Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (1): 179-189.doi: 10.3864/j.issn.0578-1752.2026.01.013

• HORTICULTURE • Previous Articles     Next Articles

Screening of Key Genes Related to Gibberellic Acid Regulation of Rachis Hardening in Honey Grapes

WANG SiQi1(), ZOU LiRen2, BAI RuiWen2, YAN Ke2, WANG SiYang1, QI XiaoGuang2, SHEN HaiLin2,*(), WEN JingHui2,*()   

  1. 1 Department of Agriculture Science, Yanbian University, Yanji 133002, Jilin
    2 Institute of Pomology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin
  • Received:2025-06-09 Accepted:2025-08-04 Online:2026-01-01 Published:2026-01-07
  • Contact: SHEN HaiLin, WEN JingHui

Abstract:

【Objective】Gibberellins treatment usually leads to an increase in the grape rachis hardening. Under the treatment of gibberellic acid, study the morphological and transcriptomic differences, screen gibberellic acid related functional genes, would help develop grape rachis softening measures in production. 【Method】The Honey grape was treated with gibberellic acid at the flowering stage, and the water treatment was used as the control. The middle part of the rachis was collected for morphological observation and transcriptomic analysis on the 15th day after treatment. The differentially expressed genes (DEGs) related to lignin synthesis were screened between the control and gibberellic acid treatment, and real-time fluorescent quantitative RT-qPCR was used to verify their expression levels. In order to identify the key genes involved in rachis hardening, a correlation analysis was conducted between phenotypic traits, key differentially expressed genes, related enzyme activities, and lignin content. 【Result】After gibberellic acid treatment, no visible "intercellular space" was observed between the xylem and the cambium. Cellulose structures were observed in the epidermis, phloem, and pith. A total of 4459 DEGs were identified, among which 26 were involved in the phenylpropanoid biosynthesis pathway-a key route for lignin formation. Four key differentially expressed genes (F6HNF5 (Vitvi13g00622), D7SYR4 (Vitvi01g00658), F6H218 (Vitvi19g00186), and F6GS10 (Vitvi17g00898)) were screened from the pathway. Their qRT-PCR expression patterns were consistent with the trends in the transcriptomic analysis. The activities of phenylalanine ammonia-lyase (PAL) and cinnamaldehyde dehydrogenase (CAD) which are regulated by these genes increased significantly and lignin content increased substantially. These results indicate that the four lignin synthesis genes screened are pivotal in the process of rachis hardening. 【Conclusion】Gibberellic acid treatment caused significant changes in the morphological structure of grape rachis. F6HNF5, D7SYR4, F6H218 and F6GS10 may be the key genes affecting rachis hardening of 'Honey' grape.

Key words: grapes, gibberellic acid treatment, rachis hardening, transcriptome, differentially expressed genes

Table 1

Primer sequence and target gene fragment size"

Ensemble名称 Ensemble name 基因 Gene 引物序列 Primer sequence (5′-3′) 目的片段大小 Target fragment size (bp)
Vitvi01g00658 D7STR4 F:ATGTTGTTGCACTGGCAGATG
R:CTTTGGATGAAATGACCTTGCCC
229
Vitvi19g00186 F6H218 F:GCTGAGAACGGGCCTGATAC
R:GAGGAAGACCCGAAGTTGGG
226
Vitvi13g00622 F6HNF5 F:CTGGATGAGGTGAAGCGGATG
R:GCACCGAAACCTGTGGTCAC
227
Vitvi17g00898 F6GSI0 F:CGTCTTGCTGCATTGGAGATGATTC
R:GCAGGTTTGAGCCCTTGTCATG
258
UBQ-1 F:AGTAGATGACTGGATTGGAGGT
R:TGGTGGTATTATTGAGCCATCCTT
80

Table 2

Phenotypic changes of rachis after gibberellic acid treatment"

样品
Type
长度
Length (cm)
粗度
Width (cm)
硬度
Hardening (N)
对照CK 2.91±0.22b 0.43±0.03b 11.54±0.86b
处理S1 4.23±0.70a 0.62±0.10a 31.60±0.65a

Fig. 1

Paraffin section of grape rachis (cross section) CK: Control group, S1: Treatment group. The same as below. a: Pith; b: Xylem; c: Cambium; d: Phloem; e: Cortex; f: Epidermis. Microscope magnification is 4×"

Fig. 2

Lignin content and related enzyme activity of grape rachis A: Lignin content; B: Phenylalanine ammonia-lyase activity; C: Cinnamyl alcohol dehydrogenase activity. Different small letters in the same group meant significant difference (P<0.05). The same as below"

