| [1] |
JONES J W, ANTLE J M, BASSO B, BOOTE K J, CONANT R T, FOSTER I, GODFRAY H C J, HERRERO M, HOWITT R E, JANSSEN S, et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 2017, 155: 269-288.
doi: 10.1016/j.agsy.2016.09.021
pmid: 28701818
|
| [2] |
ZHANG Y, HUANG G M, ZHAO Y X, LU X J, WANG Y R, WANG C Y, GUO X Y, ZHAO C J. Revolutionizing crop breeding: Next-generation artificial intelligence and big data-driven intelligent design. Engineering, 2025, 44: 245-255.
doi: 10.1016/j.eng.2024.11.034
|
| [3] |
WANG P T, LI Z, LI H, ZHANG D L, WANG W, XU X D, XIE Q G, DUAN Z K, XIA X, GUO G H, et al. Smart crops. New Crops, 2024, 1: 100007.
|
| [4] |
WILLIAMS R J P. Chemical selection of elements by cells. Coordination Chemistry Reviews, 2001, 216/217: 583-595.
doi: 10.1016/S0010-8545(00)00398-2
|
| [5] |
HARAGUCHI H. Metallomics as integrated biometal science. Journal of Analytical Atomic Spectrometry, 2004, 19(1): 5.
doi: 10.1039/b308213j
|
| [6] |
熊依杰, 欧阳荔, 刘雅琼, 解青, 王京宇. 肺癌和癌旁组织中17种微量元素的ICP-MS测定及相关研究. 质谱学报, 2005, 26(S1): 19-20, 58.
|
|
XIONG Y J, OUYANG L, LIU Y Q, XIE Q, WANG J Y. Determination of 17 elements in lung carcinomatous and pericarcinomatous tissues by inductively coupled plasma mass sepctrometry. Journal of Chinese Mass Spectrometry Society, 2005, 26(S1): 19-20, 58. (in Chinese)
|
| [7] |
SALT D E, BAXTER I, LAHNER B. Ionomics and the study of the plant ionome. Annual Review of Plant Biology, 2008, 59: 709-733.
doi: 10.1146/annurev.arplant.59.032607.092942
pmid: 18251712
|
| [8] |
LI Y F, CHEN C Y, QU Y, GAO Y X, LI B, ZHAO Y L, CHAI Z F. Metallomics, elementomics, and analytical techniques. Pure and Applied Chemistry, 2008, 80(12): 2577-2594.
doi: 10.1351/pac200880122577
|
| [9] |
LI X, LIU T P, CHANG C Y, LEI Y J, MAO X F. Analytical methodologies for agrometallomics: A critical review. Journal of Agricultural and Food Chemistry, 2021, 69(22): 6100-6118.
doi: 10.1021/acs.jafc.1c00275
|
| [10] |
WU B, BECKER J S. Imaging techniques for elements and element species in plant science. Metallomics, 2012, 4(5): 403-416.
doi: 10.1039/c2mt00002d
pmid: 22511294
|
| [11] |
NEWMAN K. Using ion-molecule reactions to overcome spectral interferences in ICP-MS: A guided inquiry approach for upper-level undergraduate and graduate students. Journal of Chemical Education, 2018, 95(7): 1211-1215.
doi: 10.1021/acs.jchemed.8b00026
|
| [12] |
FU L, SHI S Y. A novel strategy to determine the compositions of inorganic elements in fruit wines using ICP-MS/MS. Food Chemistry, 2019, 299: 125172.
doi: 10.1016/j.foodchem.2019.125172
|
| [13] |
LIU H L, MENG Q, ZHAO X, YE Y L, TONG H R. Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES)-based discrimination for the authentication of tea. Food Control, 2021, 123: 107735.
doi: 10.1016/j.foodcont.2020.107735
|
| [14] |
VAN ACKER T, THEINER S, BOLEA-FERNANDEZ E, VANHAECKE F, KOELLENSPERGER G. Inductively coupled plasma mass spectrometry. Nature Reviews Methods Primers, 2023, 3: 52.
