Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (1): 129-146.doi: 10.3864/j.issn.0578-1752.2026.01.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Intelligent Mechanized Layered Fertilization on Root-Soil Nutrient Distribution and Yield in Wheat Fields

LÜ XuDong1,2(), SUN ShiYuan1, LI YaNan1, LIU YuLong1, WANG YanQun1, FU Xin1, ZHANG JiaYing1, NING Peng3, PENG ZhengPing1,2,*()   

  1. 1 College of Resources and Environmental Sciences, Hebei Agricultural University/Key Laboratory of Farmland Ecological Environment, Hebei Province, Baoding 071001, Hebei
    2 National Key Laboratory of Crop Improvement and Regulation in North China, Baoding 071000, Hebei
    3 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193
  • Received:2025-02-27 Accepted:2025-03-27 Online:2026-01-01 Published:2026-01-07
  • Contact: PENG ZhengPing

Abstract:

【Objective】To address the issues of irrational fertilizer application, uneven soil nutrient distribution, low fertilizer efficiency, and suboptimal crop yields in medium- and low-yield fields in North China, the precision fertilization was employed to enhance fertilizer use efficiency, increase wheat yield, and improve soil nutrient distribution. 【Method】Based on preliminary pot and field plot experiments, the field trials were conducted using intelligent layered fertilization machinery in Ningjin and Quzhou counties, Hebei Province. Six fertilization treatments were established: conventional farmer practice (MF1), optimized nitrogen (N), phosphorus (P), and potassium (K) fertilization applied in a single layer using conventional machinery (MF2), optimized N, P, and K fertilization applied in two layers using intelligent machinery (MF3), optimized N and P fertilization applied in two layers and K fertilization in three layers using intelligent machinery (MF4), optimized N and K fertilization applied in two layers and P fertilization in three layers using intelligent machinery (MF5), and optimized N fertilization applied in two layers and P and K fertilization in three layers using intelligent machinery (MF6). The study aimed to investigate the effects of precision fertilization on soil enzyme activity, spatiotemporal supply capacity of soil available N, P, and K, wheat root characteristics, fertilizer efficiency, and grain yield. 【Result】The layered fertilization significantly increased the content of ammonium nitrogen, nitrate nitrogen, and available phosphorus in the 20-40 cm soil layer by 5.9%-34.5%, 6.4%-25.3%, and 12.9%-91.0%, respectively, while also enhancing the available potassium content in the 40-60 cm soil layer by 3.9%-38.5%. Additionally, layered fertilization significantly enhanced the activities of catalase and urease in the 20-40 cm soil layer by 10.3%-19.7% and 18.4%-31.2%, respectively, improved phosphatase activity in the 0-60 cm soil layer by 18.1%-32.9%, and increased root length, root surface area and root volume in the 20-40 cm soil layer by 13.2%-45.1%, 4.4%-36.4% and 8.7%-45.3%, respectively. Compared with the single-layer optimized N, P, and K fertilization treatment, layered fertilization significantly improved the partial productivity of N, P, and K fertilizers and grain yield, with the MF6 treatment performing the best in both experimental areas. 【Conclusion】The intelligent mechanized layered fertilization was an efficient and precise fertilization technique that demonstrated significant advantages in synergistically improving the spatiotemporal distribution of soil nutrients, enzyme activity, and wheat root distribution characteristics, making it highly recommendable for practical agricultural production.

Key words: winter wheat, intelligent mechanized layered fertilization, soil nitrogen, phosphorus, and potassium nutrient distribution, soil enzyme activity, root morphological characteristics, grain yield

Table 1

Basic physicochemical properties of the soil at the experimental site"

地点
Location
土层
Soil layer (cm)
pH 土壤容重
Soil bulk density (g·cm-3)
有机质含量
Organic matter content (g·kg-1)
铵态氮含量
NH4+-N
content (mg·kg-1)
硝态氮含量
NO3--N
content (mg·kg-1)
有效磷含量
Available P content (mg·kg-1)
速效钾含量
Available K content (mg·kg-1)
宁晋
Ningjin
0-20 8.35 1.41 11.8 8.65 13.7 12.9 84.2
20-40 7.88 1.56 6.8 4.86 7.5 4.5 58.6
曲周
Quzhou
0-20 8.51 1.51 11.9 8.22 12.2 12.2 105.0
20-40 8.02 1.60 6.6 4.83 7.9 4.9 61.8

Table 2

Experimental treatments and fertilization conditions in Ningjin and Quzhou counties"

