物中稀土、Au、Ag、Co、Cr、Fe、Hf、Ir、Sb、Sc、Se、Th、U、Zn等)
Multiple elements (such as rare earth elements, Au, Ag, Co, Cr, Fe, Hf, Ir, Sb, Sc, Se, Th, U, Zn, etc. in plants)
10-¹³ g·g-1
10-¹³ g·g-1 level
无损食品/土壤多元素同步测定、动植物元素定量等多场景
Non-destructive simultaneous multi-element analysis of food/soil, quantitative elemental analysis of plants and animals, and other scenarios
无损、高通量、灵敏度高
Non-destructive, high-throughput, high sensitivity
设备昂贵,操作复杂、核素衰变时间长
The equipment is expensive, the operation is complex, and the nuclide decay time is long
EC(SWASV等) 金属元素(如Zn、Cd、Ni、Pb、Cu、Hg等)
Metal elements (such as Zn, Cd, Ni, Pb, Cu, Hg, etc.)
ng·g-1—pg·g-1
ng·g-1-pg·g-1 level
水/土壤浸提液痕量检测、重金属污染评估等多场景
Trace detection in water/soil extracts, heavy metal pollution assessment, and other scenarios
便携、高选择性、电极修饰可增强抗干扰能力
Portable, highly selective, and electrode modification can enhance anti- interference capability
仅限电活性元素,干扰较多、前处理要求高
It is limited to electroactive elements, with many interferences and high requirements for pretreatment
元素形态和价态分析技术Element speciation and valence analysis techniques 色谱联用(HPLC-ICP-MS等 元素形态(如As(III)/ As(V)、Hg有机/无机、Se、Cr、I等)
Elemental forms (e.g., As (III)/As(V), organic/inorganic Hg, Se, Cr, I, etc.)
ng·g-1
ng·g-1 level
农产品形态分析(如海产品中As或者Hg形态的分析、安全性评价等场景)
Analysis of agricultural product speciation (e.g., analysis of arsenic or mercury forms in seafood, safety assessment scenarios, etc.)
高分辨率形态分析、多元素形态同步检测
High-resolution morphological analysis, simultaneous multi-element morphological detection
前处理易导致形态转化,设备复杂,成本高
Pre-treatment is prone to causing morphological transformation, involves complex equipment, and incurs high costs
SR(SRXRF, SRXAS) 多元素及形态(从Na—U的中重元素,轻元素如C、N、O等需要软X射线)
Multiple elements and speciation (medium-heavy elements from Na to U; light elements such as C, N, O, etc., require soft X-rays)
1—10 ppm或更低(与X射线能量范围有关,成像可达μm尺度的分辨率)
1-10 ppm or lower (depending on X-ray energy range, with imaging resolution down to the micrometer scale)
植物、动物组织中元素的原位分布
In situ distribution of elements in plant and animal tissues
高空间分辨率、无损分析、原位价态解析
High spatial resolution, non-destructive analysis, in situ valence state analysis
需要同步辐射设施,成本高,数据处理复杂
Synchrotron radiation facilities are required, which are costly and involve complex data processing
XPS / XRD 表面元素价态和晶体成分(如Cr、F、P、Fe、Mn等)
Surface element valence states and crystal composition (e.g., Cr, F, P, Fe, Mn, etc.)
ppm级(XPS的表面深度约10 nm左右)
ppm level (XPS
surface depth
approximately
10 nm)
材料表征、吸附机制研究等多场景
Material characterization, adsorption mechanism studies, and other scenarios
表面化学状态分析、晶体结构表征
Surface chemical state analysis, crystal structure characterization
仅限表面,深度分析受限,对非晶体样品受限、痕量灵敏度低
It is only limited to the surface, in - depth analysis is restricted, it is restricted for non-crystalline samples, and the trace sensitivity is low
微区空间成像与原位分析技术Micro-area space imaging and in-situ analysis technology LA-ICP-
MS
多元素及同位素(元素范围随检测器而定)
Multiple elements and isotopes (element range determined by the detector)
ng·g-1级(成像分析光斑分辨率可达μm尺度)
ng·g-1 level (imaging analysis spot resolution down to the micrometer scale)
动物、植物组织的元素成像
Elemental imaging of animal and plant tissues
高空间分辨率、同时定量多元素、固体原位分析
High spatial resolution, simultaneous quantitative multi- element analysis, in situ solid-state analysis
基质效应、分馏问题影响定量精度、需能校正的标准物质
Matrix effects and fractionation issues affect quantitative accuracy; calibration of reference materials is required
LIBS 多元素(从H—U,几乎所有元素)
Multiple elements (from H to U, encompassing nearly all elements)
ppm级
ppm level
现场土壤/叶片快速筛查、产地识别、重金属监测等多场景
On-site rapid screening of soil/leaf samples, origin identification, heavy metal monitoring, and other scenarios
快速响应、无需消解、便携性强
Rapid response, no digestion required, highly portable
灵敏度有限,重复性较差
Limited sensitivity, poor repeatability
micro-XRF 多元素(从Na—U的中重元素)
Multiple elements (medium- to-heavy elements from Na to U)
ppm-%级(成像μm分辨)
ppm-% level (imaging with μm resolution)
动物或植物样本的微区分布
Micro-regional distribution of animal or plant samples
高空间分辨率、非破坏性、成像能力
High spatial resolution, non-destructive, imaging capability
轻元素检测能力有限
Limited detection capability for light elements
SIMS(NanoSIMS, TOF- SIMS) 元素及有机(如15N、Zn、Cd、Fe、脂质等)
Elements and organic compounds (such as 15N, Zn, Cd, Fe, lipids, etc.)
fg·g-1级(成像nm尺度分辨)
FG/G-class (imaging at the nanometer scale)
单细胞分析、根际固氮15N吸收、植物细胞定位等多场景
Single-cell analysis, rhizosphere nitrogen fixation 15N uptake, plant cell localization, and other scenarios
超高空间分辨率、痕量检测
Ultra-high spatial resolution, trace detection
样品制备复杂,成本极高、深度有限
Complex sample preparation, costly, depth limited sample preparation
LIMS 多元素(从Na—U,60+种元素)
Multi-element (from Na to U, 60+ elements)
ng·g-1级(成像μm尺度分辨)
ng·g-1 level (imaging at the micrometer scale)
固体土壤/植物快速分析
Rapid Analysis of Solid Soil/Plant Samples
直接固体分析、高分辨率、高通量
Direct solid analysis, high resolution, high throughput
基质干扰大,定量精度低,易受离子干扰
Significant matrix interference, low quantitative accuracy, and susceptibility to ionic interference
SP/SC-ICP-MS 单颗粒/单细胞的元素(检测范围与检测器有关)
Single-particle/single-cell elements (detection range depends on the detector)
fg级
fg level
细胞样品或纳米颗粒暴露(如微塑料、纳米材料之类,单细胞生物学研究)
Exposure of cell samples or nanoparticles (e.g., microplastics, nanomaterials, etc., for single- cell biology research)
单颗粒/细胞级分辨率
Single-particle/single-cell resolution
多元素能力有限,颗粒尺寸下限受限、需专用仪器,数据处理复杂
Limited multi-element capabilities, constrained lower limit of particle size, specialized instruments required, and complex data processing
[1]
JONES J W, ANTLE J M, BASSO B, BOOTE K J, CONANT R T, FOSTER I, GODFRAY H C J, HERRERO M, HOWITT R E, JANSSEN S, et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 2017, 155: 269-288.