doi: 10.1038/s43586-023-00235-w
|
| [15] |
FRAGNI R, TRIFIRÒ A, NUCCI A. Towards the development of a multi-element analysis by ICP-oa-TOF-MS for tracing the geographical origin of processed tomato products. Food Control, 2015, 48: 96-101.
doi: 10.1016/j.foodcont.2014.04.027
|
| [16] |
WYSOCKA I. Determination of rare earth elements concentrations in natural waters-A review of ICP-MS measurement approaches. Talanta, 2021, 221: 121636.
doi: 10.1016/j.talanta.2020.121636
|
| [17] |
HUANG Y, ZHANG S P, CHEN Y, WANG L, LONG Z J, HUGHES S S, NI S J, CHENG X, WANG J J, LI T, WANG R, LIU C. Tracing Pb and possible correlated Cd contamination in soils by using lead isotopic compositions. Journal of Hazardous Materials, 2020, 385: 121528.
doi: 10.1016/j.jhazmat.2019.121528
|
| [18] |
LI C F, CHU Z Y, WANG X C, FENG L J, GUO J H. A highly sensitive zirconium hydrogen phosphate emitter for Ni isotope determination using thermal ionization mass spectrometry. Atomic Spectroscopy, 2020, 41(6): 249-255.
|
| [19] |
GEANĂ E I, SANDRU C, STANCIU V, IONETE R E. Elemental profile and 87Sr/86Sr isotope ratio as fingerprints for geographical traceability of wines: An approach on Romanian wines. Food Analytical Methods, 2017, 10(1): 63-73.
doi: 10.1007/s12161-016-0550-2
|
| [20] |
MONTGOMERY J, EVANS J A, HORSTWOOD M S A. Evidence for long-term averaging of strontium in bovine enamel using TIMS and LA-MC-ICP-MS strontium isotope intra-molar profiles. Environmental Archaeology, 2010, 15(1): 32-42.
doi: 10.1179/146141010X12640787648694
|
| [21] |
TURNLUND J R. Zinc, copper, and iron nutrition studied with enriched stable isotopes. Biological Trace Element Research, 1987, 12(1): 247-257.
doi: 10.1007/BF02796684
pmid: 24254607
|
| [22] |
AGGARWAL S K. Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology-A review. Analytical Methods, 2016, 8(5): 942-957.
doi: 10.1039/C5AY02816G
|
| [23] |
CHOI J Y, HABTE G, KHAN N, NHO E Y, HONG J H, CHOI H, PARK K S, KIM K S. Determination of toxic heavy metals in Echinodermata and Chordata species from South Korea. Food Additives & Contaminants Part B, Surveillance, 2014, 7(4): 295-301.
|
| [24] |
SHARMA N, SINGH V K, LEE Y, KUMAR S, RAI P K, PATHAK A K, SINGH V K. Analysis of mineral elements in medicinal plant samples using LIBS and ICP-OES. Atomic Spectroscopy, 2020, 41(6): 234-241.
|
| [25] |
AKOGWU R D, AGUORU C U, IKPA F, OGBONNA I, OLASAN J O. Relevance of industrial wastes from jatrophacurcas L. seed in agricultural biotechnology. International Journal of Environment, Agriculture and Biotechnology, 2018, 3(4): 1546-1550.
doi: 10.22161/ijeab
|
| [26] |
GALLEGO RÍOS S E, PEÑUELA G A, RAMÍREZ BOTERO C M. Method validation for the determination of mercury, cadmium, lead, arsenic, copper, iron, and zinc in fish through microwave-induced plasma optical emission spectrometry (MIP OES). Food Analytical Methods, 2017, 10(10): 3407-3414.
doi: 10.1007/s12161-017-0908-0
|
| [27] |
YAO Z Z, LIU M T, LIU J X, MAO X F, NA X, MA Z H, QIAN Y Z. Sensitivity enhancement of inorganic arsenic analysis by in situ microplasma preconcentration coupled with liquid chromatography atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2020, 35(8): 1654-1663.
