Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (1): 161-178.doi: 10.3864/j.issn.0578-1752.2026.01.012

• HORTICULTURE • Previous Articles     Next Articles

Differences in Vascular Bundle Morphological Structure, Distribution, and Water Transport Function in Grape Fruits of Different Shapes

FENG WeiQing(), NI YuanQian(), FEI Teng, LI YouMei, XIE ZhaoSen*()   

  1. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2025-06-04 Accepted:2025-08-02 Online:2026-01-01 Published:2026-01-07
  • Contact: XIE ZhaoSen

Abstract:

【Objective】This study aims to explore the impact of different fruit shapes on vascular bundle distribution and their relationship with water transport in grape fruits. It focused on the growth patterns, vascular bundle structure, and water transport functions in five grape varieties with distinct fruit shapes, providing a theoretical basis for managing different fruit-shaped grapes in production. 【Method】Under uniform cultivation and management, four-year-old plants of ‘Xiao Lajiao’ (curved fruit), ‘Sweet Sapphire’ (long-cylindrical fruit), ‘Muscat Hamburg’ (round fruit), ‘Shine Muscat’ (elliptical fruit), and hormone-treated ‘Shine Muscat’ (inverted-ovate fruit, treated with GA3+CPPU) were used as experimental materials. The morphology and spatial distribution of vascular bundles in fruits of contrasting shapes were examined using hand sectioning, paraffin sectioning, and dye-tracer techniques. Xylem vessel number and diameter were quantified using Image J, and hydraulic conductivity was calculated with Hagen-Poiseuille equation to assess the water-transport efficiency of fruit vascular bundle in different fruit shapes.【Result】Pronounced differences were observed in vascular bundle architecture among grape fruits of contrasting shapes. After entering the fruit, the pedicel bundles diverged into peripheral, central, and embryo (in seeded cultivars) systems. ‘Xiao Lajiao’ had the most primary peripheral vascular bundles, forming numerous branches towards the fruit apex, resulting in the highest vascular bundle density in the upper fruit. ‘Sweet Sapphire’ had abundant and highly dense peripheral vascular bundles in the fruit’s middle and lower parts. Hormone-treated ‘Shine Muscat’ showed significantly increased vascular bundle number and density, indicating that exogenous hormones promote peripheral vascular bundle distribution. In terms of vascular bundle structure and water transport, ‘Sweet Sapphire’ had the largest peripheral vascular bundle cross-sectional area, while ‘Xiao Lajiao’ had the largest central vascular bundle cross-sectional area. Long-shaped grape fruits exhibited larger vascular bundle vessel diameters, resulting in higher hydraulic conductivity. Hormone treatment increased the peripheral vascular bundle area and vessel diameter in ‘Shine Muscat’, enhancing water transport. The water transport rate peaked at the green-hard stage. ‘Xiao Lajiao’ had the highest rate at 16.67 cm·h-1, while ‘Muscat Hamburg’ had the lowest at 5.67 cm·h-1. During the veraison, when the water transport rate decreased, the maximum water transport rate of ‘Sweet Sapphire’ grapes was 4.34 cm·h-1. At the mature stage, the rate declined further, but ‘Xiao Lajiao’ still maintained the highest rate at 0.69 cm·h-1 due to its vascular bundle advantages. Hormone-treated ‘Shine Muscat’ showed improved water transport rates across all stages, highlighting the close relationship between water transport rate and vascular bundle area and vessel diameter.【Conclusion】The structure and distribution of vascular bundles in grape fruits with different shapes are different, which affects the water transport function of grape fruits.