doi: 10.1016/j.agsy.2016.09.021 pmid: 28701818
[2]
ZHANG Y, HUANG G M, ZHAO Y X, LU X J, WANG Y R, WANG C Y, GUO X Y, ZHAO C J. Revolutionizing crop breeding: Next-generation artificial intelligence and big data-driven intelligent design. Engineering, 2025, 44: 245-255.

doi: 10.1016/j.eng.2024.11.034
[3]
WANG P T, LI Z, LI H, ZHANG D L, WANG W, XU X D, XIE Q G, DUAN Z K, XIA X, GUO G H, et al. Smart crops. New Crops, 2024, 1: 100007.
[4]
WILLIAMS R J P. Chemical selection of elements by cells. Coordination Chemistry Reviews, 2001, 216/217: 583-595.

doi: 10.1016/S0010-8545(00)00398-2
[5]
HARAGUCHI H. Metallomics as integrated biometal science. Journal of Analytical Atomic Spectrometry, 2004, 19(1): 5.

doi: 10.1039/b308213j
[6]
熊依杰, 欧阳荔, 刘雅琼, 解青, 王京宇. 肺癌和癌旁组织中17种微量元素的ICP-MS测定及相关研究. 质谱学报, 2005, 26(S1): 19-20, 58.
XIONG Y J, OUYANG L, LIU Y Q, XIE Q, WANG J Y. Determination of 17 elements in lung carcinomatous and pericarcinomatous tissues by inductively coupled plasma mass sepctrometry. Journal of Chinese Mass Spectrometry Society, 2005, 26(S1): 19-20, 58. (in Chinese)
[7]
SALT D E, BAXTER I, LAHNER B. Ionomics and the study of the plant ionome. Annual Review of Plant Biology, 2008, 59: 709-733.

doi: 10.1146/annurev.arplant.59.032607.092942 pmid: 18251712
[8]
LI Y F, CHEN C Y, QU Y, GAO Y X, LI B, ZHAO Y L, CHAI Z F. Metallomics, elementomics, and analytical techniques. Pure and Applied Chemistry, 2008, 80(12): 2577-2594.

doi: 10.1351/pac200880122577
[9]
LI X, LIU T P, CHANG C Y, LEI Y J, MAO X F. Analytical methodologies for agrometallomics: A critical review. Journal of Agricultural and Food Chemistry, 2021, 69(22): 6100-6118.

doi: 10.1021/acs.jafc.1c00275
[10]
WU B, BECKER J S. Imaging techniques for elements and element species in plant science. Metallomics, 2012, 4(5): 403-416.

doi: 10.1039/c2mt00002d pmid: 22511294
[11]
NEWMAN K. Using ion-molecule reactions to overcome spectral interferences in ICP-MS: A guided inquiry approach for upper-level undergraduate and graduate students. Journal of Chemical Education, 2018, 95(7): 1211-1215.