doi: 10.1039/D0JA00222D
|
| [28] |
LI C, LIU Z, WANG P Y, ZHANG M, YANG Y, YU K X. A hybrid approach for Corona discharge in needle electrode configuration: In a large-scale space. Plasma Sources Science and Technology, 2020, 29(4): 045011.
doi: 10.1088/1361-6595/ab708b
|
| [29] |
LI M T, DENG Y J, ZHENG C B, JIANG X M, HOU X D. Hydride generation-point discharge Microplasma-optical emission spectrometry for the determination of trace As, Bi, Sb and Sn. Journal of Analytical Atomic Spectrometry, 2016, 31(12): 2427-2433.
doi: 10.1039/C6JA00341A
|
| [30] |
LIU X, LIU Z F, ZHU Z L, HE D, YAO S Q, ZHENG H T, HU S H. Generation of volatile cadmium and zinc species based on solution anode glow discharge induced plasma electrochemical processes. Analytical Chemistry, 2017, 89(6): 3739-3746.
doi: 10.1021/acs.analchem.7b00126
pmid: 28205438
|
| [31] |
GUO X H, PENG X X, LI Q, MO J M, DU Y P, WANG Z. Ultra-sensitive determination of inorganic arsenic valence by solution cathode glow discharge-atomic emission spectrometry coupled with hydride generation. Journal of Analytical Atomic Spectrometry, 2017, 32(12): 2416-2422.
doi: 10.1039/C7JA00228A
|
| [32] |
ZHAO Z J, DAI J X, WANG T Z, NIU G H, HE F Y, DUAN Y X. Development of microwave plasma proton transfer reaction mass spectrometry (MWP-PTR-MS) for on-line monitoring of volatile organic compounds: Design, characterization and performance evaluation. Talanta, 2020, 208: 120468.
doi: 10.1016/j.talanta.2019.120468
|
| [33] |
ZHAN X F, ZHAO Z J, YUAN X, WANG Q H, LI D D, XIE H, LI X M, ZHOU M G, DUAN Y X. Microwave-induced plasma desorption/ ionization source for ambient mass spectrometry. Analytical Chemistry, 2013, 85(9): 4512-4519.
doi: 10.1021/ac400296v
|
| [34] |
MAO X F, QI Y H, HUANG J W, LIU J X, CHEN G Y, NA X, WANG M, QIAN Y Z. Ambient-temperature trap/release of arsenic by dielectric barrier discharge and its application to ultratrace arsenic determination in surface water followed by atomic fluorescence spectrometry. Analytical Chemistry, 2016, 88(7): 4147-4152.
doi: 10.1021/acs.analchem.6b00506
pmid: 26976077
|
| [35] |
LIU T P, LIU M T, LIU J X, MAO X F, ZHANG S S, SHAO Y B, NA X, CHEN G Y, QIAN Y Z. On-line Microplasma decomposition of gaseous phase interference for solid sampling mercury analysis in aquatic food samples. Analytica Chimica Acta, 2020, 1121: 42-49.
doi: 10.1016/j.aca.2020.04.057
|
| [36] |
LIU X Y, YU K, ZHANG H, ZHANG X N, ZHANG H N, ZHANG J, GAO J, LI N, JIANG J. A portable electromagnetic heating- Microplasma atomic emission spectrometry for direct determination of heavy metals in soil. Talanta, 2020, 219: 121348.
doi: 10.1016/j.talanta.2020.121348
|
| [37] |
MARGUÍ E, QUERALT I, HIDALGO M. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. TrAC Trends in Analytical Chemistry, 2009, 28(3): 362-372.
doi: 10.1016/j.trac.2008.11.011
|
| [38] |
WAN M X, HU W Y, QU M K, TIAN K, ZHANG H D, WANG Y, HUANG B. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils. Ecological Indicators, 2019, 101: 583-594.