Fig. 3

The correlation coefficient heat map and expression histogram of gene expression level between samples after gibberellic acid treatment A: Heatmap of correlation coefficient of gene expression level between samples; B: Gene expression histogram"

Fig. 4

GO enrichment classification histogram of differentially expressed genes between samples after gibberellic acid treatment"

Fig. 5

KEGG enrichment Top20 histogram of differentially expressed genes between samples after gibberellic acid treatment"

Fig. 6

Phenylalanine metabolism pathway color chart Significantly up-regulated genes are marked as red, the darker the color, the greater the log2(FC); Significantly down-regulated genes were labeled green, and the darker the color, the smaller the log2(FC)"

Fig. 7

The qRT-PCR verification of four key genes in phenylalanine metabolic pathway A: FPKM expression; B: Real-time PCR verification of 4 key genes. *: P≤0.05; **: P≤0.01; ***: P≤0.001"

Table 3

Correlation analysis of rachis hardening"

指标
Indicators
F6HNF5 D7SYR4 F6H218 F6GS10 苯丙氨酸解氨酶
PAL
肉桂醇脱氢酶
CAD
木质素
Lignin
穗轴硬度
Rhachis hardening
F6HNF5 1
D7SYR4 0.960** 1
F6H218 0.906* 0.773 1
F6GS10 0.981** 0.975** 0.859* 1
苯丙氨酸解氨酶
PAL
0.975** 0.913* 0.942** 0.973** 1
肉桂醇脱氢酶
CAD
0.964** 0.874* 0.899* 0.931** 0.942** 1
木质素 Lignin 0.940** 0.941** 0.764 0.899* 0.867* 0.872* 1
穗轴硬度
Rhachis hardening
0.978** 0.967** 0.831* 0.977** 0.931** 0.953** 0.907* 1
[1]
陈烨锜, 庞柳, 陈小央, 郑婷, 向江, 魏灵珠, 吴江, 徐凯, 程建徽. 基于不同方法综合评价浙北平原地区101份鲜食葡萄果实品质. 果树学报, 2024, 41(12): 2377-2388.
CHEN Y Q, PANG L, CHEN X Y, ZHENG T, XIANG J, WEI L Z, WU J, XU K, CHENG J H. Comprehensive evaluation of berry qualities of 101 table grape cultivars cultivated in northern Zhejiang plain based on different methods. Journal of Fruit Science, 2024, 41(12): 2377-2388. (in Chinese)
[2]
罗国光. 中国葡萄产业面临的历史任务: 加快由数量型向质量型转变. 果树学报, 2010, 27(3): 431-435.
LUO G G. Historic task for China’s viticulture: Transformation from quantity: Focused pattern to quality-oriented one. Journal of Fruit Science, 2010, 27(3): 431-435. (in Chinese)
[3]
YU J, PI S Q, KANG L F, TAN Q, ZHU M T. Possible mechanisms underlying the postharvest increased abscission of seeded table grape after seedless-inducing treatment. Journal of Plant Growth Regulation, 2025, 44(3): 1303-1315.

doi: 10.1007/s00344-024-11288-w
[4]
唐玄嗣. 赤霉素和氯吡脲处理对葡萄果实维管束结构及功能的影响[D]. 扬州: 扬州大学, 2024.
TANG X S. Effects of gibberellin and forchlorfenuron treatments on the structure and function of grape berry vascula[D]. Yangzhou: Yangzhou University, 2024. (in Chinese)
[5]
刘佳, 刘晓, 陈建. 四川地区赤霉素和链霉素处理对巨峰葡萄无核化及果实发育的影响. 西南农业学报, 2011, 24(1): 220-224.
LIU J, LIU X, CHEN J. Effect of GA3 and SM treatment on inducing seedless and berry growth of kyoho grape in Sichuan area. Southwest China Journal of Agricultural Sciences, 2011, 24(1): 220-224. (in Chinese)
[6]
陶建敏, 韩传光, 耿其芳, 章镇. GA3与GA4+7对京亚葡萄无核化处理果实发育的影响. 中国南方果树, 2004, 33(1): 52-53.
TAO J M, HAN C G, GENG Q F, ZHANG Z. Effect of GA3 and GA4+7 on the fruit development of Jingya grape. South China Fruits, 2004, 33(1): 52-53. (in Chinese)
[7]
郭光生, 曾炳山, 范春节, 裘珍飞. 外施GA3对巨桉木质部发育的影响. 分子植物育种, 2018, 16(2): 602-606.
GUO G S, ZENG B S, FAN C J, QIU Z F. Effect of exogenously applied GA3 on xylem development in Eucalyptus grandis. Molecular Plant Breeding, 2018, 16(2): 602-606. (in Chinese)
[8]
李哲馨, 钮世辉, 高琼, 李伟. 赤霉素调控木质部发育的细胞学研究. 北京林业大学学报, 2014, 36(2): 68-73.
LI Z X, NIU S H, GAO Q, LI W. Cytological study of gibberellin regulated xylem development. Journal of Beijing Forestry University, 2014, 36(2): 68-73. (in Chinese)
[9]
LI J Y, LIU X, CAO Z, YU Q, LI M X, QIN G H. Pomegranate ATP-binding cassette transporter PgABCG9 plays a negative regulatory role in lignin accumulation. International Journal of Biological Macromolecules, 2025, 292: 139371.