doi: 10.1021/acs.jchemed.8b00026
[12]
FU L, SHI S Y. A novel strategy to determine the compositions of inorganic elements in fruit wines using ICP-MS/MS. Food Chemistry, 2019, 299: 125172.

doi: 10.1016/j.foodchem.2019.125172
[13]
LIU H L, MENG Q, ZHAO X, YE Y L, TONG H R. Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES)-based discrimination for the authentication of tea. Food Control, 2021, 123: 107735.

doi: 10.1016/j.foodcont.2020.107735
[14]
VAN ACKER T, THEINER S, BOLEA-FERNANDEZ E, VANHAECKE F, KOELLENSPERGER G. Inductively coupled plasma mass spectrometry. Nature Reviews Methods Primers, 2023, 3: 52.

doi: 10.1038/s43586-023-00235-w
[15]
FRAGNI R, TRIFIRÒ A, NUCCI A. Towards the development of a multi-element analysis by ICP-oa-TOF-MS for tracing the geographical origin of processed tomato products. Food Control, 2015, 48: 96-101.

doi: 10.1016/j.foodcont.2014.04.027
[16]
WYSOCKA I. Determination of rare earth elements concentrations in natural waters-A review of ICP-MS measurement approaches. Talanta, 2021, 221: 121636.

doi: 10.1016/j.talanta.2020.121636
[17]
HUANG Y, ZHANG S P, CHEN Y, WANG L, LONG Z J, HUGHES S S, NI S J, CHENG X, WANG J J, LI T, WANG R, LIU C. Tracing Pb and possible correlated Cd contamination in soils by using lead isotopic compositions. Journal of Hazardous Materials, 2020, 385: 121528.

doi: 10.1016/j.jhazmat.2019.121528
[18]
LI C F, CHU Z Y, WANG X C, FENG L J, GUO J H. A highly sensitive zirconium hydrogen phosphate emitter for Ni isotope determination using thermal ionization mass spectrometry. Atomic Spectroscopy, 2020, 41(6): 249-255.
[19]
GEANĂ E I, SANDRU C, STANCIU V, IONETE R E. Elemental profile and 87Sr/86Sr isotope ratio as fingerprints for geographical traceability of wines: An approach on Romanian wines. Food Analytical Methods, 2017, 10(1): 63-73.

doi: 10.1007/s12161-016-0550-2
[20]
MONTGOMERY J, EVANS J A, HORSTWOOD M S A. Evidence for long-term averaging of strontium in bovine enamel using TIMS and LA-MC-ICP-MS strontium isotope intra-molar profiles. Environmental Archaeology, 2010, 15(1): 32-42.

doi: 10.1179/146141010X12640787648694
[21]
TURNLUND J R. Zinc, copper, and iron nutrition studied with enriched stable isotopes. Biological Trace Element Research, 1987, 12(1): 247-257.

doi: 10.1007/BF02796684 pmid: 24254607
[22]
AGGARWAL S K. Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology-A review. Analytical Methods, 2016, 8(5): 942-957.

doi: 10.1039/C5AY02816G
[23]
CHOI J Y, HABTE G, KHAN N, NHO E Y, HONG J H, CHOI H, PARK K S, KIM K S. Determination of toxic heavy metals in Echinodermata and Chordata species from South Korea. Food Additives & Contaminants Part B, Surveillance, 2014, 7(4): 295-301.
[24]
SHARMA N, SINGH V K, LEE Y, KUMAR S, RAI P K, PATHAK A K, SINGH V K. Analysis of mineral elements in medicinal plant samples using LIBS and ICP-OES. Atomic Spectroscopy, 2020, 41(6): 234-241.
[25]
AKOGWU R D, AGUORU C U, IKPA F, OGBONNA I, OLASAN J O. Relevance of industrial wastes from jatrophacurcas L. seed in agricultural biotechnology. International Journal of Environment, Agriculture and Biotechnology, 2018, 3(4): 1546-1550.

doi: 10.22161/ijeab
[26]
GALLEGO RÍOS S E, PEÑUELA G A, RAMÍREZ BOTERO C M. Method validation for the determination of mercury, cadmium, lead, arsenic, copper, iron, and zinc in fish through microwave-induced plasma optical emission spectrometry (MIP OES). Food Analytical Methods, 2017, 10(10): 3407-3414.

doi: 10.1007/s12161-017-0908-0
[27]
YAO Z Z, LIU M T, LIU J X, MAO X F, NA X, MA Z H, QIAN Y Z. Sensitivity enhancement of inorganic arsenic analysis by in situ microplasma preconcentration coupled with liquid chromatography atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2020, 35(8): 1654-1663.

doi: 10.1039/D0JA00222D
[28]
LI C, LIU Z, WANG P Y, ZHANG M, YANG Y, YU K X. A hybrid approach for Corona discharge in needle electrode configuration: In a large-scale space. Plasma Sources Science and Technology, 2020, 29(4): 045011.

doi: 10.1088/1361-6595/ab708b
[29]
LI M T, DENG Y J, ZHENG C B, JIANG X M, HOU X D. Hydride generation-point discharge Microplasma-optical emission spectrometry for the determination of trace As, Bi, Sb and Sn. Journal of Analytical Atomic Spectrometry, 2016, 31(12): 2427-2433.