doi: 10.1016/j.ecolind.2019.01.069
|
| [39] |
RODRÍGUEZ-SALDAÑA V, FOBIL J, BASU N. Lead (Pb) exposure assessment in dried blood spots using Total Reflection X-Ray Fluorescence (TXRF). Environmental Research, 2021, 198: 110444.
doi: 10.1016/j.envres.2020.110444
|
| [40] |
SHEKHAR R, REDDY M A, THANGAVEL S, SUNITHA Y, SAHAYAM A C, KUMAR S. Characterization of hafnium metal for its impurities by glow discharge quadrupole mass spectrometry using a non-matrix matched standard. Atomic Spectroscopy, 2020, 41(3): 103-109.
doi: 10.46770/AS
|
| [41] |
GANEEV A, TITOVA A, KOROTETSKI B, GUBAL A, SOLOVYEV N, VYACHESLAVOV A, IAKOVLEVA E, SILLANPÄÄ M. Direct quantification of major and trace elements in geological samples by time-of-flight mass spectrometry with a pulsed glow discharge. Analytical Letters, 2019, 52(4): 671-684.
doi: 10.1080/00032719.2018.1485025
|
| [42] |
|
|
MAO X F, LIU J X, QIAN Y Z. Technical review of fast detection of heavy metals in soil. Scientia Agricultura Sinica, 2019, 52(24): 4555-4566. doi: 10.3864/j.issn.0578-1752.2019.24.010. (in Chinese)
|
| [43] |
ZHANG Y R, LIU J X, MAO X F, CHEN G Y, TIAN D. Review of miniaturized and portable optical emission spectrometry based on Microplasma for elemental analysis. TrAC Trends in Analytical Chemistry, 2021, 144: 116437.
doi: 10.1016/j.trac.2021.116437
|
| [44] |
FADEEVA V P, TIKHOVA V D, NIKULICHEVA O N. Elemental analysis of organic compounds with the use of automated CHNS analyzers. Journal of Analytical Chemistry, 2008, 63(11): 1094-1106.
doi: 10.1134/S1061934808110142
|
| [45] |
LI C L, KANG X M, NIE J, LI A, FARAG M A, LIU C L, ROGERS K M, XIAO J B, YUAN Y W. Recent advances in Chinese food authentication and origin verification using isotope ratio mass spectrometry. Food Chemistry, 2023, 398: 133896.
doi: 10.1016/j.foodchem.2022.133896
|
| [46] |
LE JUGE C, POINT D, LAGANE C, REYNAUD S, GRASSL B, ALLAN I, GIGAULT J. Volatile organic compounds identification and specific stable isotopic analysis (δ13C) in microplastics by purge and trap gas chromatography coupled to mass spectrometry and combustion isotope ratio mass spectrometry (PT-GC-MS-C-IRMS). Analytical and Bioanalytical Chemistry, 2023, 415(15): 2937-2946.
doi: 10.1007/s00216-023-04595-w
|
| [47] |
ZHAO Y, MA R, QI Y T, HE R, ZHU Z Y, WANG B, WANG Y, YAN Q L, JULIEN M, ZHOU Y P. A GC/C/IRMS-based method for position-specific carbon isotopic analysis of saturated long chain fatty acids. Organic Geochemistry, 2023, 183: 104652.
doi: 10.1016/j.orggeochem.2023.104652
|
| [48] |
李玉锋, 高愈希, 陈春英, 李柏, 赵宇亮, 柴之芳. 金属组学: 高通量分析技术进展与展望. 中国科学(B辑: 化学), 2009, 39(7): 580-589.
|
|
LI Y F, GAO Y X, CHEN C Y, LI B, ZHAO Y L, CHAI Z F. High throughput analytical techniques in metallomics and the perspectives. Science in China (Series B (Chemistry)), 2009, 39(7): 580-589. (in Chinese)
|
| [49] |
WITKOWSKA E, SZCZEPANIAK K, BIZIUK M. Some applications of neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 2005, 265(1): 141-150.