Key words: grape, fruit shape, vascular bundle, water transport, hydraulic conductivity

Fig. 1

Grape fruits of different shapes"

Fig. 2

Schematic diagram of vascular bundle distribution in grape fruits The primary peripheral vascular bundle, secondary peripheral vascular bundle, and tertiary peripheral vascular bundle, respectively"

Fig. 3

Observation of dye tracer water transport in grape fruits"

Fig. 4

Growth and development indicators of grapes with different fruit shapes"

Fig. 5

Distribution of peripheral vascular bundles in grape fruits of different shapes"

Fig. 6

Effects of different fruit shapes on the type and distribution of vascular bundles in grapes"

Fig. 7

Anatomical structure of peripheral vascular bundles in grape fruits of different shapes"

Fig. 8

Anatomical structure of central vascular bundles in grape fruits of different shapes"

Fig. 9

The effect of different fruit shapes on vascular bundle anatomy"

Fig. 10

Dye distribution in grapes of different fruit shapes"

Fig. 11

The effect of different fruit shapes on dye transport in grapes"

Table 1

Hydraulic conductivity of vascular bundles in grape fruits of different shapes (×10-8 kg·m·s-1·MPa-1)"

时期
Stage
小辣椒
Xiao Lajiao
甜蜜蓝宝石
Sapphire
玫瑰香
Muscat Hamburg
无激素处理阳光玫瑰
Hormone-free treated Shine Muscat
激素处理阳光玫瑰
Hormone-treated Shine Muscat
周缘维管束
Peripheral vascular bundle
硬核期Green-hard stage 10.94±0.04a 10.32±1.10a 3.95±0.35b 1.05±0.27c 1.51±0.02c
转色期Veraison 7.04±1.46b 10.72±1.66a 4.78±0.32bc 1.28±0.10d 2.22±0.14cd
成熟期Mature stage 9.59±0.47a 4.95±0.47b 5.70±0.70b 2.72±0.34c 2.93±0.10c
中央维管束
Central vascular bundle
硬核期Green-hard stage 18.04±0.82a 13.55±1.42b 10.71±0.23c 5.98±0.81d 5.02±0.34d
转色期Veraison 11.08±0.22a 8.36±0.83b 10.24±0.16a 7.05±0.80bc 5.94±0.26c
成熟期Mature stage 15.36±1.69a 10.09±0.32b 6.93±0.67c 7.45±0.02c 8.28±0.97bc

Fig. 12

Correlation analysis between grape fruit characteristics and vascular bundle structural parameters"

[1]
房经贵, 刘崇怀. 葡萄分子生物学. 北京: 科学出版社, 2014: 1-2.
FANG J G, LIU C H. Grape Molecular Biology. Beijing: Science Press, 2014: 1-2. (in Chinese)
[2]
李小红, 李运景, 马晓青, 郭军, 刘海礁, 郑国清, 陶建敏. 我国葡萄产业发展现状与展望. 中国南方果树, 2021, 50(5): 161-166.
LI X H, LI Y J, MA X Q, GUO J, LIU H J, ZHENG G Q, TAO J M. Current status and prospects of grape industry in China. South China Fruits, 2021, 50(5): 161-166. (in Chinese)
[3]
VAN DER KNAAP E, CHAKRABARTI M, CHU Y H, CLEVENGER J P, ILLA-BERENGUER E, HUANG Z J, KEYHANINEJAD N, MU Q, SUN L, WANG Y P, WU S. What lies beyond the eye: The molecular mechanisms regulating tomato fruit weight and shape. Frontiers in Plant Science, 2014, 5: 227.