doi: 10.1039/C6JA00341A
[30]
LIU X, LIU Z F, ZHU Z L, HE D, YAO S Q, ZHENG H T, HU S H. Generation of volatile cadmium and zinc species based on solution anode glow discharge induced plasma electrochemical processes. Analytical Chemistry, 2017, 89(6): 3739-3746.

doi: 10.1021/acs.analchem.7b00126 pmid: 28205438
[31]
GUO X H, PENG X X, LI Q, MO J M, DU Y P, WANG Z. Ultra-sensitive determination of inorganic arsenic valence by solution cathode glow discharge-atomic emission spectrometry coupled with hydride generation. Journal of Analytical Atomic Spectrometry, 2017, 32(12): 2416-2422.

doi: 10.1039/C7JA00228A
[32]
ZHAO Z J, DAI J X, WANG T Z, NIU G H, HE F Y, DUAN Y X. Development of microwave plasma proton transfer reaction mass spectrometry (MWP-PTR-MS) for on-line monitoring of volatile organic compounds: Design, characterization and performance evaluation. Talanta, 2020, 208: 120468.

doi: 10.1016/j.talanta.2019.120468
[33]
ZHAN X F, ZHAO Z J, YUAN X, WANG Q H, LI D D, XIE H, LI X M, ZHOU M G, DUAN Y X. Microwave-induced plasma desorption/ ionization source for ambient mass spectrometry. Analytical Chemistry, 2013, 85(9): 4512-4519.

doi: 10.1021/ac400296v
[34]
MAO X F, QI Y H, HUANG J W, LIU J X, CHEN G Y, NA X, WANG M, QIAN Y Z. Ambient-temperature trap/release of arsenic by dielectric barrier discharge and its application to ultratrace arsenic determination in surface water followed by atomic fluorescence spectrometry. Analytical Chemistry, 2016, 88(7): 4147-4152.

doi: 10.1021/acs.analchem.6b00506 pmid: 26976077
[35]
LIU T P, LIU M T, LIU J X, MAO X F, ZHANG S S, SHAO Y B, NA X, CHEN G Y, QIAN Y Z. On-line Microplasma decomposition of gaseous phase interference for solid sampling mercury analysis in aquatic food samples. Analytica Chimica Acta, 2020, 1121: 42-49.

doi: 10.1016/j.aca.2020.04.057
[36]
LIU X Y, YU K, ZHANG H, ZHANG X N, ZHANG H N, ZHANG J, GAO J, LI N, JIANG J. A portable electromagnetic heating- Microplasma atomic emission spectrometry for direct determination of heavy metals in soil. Talanta, 2020, 219: 121348.

doi: 10.1016/j.talanta.2020.121348
[37]
MARGUÍ E, QUERALT I, HIDALGO M. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. TrAC Trends in Analytical Chemistry, 2009, 28(3): 362-372.

doi: 10.1016/j.trac.2008.11.011
[38]
WAN M X, HU W Y, QU M K, TIAN K, ZHANG H D, WANG Y, HUANG B. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils. Ecological Indicators, 2019, 101: 583-594.

doi: 10.1016/j.ecolind.2019.01.069
[39]
RODRÍGUEZ-SALDAÑA V, FOBIL J, BASU N. Lead (Pb) exposure assessment in dried blood spots using Total Reflection X-Ray Fluorescence (TXRF). Environmental Research, 2021, 198: 110444.

doi: 10.1016/j.envres.2020.110444
[40]
SHEKHAR R, REDDY M A, THANGAVEL S, SUNITHA Y, SAHAYAM A C, KUMAR S. Characterization of hafnium metal for its impurities by glow discharge quadrupole mass spectrometry using a non-matrix matched standard. Atomic Spectroscopy, 2020, 41(3): 103-109.

doi: 10.46770/AS
[41]
GANEEV A, TITOVA A, KOROTETSKI B, GUBAL A, SOLOVYEV N, VYACHESLAVOV A, IAKOVLEVA E, SILLANPÄÄ M. Direct quantification of major and trace elements in geological samples by time-of-flight mass spectrometry with a pulsed glow discharge. Analytical Letters, 2019, 52(4): 671-684.

doi: 10.1080/00032719.2018.1485025
[42]
毛雪飞, 刘霁欣, 钱永忠. 土壤重金属快速检测技术研究进展. 中国农业科学, 2019, 52(24): 4555-4566. doi: 10.3864/j.issn.0578-1752.2019.24.010.
MAO X F, LIU J X, QIAN Y Z. Technical review of fast detection of heavy metals in soil. Scientia Agricultura Sinica, 2019, 52(24): 4555-4566. doi: 10.3864/j.issn.0578-1752.2019.24.010. (in Chinese)
[43]
ZHANG Y R, LIU J X, MAO X F, CHEN G Y, TIAN D. Review of miniaturized and portable optical emission spectrometry based on Microplasma for elemental analysis. TrAC Trends in Analytical Chemistry, 2021, 144: 116437.

doi: 10.1016/j.trac.2021.116437
[44]
FADEEVA V P, TIKHOVA V D, NIKULICHEVA O N. Elemental analysis of organic compounds with the use of automated CHNS analyzers. Journal of Analytical Chemistry, 2008, 63(11): 1094-1106.