doi: 10.1007/s10967-005-0799-1
|
| [50] |
ABD EL-SAMAD M, HANAFI H A. Analysis of toxic heavy metals in cigarettes by Instrumental Neutron Activation Analysis. Journal of Taibah University for Science, 2017, 11(5): 822-829.
doi: 10.1016/j.jtusci.2017.01.007
|
| [51] |
TEJEDA MAZOLA Y, DE NADAI FERNANDES E A, SARRIÉS G A, BACCHI M A, GONZAGA C L. Neutron activation analysis and data mining techniques to discriminate between beef cattle diets. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322(3): 1571-1578.
doi: 10.1007/s10967-019-06874-2
|
| [52] |
MENG R N, ZHU Q J, LONG T Y, HE X L, LUO Z W, GU R H, WANG W Z, XIANG P. The innovative and accurate detection of heavy metals in foods: A critical review on electrochemical sensors. Food Control, 2023, 150: 109743.
doi: 10.1016/j.foodcont.2023.109743
|
| [53] |
MIRZAEI KARAZAN Z, ROUSHANI M, JAFAR HOSEINI S. Simultaneous electrochemical sensing of heavy metal ions (Zn2+, Cd2+, Pb2+, and Hg2+) in food samples using a covalent organic framework/ carbon black modified glassy carbon electrode. Food Chemistry, 2024, 442: 138500.
doi: 10.1016/j.foodchem.2024.138500
|
| [54] |
ZHANG Y J, LIAO C R, XU Q B, XU K, WANG L, PI M Y, LI P. A novel electrochemical sensing platform for the specific detection of Zn2+ ion. Microchemical Journal, 2025, 210: 112919.
doi: 10.1016/j.microc.2025.112919
|
| [55] |
ZHANG Y X, HU A Y, XIA D W, HWANG S, SAINIO S, NORDLUND D, MICHEL F M, MOORE R B, LI L X, LIN F. Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface. Nature Nanotechnology, 2023, 18(7): 790-797.
doi: 10.1038/s41565-023-01367-6
pmid: 37081082
|
| [56] |
POPP M, HANN S, KOELLENSPERGER G. Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry: A review. Analytica Chimica Acta, 2010, 668(2): 114-129.
doi: 10.1016/j.aca.2010.04.036
|
| [57] |
MAHER W A, ELLWOOD M J, KRIKOWA F, RABER G, FOSTER S. Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS. Journal of Analytical Atomic Spectrometry, 2015, 30(10): 2129-2183.
doi: 10.1039/C5JA00155B
|
| [58] |
ROMARÍS-HORTAS V, BERMEJO-BARRERA P, MOREDA-PIÑEIRO J, MOREDA-PIÑEIRO A. Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 2012, 745: 24-32.
doi: 10.1016/j.aca.2012.07.035
|
| [59] |
GARCÍA-BELLIDO J, FREIJE-CARRELO L, MOLDOVAN M, ENCINAR J R. Recent advances in GC-ICP-MS: Focus on the current and future impact of MS/MS technology. TrAC Trends in Analytical Chemistry, 2020, 130: 115963.
doi: 10.1016/j.trac.2020.115963
|
| [60] |
DRESSLER V L, ANTES F G, MOREIRA C M, POZEBON D, DUARTE F A. As, Hg, I, Sb, Se and Sn speciation in body fluids and biological tissues using hyphenated-ICP-MS techniques: A review. International Journal of Mass Spectrometry, 2011, 307: 149-162.
doi: 10.1016/j.ijms.2011.01.026
|
| [61] |
DOMÍNGUEZ-ÁLVAREZ J. Capillary electrophoresis coupled to electrospray mass spectrometry for the determination of organic and inorganic arsenic compounds in water samples. Talanta, 2020, 212: 120803.
doi: 10.1016/j.talanta.2020.120803
|
| [62] |
SEDIGH RAHIMABADI P, KHODAEI M, KOSWATTAGE K R. Review on applications of synchrotron-based X-ray techniques in materials characterization. X-Ray Spectrometry, 2020, 49(3): 348-373.