doi: 10.3389/fpls.2014.00227 pmid: 24904622
[4]
乔军, 刘富中, 陈钰辉, 连勇. 园艺作物果形遗传研究进展. 园艺学报, 2011, 38(7): 1385-1396.
QIAO J, LIU F Z, CHEN Y H, LIAN Y. Research progress on inheritance of fruit shape in horticultural crops. Acta Horticulturae Sinica, 2011, 38(7): 1385-1396. (in Chinese)
[5]
张长运, 王境杨, 樊秀彩, 张颖, 姜建福, 刘崇怀, 孙磊. 葡萄种质资源果实形状的鉴定评价. 植物遗传资源学报, 2024, 25(11): 1815-1829.
ZHANG C Y, WANG J Y, FAN X C, ZHANG Y, JIANG J F, LIU C H, SUN L. Evaluating the variation of berry shapes in grape germplasm resources. Journal of Plant Genetic Resources, 2024, 25(11): 1815-1829. (in Chinese)
[6]
陈珂, 房以凌, 吴伟民, 张克坤, 王晨, 房经贵. 多种果形葡萄品种果实品质分析与比较. 中外葡萄与葡萄酒, 2019(2): 7-13.
CHEN K, FANG Y L, WU W M, ZHANG K K, WANG C, FANG J G. Analysis and comparison of fruit quality of various shape grape varieties. Sino-Overseas Grapevine & Wine, 2019(2): 7-13. (in Chinese)
[7]
张培安, 樊秀彩, 刘众杰, 吴伟民, 刘崇怀, 房经贵. 葡萄种质资源果形性状的分析. 园艺学报, 2018, 45(8): 1456-1466.

doi: 10.16420/j.issn.0513-353x.2017-0709
ZHANG P A, FAN X C, LIU Z J, WU W M, LIU C H, FANG J G. Investigation and analysis on the berry shape of grape germplasm resources. Acta Horticulturae Sinica, 2018, 45(8): 1456-1466. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2017-0709
[8]
EDUARDO I, ARÚS P, MONFORTE A J, OBANDO J, FERNÁNDEZ- TRUJILLO J P, MARTÍNEZ J A, ALARCÓN A L, MARÍA ÁLVAREZ J, VAN DER KNAAP E. Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. Journal of the American Society for Horticultural Science, 2007, 132(1): 80-89.

doi: 10.21273/JASHS.132.1.80
[9]
伍涛. 丰水、鸭梨果实发育过程中糖积累特性及其与果实大小关系研究[D]. 南京: 南京农业大学, 2011.
WU T. The characteristics of sugar accumulation and its relationship with fruit size during the fruit development in ‘Hosui’ and ‘Yali’ pear[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[10]
WU S, XIAO H, CABRERA A, MEULIA T, VAN DER KNAAP E. SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiology, 2011, 157(3): 1175-1186.

doi: 10.1104/pp.111.181065 pmid: 21921117
[11]
RODRÍGUEZ G R, MUÑOS S, ANDERSON C, SIM S C, MICHEL A, CAUSSE M, GARDENER B B M, FRANCIS D, VAN DER KNAAP E. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiology, 2011, 156(1): 275-285.
[12]
VISA S, CAO C, GARDENER B M, VAN DER KNAAP E. Modeling of tomato fruits into nine shape categories using elliptic Fourier shape modeling and Bayesian classification of contour morphometric data. Euphytica, 2014, 200: 429-439.

doi: 10.1007/s10681-014-1179-0
[13]
YUSTE-LISBONA F J, FERNÁNDEZ-LOZANO A, PINEDA B, BRETONES S, ORTÍZ-ATIENZA A, GARCÍA-SOGO B, MÜLLER N A, ANGOSTO T, CAPEL J, MORENO V, JIMÉNEZ-GÓMEZ J M, LOZANO R. ENO regulates tomato fruit size through the floral meristem development network. Proceedings of the National Academy of Science of the United States of America, 2020, 117(14): 8187-8195.
[14]
CIESLAK M, CHEDDADI I, BOUDON F, BALDAZZI V, GÉNARD M, GODIN C, BERTIN N. Integrating physiology and architecture in models of fruit expansion. Frontiers in Plant Science, 2016, 7: 1739.

pmid: 27917187
[15]
KURIAN A, PETER K V. Association of fruit shape index and quality characters in tomato. Indian Journal of Genetics and Plant Breeding, 1997, 57: 82-86.
[16]
LIU J, XU Y, FANG P, GUO Q, HUANG W, HOU J, WAN H, ZHANG S. Genetic regulation of fruit shape in horticultural crops: A review. Horticulturae, 2024, 10(11): 1151.