doi: 10.1134/S1061934808110142
[45]
LI C L, KANG X M, NIE J, LI A, FARAG M A, LIU C L, ROGERS K M, XIAO J B, YUAN Y W. Recent advances in Chinese food authentication and origin verification using isotope ratio mass spectrometry. Food Chemistry, 2023, 398: 133896.

doi: 10.1016/j.foodchem.2022.133896
[46]
LE JUGE C, POINT D, LAGANE C, REYNAUD S, GRASSL B, ALLAN I, GIGAULT J. Volatile organic compounds identification and specific stable isotopic analysis (δ13C) in microplastics by purge and trap gas chromatography coupled to mass spectrometry and combustion isotope ratio mass spectrometry (PT-GC-MS-C-IRMS). Analytical and Bioanalytical Chemistry, 2023, 415(15): 2937-2946.

doi: 10.1007/s00216-023-04595-w
[47]
ZHAO Y, MA R, QI Y T, HE R, ZHU Z Y, WANG B, WANG Y, YAN Q L, JULIEN M, ZHOU Y P. A GC/C/IRMS-based method for position-specific carbon isotopic analysis of saturated long chain fatty acids. Organic Geochemistry, 2023, 183: 104652.

doi: 10.1016/j.orggeochem.2023.104652
[48]
李玉锋, 高愈希, 陈春英, 李柏, 赵宇亮, 柴之芳. 金属组学: 高通量分析技术进展与展望. 中国科学(B辑: 化学), 2009, 39(7): 580-589.
LI Y F, GAO Y X, CHEN C Y, LI B, ZHAO Y L, CHAI Z F. High throughput analytical techniques in metallomics and the perspectives. Science in China (Series B (Chemistry)), 2009, 39(7): 580-589. (in Chinese)
[49]
WITKOWSKA E, SZCZEPANIAK K, BIZIUK M. Some applications of neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 2005, 265(1): 141-150.

doi: 10.1007/s10967-005-0799-1
[50]
ABD EL-SAMAD M, HANAFI H A. Analysis of toxic heavy metals in cigarettes by Instrumental Neutron Activation Analysis. Journal of Taibah University for Science, 2017, 11(5): 822-829.

doi: 10.1016/j.jtusci.2017.01.007
[51]
TEJEDA MAZOLA Y, DE NADAI FERNANDES E A, SARRIÉS G A, BACCHI M A, GONZAGA C L. Neutron activation analysis and data mining techniques to discriminate between beef cattle diets. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322(3): 1571-1578.

doi: 10.1007/s10967-019-06874-2
[52]
MENG R N, ZHU Q J, LONG T Y, HE X L, LUO Z W, GU R H, WANG W Z, XIANG P. The innovative and accurate detection of heavy metals in foods: A critical review on electrochemical sensors. Food Control, 2023, 150: 109743.

doi: 10.1016/j.foodcont.2023.109743
[53]
MIRZAEI KARAZAN Z, ROUSHANI M, JAFAR HOSEINI S. Simultaneous electrochemical sensing of heavy metal ions (Zn2+, Cd2+, Pb2+, and Hg2+) in food samples using a covalent organic framework/ carbon black modified glassy carbon electrode. Food Chemistry, 2024, 442: 138500.

doi: 10.1016/j.foodchem.2024.138500
[54]
ZHANG Y J, LIAO C R, XU Q B, XU K, WANG L, PI M Y, LI P. A novel electrochemical sensing platform for the specific detection of Zn2+ ion. Microchemical Journal, 2025, 210: 112919.

doi: 10.1016/j.microc.2025.112919
[55]
ZHANG Y X, HU A Y, XIA D W, HWANG S, SAINIO S, NORDLUND D, MICHEL F M, MOORE R B, LI L X, LIN F. Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface. Nature Nanotechnology, 2023, 18(7): 790-797.

doi: 10.1038/s41565-023-01367-6 pmid: 37081082
[56]
POPP M, HANN S, KOELLENSPERGER G. Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry: A review. Analytica Chimica Acta, 2010, 668(2): 114-129.

doi: 10.1016/j.aca.2010.04.036
[57]
MAHER W A, ELLWOOD M J, KRIKOWA F, RABER G, FOSTER S. Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS. Journal of Analytical Atomic Spectrometry, 2015, 30(10): 2129-2183.

doi: 10.1039/C5JA00155B
[58]
ROMARÍS-HORTAS V, BERMEJO-BARRERA P, MOREDA-PIÑEIRO J, MOREDA-PIÑEIRO A. Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 2012, 745: 24-32.

doi: 10.1016/j.aca.2012.07.035
[59]
GARCÍA-BELLIDO J, FREIJE-CARRELO L, MOLDOVAN M, ENCINAR J R. Recent advances in GC-ICP-MS: Focus on the current and future impact of MS/MS technology. TrAC Trends in Analytical Chemistry, 2020, 130: 115963.

doi: 10.1016/j.trac.2020.115963
[60]
DRESSLER V L, ANTES F G, MOREIRA C M, POZEBON D, DUARTE F A. As, Hg, I, Sb, Se and Sn speciation in body fluids and biological tissues using hyphenated-ICP-MS techniques: A review. International Journal of Mass Spectrometry, 2011, 307: 149-162.