doi: 10.1002/xrs.v49.3
|
| [63] |
TSITSUASHVILI V S, MINKINA T M, SOLDATOV A V, NEVIDOMSKAYA D G. On synchrotron radiation for studying the transformation of toxic elements in the soil-plant system: A review. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 2021, 15(4): 814-822.
|
| [64] |
WANG Q, WEN J, HU X H, XING L, YAN C Y. Immobilization of Cr(VI) contaminated soil using green-tea impregnated attapulgite. Journal of Cleaner Production, 2021, 278: 123967.
doi: 10.1016/j.jclepro.2020.123967
|
| [65] |
PENG X, DENG Y E, LIU L, TIAN X, GANG S T, WEI Z C, ZHANG X D, YUE K. The addition of biochar as a fertilizer supplement for the attenuation of potentially toxic elements in phosphogypsum-amended soil. Journal of Cleaner Production, 2020, 277: 124052.
doi: 10.1016/j.jclepro.2020.124052
|
| [66] |
LI J Q, LI D L, ZHANG Z Y, YU C, SUN D, MO Z Y, WANG J Y, MOHAMED M, YOU H, WAN H, LI J H, HE S. Smart and sustainable crop protection: Design and evaluation of a novel α-amylase-responsive nanopesticide for effective pest control. Journal of Agricultural and Food Chemistry, 2024, 72(21): 12146-12155.
doi: 10.1021/acs.jafc.4c00980
pmid: 38747516
|
| [67] |
ONDRASEK G, KRANJČEC F, FILIPOVIĆ L, FILIPOVIĆ V, BUBALO KOVAČIĆ M, BADOVINAC I J, PETER R, PETRAVIĆ M, MACAN J, RENGEL Z. Biomass bottom ash & dolomite similarly ameliorate an acidic low-nutrient soil, improve phytonutrition and growth, but increase Cd accumulation in radish. Science of the Total Environment, 2021, 753: 141902.
doi: 10.1016/j.scitotenv.2020.141902
|
| [68] |
SUN Q, LI P, LI Y, JI N, DAI L, XIONG L, SUN Q J. Rapid production of corn starch gels with high mechanical properties through alcohol soaking. International Journal of Biological Macromolecules, 2020, 163: 1557-1564.
doi: S0141-8130(20)34129-5
pmid: 32784021
|
| [69] |
GONZALEZ J, MAO X L, ROY J, MAO S S, RUSSO R E. Comparison of 193, 213 and 266 nm laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 2002, 17(9): 1108-1113.
doi: 10.1039/B202122F
|
| [70] |
KAVČIČ A, MIKUŠ K, DEBELJAK M, TEUN VAN ELTEREN J, ARČON I, KODRE A, KUMP P, KARYDAS A G, MIGLIORI A, CZYZYCKI M, VOGEL-MIKUŠ K. Localization, ligand environment, bioavailability and toxicity of mercury in Boletus spp. and Scutiger pes -caprae-caprae mushrooms. Ecotoxicology and Environmental Safety, 2019, 184: 109623.
doi: 10.1016/j.ecoenv.2019.109623
|
| [71] |
NEVES V M, HEIDRICH G M, HANZEL F B, MULLER E I, DRESSLER V L. Rare earth elements profile in a cultivated and non-cultivated soil determined by laser ablation-inductively coupled plasma mass spectrometry. Chemosphere, 2018, 198: 409-416.
doi: S0045-6535(18)30182-6
pmid: 29421757
|
| [72] |
HARE D, AUSTIN C, DOBLE P. Quantification strategies for elemental imaging of biological samples using laser ablation- inductively coupled plasma-mass spectrometry. Analyst, 2012, 137(7): 1527-1537.
doi: 10.1039/c2an15792f
|
| [73] |
LI Y T, GUO W, HU Z C, JIN L L, HU S H, GUO Q H. Method development for direct multielement quantification by LA-ICP-MS in food samples. Journal of Agricultural and Food Chemistry, 2019, 67(3): 935-942.