doi: 10.3390/horticulturae10111151
[17]
DETTMER J, ELO A, HELARIUTTA Y. Hormone interactions during vascular development. Plant Molecular Biology, 2009, 69: 347-360.

doi: 10.1007/s11103-008-9374-9 pmid: 18654740
[18]
CASTELAN-ESTRADA M, VIVIN P, GAUDILLLÈRE J P. Allometric relationships to estimate seasonal above-ground vegetative and reproductive biomass of Vitis vinifera L. Annals of Botany, 2002, 89(4): 401-408.

doi: 10.1093/aob/mcf059
[19]
FEI T, LI Y, LI B, XIE Z. A simple clear technique in observing vascular development of grape ovary. Phyton, 2023, 92(7): 2117-2132.

doi: 10.32604/phyton.2023.028208
[20]
WINDT C W, GERKEMA E, VAN AS H. Most water in the tomato truss is imported through the xylem, not the phloem: A nuclear magnetic resonance flow imaging study. Plant Physiology, 2009, 151: 830-842.

doi: 10.1104/pp.109.141044 pmid: 19710234
[21]
ZHANG Y, KELLER M. Grape berry transpiration is determined by vapor pressure deficit, cuticular conductance, and berry size. American Journal of Enology and Viticulture, 2015, 66(4): 454-462.

doi: 10.5344/ajev.2015.15038
[22]
唐玄嗣. 赤霉素和氯吡脲处理对葡萄果实维管束结构及功能的影响[D]. 扬州: 扬州大学, 2024.
TANG X S. Effects of gibberellin and forchlorfenuron treatments on the structure and function of grape berry vascular bundle[D]. Yangzhou: Yangzhou University, 2024. (in Chinese)
[23]
田敏, 夏琼梅, 李纪元. 植物的次生生长及其分子调控. 遗传, 2007, 29(11): 1324-1330.
TIAN M, XIA Q M, LI J Y. The secondary growth in plant and its molecular regulation. Hereditas, 2007, 29(11): 1324-1330. (in Chinese)
[24]
王丰, 程方民. 生长素对植物维管分化的信号诱导作用. 江苏林业科技, 2004(1): 40-44.
WANG F, CHENG F M. Signal induction of auxins on vascular differentiation in plant. Journal of Jiangsu Forestry Science & Technology, 2004(1): 40-44. (in Chinese)
[25]
NIEMINEN K, IMMANEN J, LAXELL M, KAUPPINEN L, TARKOWSKI P, DOLEZAL K, TÄHTIHARJU S, ELO A, DECOURTEIX M, LJUNG K, BHALERAO R, KEINONEN K, ALBERT V A, HELARIUTTA Y. Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Science of the United States of America, 2008, 105(50): 20032-20037.
[26]
LIU X, PAN Y, LIU C, DING Y, WANG X, CHENG Z, MENG H. Cucumber fruit size and shape variations explored from the aspects of morphology, histology, and endogenous hormones. Plants, 2020, 9(6): 772.

doi: 10.3390/plants9060772
[27]
姜卫兵. 植物生长调节剂对果实形状发育的影响. 果树科学, 1992(2): 117-122.
JIANG W B. Effects of plant growth regulators on fruit shape development. Journal of Fruit Science, 1992(2): 117-122. (in Chinese)
[28]
陶建敏, 庄智敏, 章镇, 韩传光, 耿其芳. GA3与GA4+7对诱导巨峰葡萄产生无核及果实发育的影响. 中外葡萄与葡萄酒, 2005(2): 15-18.
TAO J M, ZHUANG Z M, ZHANG Z, HAN C G, GENG Q F. The effect of GA3 and GA4+7 treatment on inducing seedless and berry growth of Kyoho grape. Sino-Overseas Grapevine & Wine, 2005(2): 15-18. (in Chinese)
[29]
吴俊, 钟家煌, 徐凯, 魏钦平, 魏振林. 外源GA3对藤稔葡萄果实生长发育及内源激素水平的影响. 果树学报, 2001, 18(4): 209-212.
WU J, ZHONG J H, XU K, WEI Q P, WEI Z L. Effects of exogenous GA3 on fruit development and endogenous hormones in fujiminori grape. Journal of Fruit Science, 2001, 18(4): 209-212. (in Chinese)
[30]
李婉雪. ‘阳光玫瑰’葡萄优质栽培技术研究[D]. 南京: 南京农业大学, 2016.
LI W X. The study of high quality and key cultivation techniques of ‘Shine Muscat’ grape[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[31]
孙肖瑞, 谢兆森, 尤佳玲, 李有梅. 葡萄果实中糖转运、代谢与调控研究进展. 植物生理学报, 2021, 57(3): 542-550.
SUN X R, XIE Z S, YOU J L, LI Y M. Research progress on sugar transport, metabolism and regulation in grape (Vitis vinifera) berry. Plant Physiology Journal, 2021, 57(3): 542-550. (in Chinese)