doi: 10.1016/j.ijbiomac.2024.139371
[10]
LAURA RAGNI K N. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. The Plant Cell, 2011, 23(4): 1322-1336.

doi: 10.1105/tpc.111.084020
[11]
GUO H Y, WANG Y C, LIU H Z, HU P, JIA Y Y, ZHANG C R, WANG Y M, GU S, YANG C P, WANG C. Exogenous GA3 application enhances xylem development and induces the expression of secondary wall biosynthesis related genes in Betula platyphylla. International Journal of Molecular Sciences, 2015, 16(9): 22960-22975.

doi: 10.3390/ijms160922960
[12]
NICKOLAS A ANDERSON AB Y T C. Manipulation of guaiacyl and syringyl monomer biosynthesis in an Arabidopsis cinnamyl alcohol dehydrogenase mutant results in atypical lignin biosynthesis and modified cell wall structure. The Plant Cell, 2015, 27(8): 2195-2209.

doi: 10.1105/tpc.15.00373
[13]
YAO L, ZHANG H Y, LIU Y R, JI Q S, XIE J, ZHANG R, HUANG L Q, MEI K R, WANG J, GAO W Y. Engineering of triterpene metabolism and overexpression of the lignin biosynthesis gene PAL promotes ginsenoside Rg3 accumulation in ginseng plant chassis. Journal of Integrative Plant Biology, 2022, 64(9): 1739-1754.

doi: 10.1111/jipb.v64.9
[14]
ZHOU Z J, LI Z C, FAN F H, QIN H J, DING G J. Effects of exogenous GA3 on stem secondary growth of Pinus massoniana seedlings. Plant Physiology and Biochemistry, 2024, 206: 108254.

doi: 10.1016/j.plaphy.2023.108254
[15]
SUN L N, WANG H X, LI J H, GONG J Y, YANG S T, YANG K T, CHEN E, LI B, LU Z X, CHEN Q, et al. Mechanistic analysis of the hardening process of the thorns on stems of Bougainvillea glabra “Elizabeth Angus”. Frontiers in Genetics, 2024, 15: 1375488.

doi: 10.3389/fgene.2024.1375488
[16]
陈潇. 生长调节剂对‘阳光玫瑰’葡萄无核化及果实品质的影响[D]. 广州: 华南农业大学, 2020.
CHEN X. Effects of growth regulator on seedless and berry quality of Sunshine Muscat grape[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
[17]
CRISWELL S, GAYLORD B, PITZER C R. Histological methods for plant tissues. Journal of Histotechnology, 2025, 48(1): 58-67.

doi: 10.1080/01478885.2024.2397989
[18]
ERIKSSON M E, ISRAELSSON M, OLSSON O, MORITZ T. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 2000, 18(7): 784-788.

doi: 10.1038/77355 pmid: 10888850
[19]
FALCIONI R, MORIWAKI T, DE OLIVEIRA D M, ANDREOTTI G C, DE SOUZA L A, DOS SANTOS W D, BONATO C M, ANTUNES W C. Increased gibberellins and light levels promotes cell wall thickness and enhance lignin deposition in xylem fibers. Frontiers in Plant Science, 2018, 9: 1391.

doi: 10.3389/fpls.2018.01391 pmid: 30294339
[20]
BIEMELT S, TSCHIERSCH H, SONNEWALD U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology, 2004, 135(1): 254-265.

doi: 10.1104/pp.103.036988 pmid: 15122040
[21]
ISRAELSSON M, SUNDBERG B, MORITZ T. Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. The Plant Journal, 2005, 44(3): 494-504.