doi: 10.1021/acs.jafc.8b05479
pmid: 30592410
|
| [74] |
LIU J H, ZHENG L N, LI Q, FENG L X, WANG B, CHEN M L, WANG M, WANG J H, FENG W Y. Isotope dilution LA-ICP-MS for quantitative imaging of trace elements in mouse brain sections. Analytica Chimica Acta, 2023, 1273: 341524.
doi: 10.1016/j.aca.2023.341524
|
| [75] |
SENESI G S, CABRAL J, MENEGATTI C R, MARANGONI B, NICOLODELLI G. Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: an overview of developments in the last decade (2010-2019). Part II. Crop plants and their food derivatives. TrAC Trends in Analytical Chemistry, 2019, 118: 453-469.
doi: 10.1016/j.trac.2019.05.052
|
| [76] |
KAISER J, NOVOTNÝ K, MARTIN M Z, HRDLIČKA A, MALINA R, HARTL M, ADAM V, KIZEK R. Trace elemental analysis by laser-induced breakdown spectroscopy: Biological applications. Surface Science Reports, 2012, 67(11/12): 233-243.
doi: 10.1016/j.surfrep.2012.09.001
|
| [77] |
PING J C, HAO N, GUO X T, MIAO P Q, GUAN Z Q, CHEN H Y, LIU C Q, BAI G, LI W L. Rapid and accurate identification of Panax ginseng origins based on data fusion of near-infrared and laser-induced breakdown spectroscopy. Food Research International, 2025, 204: 115925.
doi: 10.1016/j.foodres.2025.115925
|
| [78] |
LIM D, KEERTHI K, PERUMBILAVIL S, SUCHAND SANDEEP C S, ANTONY M M, MATHAM M V. A real-time on-site precision nutrient monitoring system for hydroponic cultivation utilizing LIBS. Chemical and Biological Technologies in Agriculture, 2024, 11(1): 111.
doi: 10.1186/s40538-024-00641-6
|
| [79] |
ZHAO X D, ZHAO C J, DU X F, DONG D M. Detecting and mapping harmful chemicals in fruit and vegetables using nanoparticle- enhanced laser-induced breakdown spectroscopy. Scientific Reports, 2019, 9: 906.
doi: 10.1038/s41598-018-37556-w
|
| [80] |
DAVISON C, BESTE D, BAILEY M, FELIPE-SOTELO M. Expanding the boundaries of atomic spectroscopy at the single-cell level: Critical review of SP-ICP-MS, LIBS and LA-ICP-MS advances for the elemental analysis of tissues and single cells. Analytical and Bioanalytical Chemistry, 2023, 415(28): 6931-6950.
doi: 10.1007/s00216-023-04721-8
pmid: 37162524
|
| [81] |
STRELI C, RAUWOLF M, TURYANSKAYA A, INGERLE D, WOBRAUSCHEK P. Elemental imaging of trace elements in bone samples using micro and nano-X-ray fluorescence spectrometry. Applied Radiation and Isotopes, 2019, 149: 200-205.
doi: S0969-8043(19)30169-1
pmid: 31077976
|
| [82] |
PROKEŠ R, ANTUŠKOVÁ V, ŠEFCŮ R, TROJEK T, CHLUMSKÁ Š, ČECHÁK T. Investigation of color layers of Bohemian panel paintings by confocal micro-XRF analysis. Radiation Physics and Chemistry, 2018, 151: 59-64.
doi: 10.1016/j.radphyschem.2018.05.006
|
| [83] |
XING Y, ZHANG H H, YANG Z, SONG W, LONG W Q, ZHU R R, CHANG R X, ZHANG L L. Evaluation of 20 elements in soils and sediments by ED-XRF of monochromatic excitation. Metals, 2022, 12(11): 1798.