doi: 10.1104/pp.57.4.542
[32]
王乐乐, 刘春燕, 陈鹏飞, 李志慧, 王灵哲, 周龙. 葡萄大小浆果发育前期细胞学、糖积累和库强比较. 中外葡萄与葡萄酒, 2023(6): 1-9.
WANG L L, LIU C Y, CHEN P F, LI Z H, WANG L Z, ZHOU L. Comparison of cytology, sugar accumulation and sink strength in early berry development of grape varieties with different berry size. Sino-Overseas Grapevine & Wine, 2023(6): 1-9. (in Chinese)
[33]
GUZMÁN Y, PUGLIESE B, GONZÁLEZ C V, TRAVAGLIA C, BOTTINI R, BERLI F. Spray with plant growth regulators at full bloom may improve quality for storage of ‘Superior Seedless’ table grapes by modifying the vascular system of the bunch. Postharvest Biology and Technology, 2021, 176: 111522.

doi: 10.1016/j.postharvbio.2021.111522
[34]
GONZALO M J, BREWER M T, ANDERSON C, SULLIVAN D, GRAY S, VAN DER KNAAP E. Tomato fruit shape analysis using morphometric and morphology attributes implemented in tomato analyzer software program. Journal of the American Society for Horticultural Science, 2009, 134(1): 77-87.

doi: 10.21273/JASHS.134.1.77
[35]
WHITE F M. Viscous Fluid Flow. New York: McGraw-Hill, 2006.
[36]
TYREE M T, EWERS F W. The hydraulic architecture of trees and other woody plants. New Phytologist, 1991, 119(3): 345-360.

doi: 10.1111/nph.1991.119.issue-3
[37]
BONDADA B R, MATTHEWS M A, SHACKEL K A. Functional xylem in the post-veraison grape berry. Journal of Experimental Botany, 2005, 56(421): 2949-2957.

doi: 10.1093/jxb/eri291 pmid: 16207748
[38]
PERIN C, HAGEN L, GIOVINAZZO N, BESOMBES D, DOGIMONT C, PITRAT M. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Molecular Genetics and Genomics, 2002, 266(6): 933-941.

doi: 10.1007/s00438-001-0612-y
[39]
GILLASPY G, BEN-DAVID H, GRUISSEM W. Fruits: A developmental perspective. The Plant Cell, 1993, 5: 1439-1451.

doi: 10.1105/tpc.5.10.1439 pmid: 12271039
[40]
周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征. 作物学报, 2022, 48(8): 2053-2065.