doi: 10.1111/tpj.2005.44.issue-3
[22]
PARK E J, KIM H T, CHOI Y I, LEE C H, NGUYEN V P, JEON H W, CHO J S, PHARIS R P, KUREPIN L V, KO J H. Overexpression of gibberellin 20-oxidase1from Pinus densiflora results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar. Tree Physiology, 2015, 35(11): 1264-1277.
[23]
MAURIAT M, MORITZ T. Analyses of GA20ox- and GID1-over- expressing aspen suggest that gibberellins play two distinct roles in wood formation. The Plant Journal, 2009, 58(6): 989-1003.

doi: 10.1111/tpj.2009.58.issue-6
[24]
HU J, SU H L, CAO H, WEI H B, FU X K, JIANG X M, SONG Q, HE X H, XU C Z, LUO K M. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. The Plant Cell, 2022, 34(7): 2688-2707.

doi: 10.1093/plcell/koac107
[25]
LEPELLEY M, MAHESH V, MCCARTHY J, RIGOREAU M, CROUZILLAT D, CHABRILLANGE N, DE KOCHKO A, CAMPA C. Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). Planta, 2012, 236(1): 313-326.

doi: 10.1007/s00425-012-1613-2
[26]
SAATHOFF A J, SARATH G, CHOW E K, DIEN B S, TOBIAS C M. Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS ONE, 2011, 6(1): e16416.

doi: 10.1371/journal.pone.0016416
[27]
WANG L J, LI J H, GAO J J, FENG X X, SHI Z X, GAO F Y, XU X L, YANG L Y. Inhibitory effect of chlorogenic acid on fruit russeting in ‘Golden Delicious’ apple. Scientia Horticulturae, 2014, 178: 14-22.

doi: 10.1016/j.scienta.2014.07.038
[28]
胡杰, 吴伟杰, 房祥军, 刘瑞玲, 陈慧芝, 张红印, 陈杭君, 郜海燕. 雷笋采后木纤化及调控基因差异表达研究. 中国食品学报, 2024, 24(3): 183-190.
HU J, WU W J, FANG X J, LIU R L, CHEN H Z, ZHANG H Y, CHEN H J, GAO H Y. Studies on the lignification and the differential expression of regulatory genes in Phyllostachys praecox. Journal of Chinese Institute of Food Science and Technology, 2024, 24(3): 183-190. (in Chinese)
[29]
HOU X D, WEI L L, XU Y S, KHALIL-UR-REHMAN M, FENG J, ZENG J J, TAO J M. Study on russet-related enzymatic activity and gene expression in ‘Shine Muscat’ grape treated with GA3 and CPPU. Journal of Plant Interactions, 2018, 13(1): 195-202.

doi: 10.1080/17429145.2018.1455904
[30]
KHANDAKER M M. The influence of gibberellic acid on the chlorophyll fluorescence, protein content and PAL activity of wax apple (Syzygium samarangense var. jambu madu) fruits. Australian Journal of Crop Science, 2015, 9(12): 1221-1227.
[31]
ZANG X Z, LIU J, ZHAO J H, LIU J B, REN J F, LI L Y, LI X D, YANG D Q. Uncovering mechanisms governing stem growth in peanut (Arachis hypogaea L.) with varying plant heights through integrated transcriptome and metabolomics analyses. Journal of Plant Physiology, 2023, 287: 154052.

doi: 10.1016/j.jplph.2023.154052
[32]
LI G H, SONG C, MANZOOR M A, LI D Y, CAO Y P, CAI Y P. Functional and kinetics of two efficient phenylalanine ammonia lyase from Pyrus bretschneideri. BMC Plant Biology, 2023, 23(1): 612.

doi: 10.1186/s12870-023-04586-0
[33]
SUN H Y, LI H, HUANG M, GAO Z M. Expression and function analysis of phenylalanine ammonia-lyase genes involved in Bamboo lignin biosynthesis. Physiologia Plantarum, 2024, 176(4): e14444.

doi: 10.1111/ppl.v176.4
[34]
YANG T T, ZHANG P Y, PAN J H, AMANULLAH S, LUAN F S, HAN W H, LIU H Y, WANG X Z. Genome-wide analysis of the peroxidase gene family and verification of lignin synthesis-related genes in watermelon. International Journal of Molecular Sciences, 2022, 23(2): 642.

doi: 10.3390/ijms23020642
[35]
YAN Y, WANG P, LU Y, BAI Y J, WEI Y X, LIU G Y, SHI H T. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. The Plant Journal, 2021, 107(3): 847-860.