doi: 10.3390/met12111798
|
| [84] |
AGGARWAL S K, YOU C F. A review on the determination of isotope ratios of boron with mass spectrometry. Mass Spectrometry Reviews, 2017, 36(4): 499-519.
doi: 10.1002/mas.21490
pmid: 26757103
|
| [85] |
WANG X J, BEI Q C, YANG W, ZHANG H, HAO J L, QIAN L, FENG Y C, XIE Z B. Unveiling of active diazotrophs in a flooded rice soil by combination of NanoSIMS and 15N2-DNA-stable isotope probing. Biology and Fertility of Soils, 2020, 56(8): 1189-1199.
doi: 10.1007/s00374-020-01497-2
|
| [86] |
MOORE K L, RODRÍGUEZ-RAMIRO I, JONES E R, JONES E J, RODRÍGUEZ-CELMA J, HALSEY K, DOMONEY C, SHEWRY P R, FAIRWEATHER-TAIT S, BALK J. The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Scientific Reports, 2018, 8(1): 6865.
doi: 10.1038/s41598-018-25130-3
|
| [87] |
MARZEC M E, WOJTYSIAK D, POŁTOWICZ K, NOWAK J. ToF-SIMS spectrometry to observe fatty acid profiles of breast tissues in broiler chicken subjected to varied vegetable oil diet. Journal of Mass Spectrometry, 2020, 55(3): e4486.
doi: 10.1002/jms.v55.3
|
| [88] |
DE KONING C P, GRUCHOLA S, RIEDO A, WIESENDANGER R, GRIMAUDO V, LUKMANOV R, LIGTERINK N F W, TULEJ M, WURZ P. Quantitative elemental analysis with the LMS-GT; a next-generation LIMS-TOF instrument. International Journal of Mass Spectrometry, 2021, 470: 116662.
doi: 10.1016/j.ijms.2021.116662
|
| [89] |
TULEJ M, LIGTERINK N F W, DE KONING C, GRIMAUDO V, LUKMANOV R, KERESZTES SCHMIDT P, RIEDO A, WURZ P. Current progress in femtosecond laser ablation/ionisation time-of- flight mass spectrometry. Applied Sciences, 2021, 11(6): 2562.
doi: 10.3390/app11062562
|
| [90] |
XU Z Y, HANG L, HANG W, HUANG B L. Rapid analysis of soil samples by laser ionization mass spectrometry. Atomic Spectroscopy, 2020, 41(4): 147-152.
|
| [91] |
YU X X, HE M, CHEN B B, HU B. Recent advances in single-cell analysis by inductively coupled plasma-mass spectrometry: A review. Analytica Chimica Acta, 2020, 1137: 191-207.
doi: 10.1016/j.aca.2020.07.041
pmid: 33153603
|
| [92] |
WANG H L, WANG M, WANG B, ZHENG L N, CHEN H Q, CHAI Z F, FENG W Y. Interrogating the variation of element masses and distribution patterns in single cells using ICP-MS with a high efficiency cell introduction system. Analytical and Bioanalytical Chemistry, 2017, 409(5): 1415-1423.
doi: 10.1007/s00216-016-0075-y
pmid: 27909780
|
| [93] |
ZHENG L N, FENG L X, SHI J W, CHEN H Q, WANG B, WANG M, WANG H F, FENG W Y. Single-cell isotope dilution analysis with LA-ICP-MS: A new approach for quantification of nanoparticles in single cells. Analytical Chemistry, 2020, 92(21): 14339-14345.
doi: 10.1021/acs.analchem.0c01775
|
| [94] |
DAN Y B, ZHANG W L, XUE R M, MA X M, STEPHAN C, SHI H L. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environmental Science & Technology, 2015, 49(5): 3007-3014.
doi: 10.1021/es506179e
|
| [95] |
LABORDA F, BOLEA E, JIMÉNEZ-LAMANA J. Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples. Trends in Environmental Analytical Chemistry, 2016, 9: 15-23.
doi: 10.1016/j.teac.2016.02.001
|