doi: 10.3724/SP.J.1006.2022.12038
ZHOU C Y, LI G H, XU K, ZHANG C H, YANG Z J, ZHANG F F, HUO Z Y, DAI Q G, ZHANG H C. Characteristics of stem and leaf vascular bundles and assimilate translocation in different rice varieties. Acta Agronomica Sinica, 2022, 48(8): 2053-2065. (in Chinese)

doi: 10.3724/SP.J.1006.2022.12038
[41]
王娜. 不同耐密性玉米品种维管束特性及源库系统特点研究[D]. 沈阳: 沈阳农业大学, 2011.
WANG N. Study on vascular bundle characteristics and source-sink system features of different maize varieties with varying density tolerance[D]. Shenyang: Shenyang Agricultural University, 2011. (in Chinese)
[42]
杜玉梁, 陈叶, 刘彩虹, 尹增芳. 植物维管组织形态建成的分子调控机制. 北京林业大学学报, 2014, 36(3): 142-150.
DU Y L, CHEN Y, LIU C H, YIN Z F. Molecular regulation mechanism of vascular pattern formation in plant. Journal of Beijing Forestry University, 2014, 36(3): 142-150. (in Chinese)
[43]
LI Y, TANG X, FENG W, WAN S, BIAN Y, XIE Z. Differential regulation of xylem and phloem differentiation in grape berries by GA3 and CPPU. Scientia Horticulturae, 2024, 337: 113582.

doi: 10.1016/j.scienta.2024.113582
[44]
WANG G L, QUE F, XU Z S, WANG F, XIONG A S. Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC Plant Biology, 2015, 15: 290.

doi: 10.1186/s12870-015-0679-y
[45]
蔡仲慧. 不同赤霉素处理方式下葡萄果实品质与维管组织结构及功能机理关系探究[D]. 扬州: 扬州大学, 2023.
CAI Z H. Study on the relationship between grape berry quality and vascular structure and function mechanism under different gibberellin treatments[D]. Yangzhou: Yangzhou University, 2023. (in Chinese)
[46]
CUI Z, SUN H, LU Y, REN L, XU X, LI D, WANG R, MA C. Variations in pedicel structural properties among four pear species (Pyrus): Insights into the relationship between the fruit characteristics and the pedicel structure. Frontiers in Plant Science, 2022, 13: 815283.

doi: 10.3389/fpls.2022.815283
[47]
边媛, 狄龙, 李定红, 李新岗. 枣果实维管束解剖结构研究. 果树学报, 2015, 32(3): 448-452, 523.
BIAN Y, DI L, LI D H, LI X G. Vascular anatomy of Chinese jujube fruit. Journal of Fruit Science, 2015, 32(3): 448-452, 523. (in Chinese)
[48]
张红霞, 袁凤辉, 关德新, 王安志, 吴家兵, 金昌杰. 维管植物木质部水分传输过程的影响因素及研究进展. 生态学杂志, 2017, 36(11): 3281-3288.
ZHANG H X, YUAN F H, GUAN D X, WANG A Z, WU J B, JIN C J. A review on water transport in xylem of vascular plants and its affecting factors. Chinese Journal of Ecology, 2017, 36(11): 3281-3288. (in Chinese)
[49]
DELROT S, PICAUD S, GAUDILLÈRE J P. Water transport and aquaporins in grapevine// Molecular Biology & Biotechnology of the Grapevine. Dordrecht: Springer Netherlands, 2001: 241-262.
[50]
TYERMAN S D, TILBROOK J, PARDO C, KOTULA L, SULLIVAN W, STEUDLE E. Direct measurement of hydraulic properties in developing berries of Vitis vinifera L. cv Shiraz and Chardonnay. Australian Journal of Grape and Wine Research, 2004, 10(3): 170-181.

doi: 10.1111/j.1755-0238.2004.tb00020.x
[51]
COOMBE B G, BISHOP G R. Development of the grape berry. II. Changes in diameter and deformability during veraison. Australian Journal of Agricultural Research, 1980, 31(3): 499-509.

doi: 10.1071/AR9800499
[52]
COOMBE B G, MCCARTHY M G. Dynamics of grape berry growth and physiology of ripening. Australian Journal of Grape and Wine Research, 2000, 6(2): 131-135.