doi: 10.1016/j.ijms.2011.01.026
[61]
DOMÍNGUEZ-ÁLVAREZ J. Capillary electrophoresis coupled to electrospray mass spectrometry for the determination of organic and inorganic arsenic compounds in water samples. Talanta, 2020, 212: 120803.

doi: 10.1016/j.talanta.2020.120803
[62]
SEDIGH RAHIMABADI P, KHODAEI M, KOSWATTAGE K R. Review on applications of synchrotron-based X-ray techniques in materials characterization. X-Ray Spectrometry, 2020, 49(3): 348-373.

doi: 10.1002/xrs.v49.3
[63]
TSITSUASHVILI V S, MINKINA T M, SOLDATOV A V, NEVIDOMSKAYA D G. On synchrotron radiation for studying the transformation of toxic elements in the soil-plant system: A review. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 2021, 15(4): 814-822.
[64]
WANG Q, WEN J, HU X H, XING L, YAN C Y. Immobilization of Cr(VI) contaminated soil using green-tea impregnated attapulgite. Journal of Cleaner Production, 2021, 278: 123967.

doi: 10.1016/j.jclepro.2020.123967
[65]
PENG X, DENG Y E, LIU L, TIAN X, GANG S T, WEI Z C, ZHANG X D, YUE K. The addition of biochar as a fertilizer supplement for the attenuation of potentially toxic elements in phosphogypsum-amended soil. Journal of Cleaner Production, 2020, 277: 124052.

doi: 10.1016/j.jclepro.2020.124052
[66]
LI J Q, LI D L, ZHANG Z Y, YU C, SUN D, MO Z Y, WANG J Y, MOHAMED M, YOU H, WAN H, LI J H, HE S. Smart and sustainable crop protection: Design and evaluation of a novel α-amylase-responsive nanopesticide for effective pest control. Journal of Agricultural and Food Chemistry, 2024, 72(21): 12146-12155.

doi: 10.1021/acs.jafc.4c00980 pmid: 38747516
[67]
ONDRASEK G, KRANJČEC F, FILIPOVIĆ L, FILIPOVIĆ V, BUBALO KOVAČIĆ M, BADOVINAC I J, PETER R, PETRAVIĆ M, MACAN J, RENGEL Z. Biomass bottom ash & dolomite similarly ameliorate an acidic low-nutrient soil, improve phytonutrition and growth, but increase Cd accumulation in radish. Science of the Total Environment, 2021, 753: 141902.

doi: 10.1016/j.scitotenv.2020.141902
[68]
SUN Q, LI P, LI Y, JI N, DAI L, XIONG L, SUN Q J. Rapid production of corn starch gels with high mechanical properties through alcohol soaking. International Journal of Biological Macromolecules, 2020, 163: 1557-1564.

doi: S0141-8130(20)34129-5 pmid: 32784021
[69]
GONZALEZ J, MAO X L, ROY J, MAO S S, RUSSO R E. Comparison of 193, 213 and 266 nm laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 2002, 17(9): 1108-1113.

doi: 10.1039/B202122F
[70]
KAVČIČ A, MIKUŠ K, DEBELJAK M, TEUN VAN ELTEREN J, ARČON I, KODRE A, KUMP P, KARYDAS A G, MIGLIORI A, CZYZYCKI M, VOGEL-MIKUŠ K. Localization, ligand environment, bioavailability and toxicity of mercury in Boletus spp. and Scutiger pes -caprae-caprae mushrooms. Ecotoxicology and Environmental Safety, 2019, 184: 109623.

doi: 10.1016/j.ecoenv.2019.109623
[71]
NEVES V M, HEIDRICH G M, HANZEL F B, MULLER E I, DRESSLER V L. Rare earth elements profile in a cultivated and non-cultivated soil determined by laser ablation-inductively coupled plasma mass spectrometry. Chemosphere, 2018, 198: 409-416.

doi: S0045-6535(18)30182-6 pmid: 29421757
[72]
HARE D, AUSTIN C, DOBLE P. Quantification strategies for elemental imaging of biological samples using laser ablation- inductively coupled plasma-mass spectrometry. Analyst, 2012, 137(7): 1527-1537.

doi: 10.1039/c2an15792f
[73]
LI Y T, GUO W, HU Z C, JIN L L, HU S H, GUO Q H. Method development for direct multielement quantification by LA-ICP-MS in food samples. Journal of Agricultural and Food Chemistry, 2019, 67(3): 935-942.

doi: 10.1021/acs.jafc.8b05479 pmid: 30592410
[74]
LIU J H, ZHENG L N, LI Q, FENG L X, WANG B, CHEN M L, WANG M, WANG J H, FENG W Y. Isotope dilution LA-ICP-MS for quantitative imaging of trace elements in mouse brain sections. Analytica Chimica Acta, 2023, 1273: 341524.

doi: 10.1016/j.aca.2023.341524
[75]
SENESI G S, CABRAL J, MENEGATTI C R, MARANGONI B, NICOLODELLI G. Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: an overview of developments in the last decade (2010-2019). Part II. Crop plants and their food derivatives. TrAC Trends in Analytical Chemistry, 2019, 118: 453-469.