doi: 10.1111/tpj.15350 pmid: 34022096
[36]
钟明志. 酪氨酸转氨酶基因在丹酚酸生物合成中的功能及调控机制研究[D]. 雅安: 四川农业大学, 2024.
ZHONG M Z. Study on the function and regulation mechanism of tyrosine aminotransferase gene in salvianolic acid biosynthesis[D]. Yaan: Sichuan Agricultural University, 2024. (in Chinese)
[1] WANG ZhongNi, LEI Yue, LI JiaLi, GONG YanLong, ZHU SuSong. Functions of ABC Transporter OsARG1 in Rice Heading Date Regulation [J]. Scientia Agricultura Sinica, 2026, 59(1): 1-16.
[2] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[3] SUN Ping, ZHU WenCan, LIN XianRui, WU JiaQi, CAO YiWen, CHEN ChenFei, WANG Yi, ZHU JianXi, JIA HuiJuan, QIAN MinJie, SHEN JianSheng. Effects of Rainy and Low Light Conditions on Coloration and Flavonoid Accumulation in Peach Peel Based on Metabolomic and Transcriptomic Analyses [J]. Scientia Agricultura Sinica, 2025, 58(6): 1173-1194.
[4] XIE LuLu, LI Fu, ZHANG SiYuan, GAO JianChang. Analysis of Conserved Genes in Adventitious Root Formation Based on Cross Species Transcriptomes [J]. Scientia Agricultura Sinica, 2025, 58(6): 1195-1209.
[5] GAO YanHao, WANG TingTing, BAI WeiWei, DU XingJie, LIU Xian, QIN BenYuan, FU Tong, SUN Yu, GAO TengYun, ZHANG TianLiu. The Combination of Lipidome and Transcriptome Revealed the Differential Expression Patterns of Lipid Characteristics in Different Muscle Tissues for Nanyang Cattle [J]. Scientia Agricultura Sinica, 2025, 58(6): 1239-1258.
[6] WANG Fan, LIU ChenWei, LU HongChen, XU RenChao, BIAN XiaoChun. Transcriptome Analysis of Vicia faba Response to Alternaria alternata Infection and Validation of the Disease Resistance Function of VfPR4 [J]. Scientia Agricultura Sinica, 2025, 58(22): 4656-4672.
[7] MU YingTong, LU JingShi, ZHANG YuTong, SHI FengLing. Identification of Key Drought-Responsive Genes in Upright Medicago ruthenica Sojak cv. Zhilixing Based on Transcriptome Sequencing and WGCNA [J]. Scientia Agricultura Sinica, 2025, 58(21): 4528-4543.
[8] PAN Yuan, WANG De, LIU Nan, MENG XiangLong, DAI PengBo, LI Bo, HU TongLe, WANG ShuTong, CAO KeQiang, WANG YaNan. Evaluation of the Effectiveness of Two High-Throughput Sequencing Techniques in Identifying Apple Viruses and Identification of Two Novel Viruses [J]. Scientia Agricultura Sinica, 2025, 58(2): 266-280.
[9] LIN Yan, ZHENG LingLing, TIAN Jia, WEN Yue, CHEN Chen, WANG Lei. Based on Transcriptomics and Proteomics to Provide Insights into the Molecular Mechanisms of Calyx Abscission in Korla Xiangli [J]. Scientia Agricultura Sinica, 2025, 58(18): 3744-3765.
[10] DONG Xue, CHEN MengQiu, SHAO Jin, WU XueYou, TANG PeiAn. Construction of a Differential Gene Expression and Quality Regulation Network in Stored Rice Grain Using WGCNA [J]. Scientia Agricultura Sinica, 2025, 58(14): 2885-2903.
[11] WANG HuiLing, ZHANG YingYing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Multi-Omics Analysis Reveals the Changes of Monoterpenes and Anthocyanins Accumulation During Veraison in Red Muscat-Type Grape [J]. Scientia Agricultura Sinica, 2025, 58(13): 2645-2662.
[12] CAO XiongJun, WANG Bo, HAN JiaYu, LIAO YongFeng, XIE ShuYu, BAI Yang, HUANG XiaoYun, LU Li, HUANG QiuMi, JIANG ChunFen, PAN FengPing, BAI XianJin. Research and Practice on High Photosynthetic Efficiency Breeding of Grapes in Hot Climate Regions [J]. Scientia Agricultura Sinica, 2025, 58(10): 1994-2007.
[13] CAO YanYong, CHENG ZeQiang, MA Juan, YANG WenBo, ZHU WeiHong, SUN XinYan, LI HuiMin, XIA LaiKun, DUAN CanXing. Integrating Transcriptomic and Metabolomic Analyses Reveals Maize Responses to Stalk Rot Caused by Fusarium proliferatum [J]. Scientia Agricultura Sinica, 2025, 58(1): 75-90.
[14] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[15] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!