doi: 10.1111/j.1755-0238.2000.tb00171.x
[53]
谢兆森, 曹红梅, 李勃, 李为福, 许文平, 王世平. 巨峰葡萄果实不同发育期维管束水分运输变化. 中国农业科学, 2012, 45(1): 111-117. doi: 10.3864/j.issn.0578-1752.2012.01.013.
XIE Z S, CAO H M, LI B, LI W F, XU W P, WANG S P. Changes of water transportation in berry vascular bundle at different developmental phases of Kyoho grape berry. Scientia Agricultura Sinica, 2012, 45(1): 111-117. doi: 10.3864/j.issn.0578-1752.2012.01.013. (in Chinese)
[54]
DURING H, LANG A, OGGIONNI F. Patterns of water flow in riesling berries in relation to developmental changes in their xylem morphology. Vitis, 1987, 26: 123-131.
[55]
KELLER M, ZHANG Y, SHRESTHA P M, BIONDI M, BONDADA B R. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem. Plant, Cell and Environment, 2015, 38: 1048-1059.

doi: 10.1111/pce.2015.38.issue-6
[56]
CHATELET D S, ROST T L, SHACKEL K A, MATTHEWS M A. The peripheral xylem of grapevine (Vitis vinifera). I. Structural integrity in post-veraison berries. Journal of Experimental Botany, 2008, 59(8): 1987-1996.

doi: 10.1093/jxb/ern060
[57]
ROGIERS S Y, GREER D H, HATFIELD J M, ORCHARD B A, KELLER M. Solute transport into Shiraz berries during development and late-ripening shrinkage. American Journal of Enology & Viticulture, 2006, 57(1): 73-80.
[58]
TILBROOK J, TYERMAN S D. Hydraulic connection of grape berries to the vine: Varietal differences in water conductance into and out of berries, and potential for backflow. Functional Plant Biology, 2009, 36(6): 541-550.

doi: 10.1071/FP09019 pmid: 32688668
[59]
KNIPFER T, FEI J, GAMBETTA G A, MCELRONE A J, SHACKEL K A, MATTHEWS M A. Water transport properties of the grape pedicel during fruit development: Insights into xylem anatomy and function using microtomography. Plant Physiology, 2015, 168(4): 1590-1602.

doi: 10.1104/pp.15.00031 pmid: 26077763
[60]
LOMBARDO F, GRAMAZIO P, EZURA H. Increase in phloem area in the tomato Hawaiian skirt mutant is associated with enhanced sugar transport. Genes, 2021, 12: 932.

doi: 10.3390/genes12060932
[61]
PARK Y, PARK H S. Microstructural changes in the fruit and pedicel of ‘wonhwang’ oriental pear induced by exogenous gibberellins. Scientia Horticulturae, 2017, 222: 1-6.