doi: 10.1016/j.trac.2019.05.052
[76]
KAISER J, NOVOTNÝ K, MARTIN M Z, HRDLIČKA A, MALINA R, HARTL M, ADAM V, KIZEK R. Trace elemental analysis by laser-induced breakdown spectroscopy: Biological applications. Surface Science Reports, 2012, 67(11/12): 233-243.

doi: 10.1016/j.surfrep.2012.09.001
[77]
PING J C, HAO N, GUO X T, MIAO P Q, GUAN Z Q, CHEN H Y, LIU C Q, BAI G, LI W L. Rapid and accurate identification of Panax ginseng origins based on data fusion of near-infrared and laser-induced breakdown spectroscopy. Food Research International, 2025, 204: 115925.

doi: 10.1016/j.foodres.2025.115925
[78]
LIM D, KEERTHI K, PERUMBILAVIL S, SUCHAND SANDEEP C S, ANTONY M M, MATHAM M V. A real-time on-site precision nutrient monitoring system for hydroponic cultivation utilizing LIBS. Chemical and Biological Technologies in Agriculture, 2024, 11(1): 111.

doi: 10.1186/s40538-024-00641-6
[79]
ZHAO X D, ZHAO C J, DU X F, DONG D M. Detecting and mapping harmful chemicals in fruit and vegetables using nanoparticle- enhanced laser-induced breakdown spectroscopy. Scientific Reports, 2019, 9: 906.

doi: 10.1038/s41598-018-37556-w
[80]
DAVISON C, BESTE D, BAILEY M, FELIPE-SOTELO M. Expanding the boundaries of atomic spectroscopy at the single-cell level: Critical review of SP-ICP-MS, LIBS and LA-ICP-MS advances for the elemental analysis of tissues and single cells. Analytical and Bioanalytical Chemistry, 2023, 415(28): 6931-6950.

doi: 10.1007/s00216-023-04721-8 pmid: 37162524
[81]
STRELI C, RAUWOLF M, TURYANSKAYA A, INGERLE D, WOBRAUSCHEK P. Elemental imaging of trace elements in bone samples using micro and nano-X-ray fluorescence spectrometry. Applied Radiation and Isotopes, 2019, 149: 200-205.

doi: S0969-8043(19)30169-1 pmid: 31077976
[82]
PROKEŠ R, ANTUŠKOVÁ V, ŠEFCŮ R, TROJEK T, CHLUMSKÁ Š, ČECHÁK T. Investigation of color layers of Bohemian panel paintings by confocal micro-XRF analysis. Radiation Physics and Chemistry, 2018, 151: 59-64.

doi: 10.1016/j.radphyschem.2018.05.006
[83]
XING Y, ZHANG H H, YANG Z, SONG W, LONG W Q, ZHU R R, CHANG R X, ZHANG L L. Evaluation of 20 elements in soils and sediments by ED-XRF of monochromatic excitation. Metals, 2022, 12(11): 1798.

doi: 10.3390/met12111798
[84]
AGGARWAL S K, YOU C F. A review on the determination of isotope ratios of boron with mass spectrometry. Mass Spectrometry Reviews, 2017, 36(4): 499-519.

doi: 10.1002/mas.21490 pmid: 26757103
[85]
WANG X J, BEI Q C, YANG W, ZHANG H, HAO J L, QIAN L, FENG Y C, XIE Z B. Unveiling of active diazotrophs in a flooded rice soil by combination of NanoSIMS and 15N2-DNA-stable isotope probing. Biology and Fertility of Soils, 2020, 56(8): 1189-1199.

doi: 10.1007/s00374-020-01497-2
[86]
MOORE K L, RODRÍGUEZ-RAMIRO I, JONES E R, JONES E J, RODRÍGUEZ-CELMA J, HALSEY K, DOMONEY C, SHEWRY P R, FAIRWEATHER-TAIT S, BALK J. The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Scientific Reports, 2018, 8(1): 6865.

doi: 10.1038/s41598-018-25130-3
[87]
MARZEC M E, WOJTYSIAK D, POŁTOWICZ K, NOWAK J. ToF-SIMS spectrometry to observe fatty acid profiles of breast tissues in broiler chicken subjected to varied vegetable oil diet. Journal of Mass Spectrometry, 2020, 55(3): e4486.

doi: 10.1002/jms.v55.3
[88]
DE KONING C P, GRUCHOLA S, RIEDO A, WIESENDANGER R, GRIMAUDO V, LUKMANOV R, LIGTERINK N F W, TULEJ M, WURZ P. Quantitative elemental analysis with the LMS-GT; a next-generation LIMS-TOF instrument. International Journal of Mass Spectrometry, 2021, 470: 116662.

doi: 10.1016/j.ijms.2021.116662
[89]
TULEJ M, LIGTERINK N F W, DE KONING C, GRIMAUDO V, LUKMANOV R, KERESZTES SCHMIDT P, RIEDO A, WURZ P. Current progress in femtosecond laser ablation/ionisation time-of- flight mass spectrometry. Applied Sciences, 2021, 11(6): 2562.

doi: 10.3390/app11062562
[90]
XU Z Y, HANG L, HANG W, HUANG B L. Rapid analysis of soil samples by laser ionization mass spectrometry. Atomic Spectroscopy, 2020, 41(4): 147-152.
[91]
YU X X, HE M, CHEN B B, HU B. Recent advances in single-cell analysis by inductively coupled plasma-mass spectrometry: A review. Analytica Chimica Acta, 2020, 1137: 191-207.