doi: 10.1016/j.scienta.2017.05.009
[1] WANG SiQi, ZOU LiRen, BAI RuiWen, YAN Ke, WANG SiYang, QI XiaoGuang, SHEN HaiLin, WEN JingHui. Screening of Key Genes Related to Gibberellic Acid Regulation of Rachis Hardening in Honey Grapes [J]. Scientia Agricultura Sinica, 2026, 59(1): 179-189.
[2] TAN XiBei, LAN XuYing, LIU ChongHuai, FAN XiuCai, JIANG JianFu, SUN Lei, LI Peng, YU ShuXin, ZHANG Ying. Changes of Secondary Metabolites in Grapes with Different Resistance Levels in Response to White Rot Infection [J]. Scientia Agricultura Sinica, 2025, 58(9): 1767-1778.
[3] TANG XueShen, DANG ShiZhuo, ZHOU Juan, LI JiaHao, LI MeiHua, HU Hao, ZHANG YaHong. Analysis of VvBES1-1 Involvement in Flower Bud Differentiation of Red Globe Grape Based on Red and Blue Light Regulation [J]. Scientia Agricultura Sinica, 2025, 58(8): 1650-1662.
[4] YANG CaiLi, LI YongZhou, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU ZhaoXian, LI PengHui, LIU SanJun. Genome-Wide Identification and Analysis of TPS Gene Family and Functional Verification of VvTPS4 in the Formation of Monoterpenes in Grape [J]. Scientia Agricultura Sinica, 2025, 58(7): 1397-1417.
[5] GUO AoLin, LIN JunXuan, LAI GongTi, HE LiYuan, CHE JianMei, PAN Ruo, YANG FangXue, HUANG YuJi, CHEN GuiXin, LAI ChengChun. Effect of VdF3′5′H2 Overexpression on the Accumulation of Anthocyanin Composition in Spine Grape Cells [J]. Scientia Agricultura Sinica, 2025, 58(4): 802-818.
[6] ZHANG XiangKun, LI JiaYing, QIAO RuMeng, HE JingLei, WANG Li, SHI XiaoXin, DU GuoQiang. Effects of GFabV Under Different Zn Levels on Photosynthetic Efficiency and Photosynthesis-Related Gene Expression of ‘Shine Muscat’ Grapevine [J]. Scientia Agricultura Sinica, 2025, 58(24): 5190-5200.
[7] WANG Di, HAN ShouAn, ZHANG Wen, WANG Min, SHI HuiDong, ZHU XueHui, BAI ShiJian, LIU XuPeng, TIAN Jia, XIE Hui. Effects of Different Plant Growth Regulators on Fruit and Raisin Quality of Thompson Seedless Grapes [J]. Scientia Agricultura Sinica, 2025, 58(18): 3767-3782.
[8] YU Huan, LIN Ling, GUO RongRong, CAO XiongJun, WANG Bo, FANG JingGui, XIE ShuYu, HUANG XiaoYun, HAN JiaYu, BAI XianJin. Investigation and Evaluation of Inflorescence Attachment and Quality of Grape Germplasm Resources in The Hot Zone Guangxi [J]. Scientia Agricultura Sinica, 2025, 58(17): 3503-3515.
[9] WANG HuiLing, ZHANG YingYing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Multi-Omics Analysis Reveals the Changes of Monoterpenes and Anthocyanins Accumulation During Veraison in Red Muscat-Type Grape [J]. Scientia Agricultura Sinica, 2025, 58(13): 2645-2662.
[10] CAO XiongJun, WANG Bo, HAN JiaYu, LIAO YongFeng, XIE ShuYu, BAI Yang, HUANG XiaoYun, LU Li, HUANG QiuMi, JIANG ChunFen, PAN FengPing, BAI XianJin. Research and Practice on High Photosynthetic Efficiency Breeding of Grapes in Hot Climate Regions [J]. Scientia Agricultura Sinica, 2025, 58(10): 1994-2007.
[11] DONG Jie, ZHANG Peng, LI WangZe, LI HeFang, ZHOU GuoChao, CHEN KeQin, FANG YuLin, ZHANG KeKun. Effects of Seedlessness and Swelling Treatments Based on GA3 and CPPU on the Fruit Quality of 'Shine Muscat' Grapes [J]. Scientia Agricultura Sinica, 2025, 58(10): 2008-2021.
[12] GE Yi, ZHENG QiuLing, CHEN MengXia, XIA JiaXin, FANG Xiang, TANG MeiLing, FANG JingGui, SHANGGUAN LingFei. Cloning and Functional Analysis of the Autophagy Gene ATG8f in the Grapevine [J]. Scientia Agricultura Sinica, 2025, 58(1): 156-169.
[13] FENG Fan, JIANG XingRui, WANG LingYun, ZHANG YongGang, LI AiHua, TAO YongSheng. The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment [J]. Scientia Agricultura Sinica, 2024, 57(8): 1592-1605.
[14] YUAN Miao, ZHOU Juan, DANG ShiZhuo, TANG XueShen, ZHANG YaHong. Functional Analysis of VvARF18 Gene in Red Globe Grape [J]. Scientia Agricultura Sinica, 2024, 57(7): 1363-1376.
[15] DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi. Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2 [J]. Scientia Agricultura Sinica, 2024, 57(2): 336-348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!