doi: 10.1016/j.aca.2020.07.041 pmid: 33153603
[92]
WANG H L, WANG M, WANG B, ZHENG L N, CHEN H Q, CHAI Z F, FENG W Y. Interrogating the variation of element masses and distribution patterns in single cells using ICP-MS with a high efficiency cell introduction system. Analytical and Bioanalytical Chemistry, 2017, 409(5): 1415-1423.

doi: 10.1007/s00216-016-0075-y pmid: 27909780
[93]
ZHENG L N, FENG L X, SHI J W, CHEN H Q, WANG B, WANG M, WANG H F, FENG W Y. Single-cell isotope dilution analysis with LA-ICP-MS: A new approach for quantification of nanoparticles in single cells. Analytical Chemistry, 2020, 92(21): 14339-14345.

doi: 10.1021/acs.analchem.0c01775
[94]
DAN Y B, ZHANG W L, XUE R M, MA X M, STEPHAN C, SHI H L. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environmental Science & Technology, 2015, 49(5): 3007-3014.

doi: 10.1021/es506179e
[95]
LABORDA F, BOLEA E, JIMÉNEZ-LAMANA J. Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples. Trends in Environmental Analytical Chemistry, 2016, 9: 15-23.

doi: 10.1016/j.teac.2016.02.001
[1] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[2] ZHU Yin,ZHANG Yue,YAN Han,LÜ HaiPeng,LIN Zhi. Enantiomeric Analysis of Free Amino Acids in Different Teas [J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819.
[3] LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391.
[4] CHEN YanFang,ZHANG MingWei,ZHANG Yan,DENG YuanYuan,WEI ZhenCheng,TANG XiaoJun,LIU Guang,LI Ping. Effects of Germination and Extrusion on Volatile Flavor Compounds in Brown Rice [J]. Scientia Agricultura Sinica, 2021, 54(1): 190-202.
[5] ZHAO WenHua,WANG GuiYing,XUN Wen,YU YuanRui,GE ChangRong,LIAO GuoZhou. Selection of Water-Soluble Compounds by Characteristic Flavor in Chahua Chicken Muscles Based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(8): 1627-1642.
[6] ZHAO Shan,ZHONG LingLi,ZHOU Hong,LI Xi,LEI XinYu,HUANG ShiQun,ZHENG XingGuo,FENG JunYan,LEI ShaoRong,GUO LingAn. Identification and Analysis of Phenolic Acids in Rice Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2020, 53(3): 612-631.
[7] DAI YuQiao,Lü CaiYou,HE LuNan,YI Chao,LIU XueYan,HUANG Wen,CHEN JiaMin. Metabolic Changes in the Processing of Yunkang 10 Sun-Dried Green Tea based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(2): 357-370.
[8] ZHANG LiCui,MA Chuan,FENG Mao,LI JianKe. Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(18): 3833-3845.
[9] XIAO ZhiMing, WANG Jun, SUO DeCheng, WEI ShuLin, JIA Zheng, LIU ChengXin, FAN Xia. Quantitative Determination of Diludine in Animal Feeds by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2018, 51(9): 1806-1814.
[10] ZHAO XiJuan, ZHAO WuJi, XU HuaChao. Analysis of the Fingerprints of Different Orange Varieties and Their Differential Metabolites Based on Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry and Progenesis QI [J]. Scientia Agricultura Sinica, 2018, 51(13): 2551-2560.
[11] SHAO ChenYang, Lü HaiPeng, ZHU Yin, ZHANG Yue, LIN Zhi. Enantiomeric Analysis of Volatile Terpenoids in Different Teas [J]. Scientia Agricultura Sinica, 2017, 50(6): 1109-1125.
[12] PING Hua, LI Yang, LI BingRu, HE ZhaoYing, LIU JiPei, MA ZhiHong. Simultaneous Determination of Multi Herbicides Residues in Vegetables by Dispersive Solid Phase Extraction and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2017, 50(21): 4159-4169.
[13] FAN ZiLing, XU ChuChu, SHU Shi, XIAO XinHuan, WANG Gang, BAI YunLong, ZHANG Jiang, ZHAO Chang, XIA Cheng. Plasma Metabolic Profiling of Postpartum Dairy Cows with Inactive Ovaries Based on GC/MS Technique [J]. Scientia Agricultura Sinica, 2017, 50(15): 3042-3051.
[14] SUN Ling-Wei, BAO Kai, LI Ying, LI Lan, ZHANG Hong-You, XIA Cheng, WU Ling. Plasma Metabolomics Study of Dairy Cows with Clinical and Subclinical Ketosis [J]. Scientia Agricultura Sinica, 2014, 47(8): 1588-1599.
[15] JIN Fen, WANG Jing, WEI Shan-shan, DU Xin-wei, SHAO Hua, JIN Mao-jun, WANG Shan-shan, SHE Yong-xin. Degradation Dynamics and Residues Analysis of Abamectin in Cucumber and Soil [J]. Scientia Agricultura Sinica, 2014, 47(18): 3684-3690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!