地点
Location
处理
Treatment
代号
Code
上层
Upper layer (0-8 cm)
中层
Middle layer (15-18 cm)
下层
Lower layer (25-28 cm)
追肥
Topdressing
总量
Total amount
N P2O5 K2O N P2O5 K2O P2O5 K2O N N P2O5 K2O
宁晋
Ningjin
农民习惯
Farmer’s habit
MF1 162 270 97.5 30
N1P1K1 MF2 84 90 75 126 210 90 75
N1:1P1:2K1:2 MF3 42 30 25 42 60 50 126 210 90 75
N1:1P1:2K2:1:2 MF4 42 30 30 42 60 15 30 126 210 90 75
N1:1P2:1:2K1:2 MF5 42 36 25 42 18 50 36 126 210 90 75
N1:1P2:1:2K2:1:2 MF6 42 36 30 42 18 15 36 30 126 210 90 75
曲周
Quzhou
农民习惯
Farmer’s habit
MF1 162 270 90 60
N1P1K1 MF2 84 90 60 126 210 90 60
N1:1P1:2K1:2 MF3 42 30 20 42 60 40 126 210 90 60
N1:1P1:2K2:1:2 MF4 42 30 24 42 60 12 24 126 210 90 60
N1:1P2:1:2K1:2 MF5 42 36 20 42 18 40 36 126 210 90 60
N1:1P2:1:2K2:1:2 MF6 42 36 24 42 18 12 36 24 126 210 90 60

Fig. 1

Effects of intelligent mechanized layered fertilization on the spatiotemporal distribution of soil ammonium nitrogen (2022-2023)"

Fig. 2

Effects of intelligent mechanized layered fertilization on the spatiotemporal distribution of soil ammonium nitrogen (2023-2024)"

Fig. 3

Effects of intelligent mechanized layered fertilization on the spatiotemporal distribution of soil nitrate nitrogen (2022-2023)"

Fig. 4

Effects of intelligent mechanized layered fertilization on the spatiotemporal distribution of soil nitrate nitrogen (2023-2024)"

Fig. 5

Effects of intelligent mechanized layered fertilization on the spatiotemporal distribution of soil available phosphorus (2022-2023)"

Fig. 6

Effects of intelligent mechanized layered fertilization on the spatiotemporal distribution of soil available phosphorus (2023-2024)"

Fig. 7

Effects of intelligent mechanized layered fertilization on the spatiotemporal distribution of soil available potassium (2022-2023)"

Fig. 8

Effects of intelligent mechanized layered fertilization on the spatiotemporal distribution of soil available potassium (2023-2024)"

Fig. 9

Effects of intelligent mechanized layered fertilization on the spatial distribution of soil catalase activity"

Fig. 10

Effects of intelligent mechanized layered fertilization on the spatial distribution of soil urease activity"

Fig. 11

Effects of intelligent mechanized layered fertilization on the spatial distribution of soil phosphatase activity"

Fig. 12

Effects of intelligent mechanized layered fertilization on root characteristics in the 0-40 cm soil layer"

Table 3

Effects of intelligent mechanized layered fertilization on wheat root dry weight (g)"

处理
Treatment
0—10 cm土层
0-10 cm soil layer
10—20 cm土层
10-20 cm soil layer
20—30 cm土层
20-30 cm soil layer
30—40 cm土层
30-40 cm soil layer
总重
Weight
宁晋
Ningjin
曲周
Quzhou
宁晋
Ningjin
曲周
Quzhou
宁晋
Ningjin
曲周
Quzhou
宁晋
Ningjin
曲周
Quzhou
宁晋
Ningjin
曲周
Quzhou
MF1 0.2965a 0.3054a 0.1612b 0.1614b 0.0564c 0.0547c 0.0241b 0.0258b 0.5382b 0.5473b
MF2 0.2871a 0.2936a 0.1597b 0.1547b 0.0518c 0.0523c 0.0235b 0.0259b 0.5221b 0.5265b
MF3 0.2847a 0.2813a 0.1832a 0.1888a 0.0588b 0.0583bc 0.0266b 0.0279b 0.5533b 0.5563b
MF4 0.2781a 0.2846a 0.1777a 0.1744a 0.0636b 0.0682b 0.0287b 0.0292ab 0.5481b 0.5564b
MF5 0.2783a 0.2896a 0.1754b 0.1674b 0.0777a 0.0791a 0.0321a 0.0343a 0.5635a 0.5704a
MF6 0.2712a 0.2872a 0.1782b 0.1663b 0.0792a 0.0806a 0.0338a 0.0357a 0.5624a 0.5698a

Table 4

Effects of intelligent mechanized layered fertilization on wheat yield and partial factor productivity of nitrogen, phosphorus, and potassium fertilizers"

年份
Year
地点
Location
施肥
Fertilization
产量
Yield (kg·hm-2)
氮肥偏生产力
PFPN (kg·kg-1)
磷肥偏生产力
PFPP (kg·kg-1)
钾肥偏生产力
PFPK (kg·kg-1)
2022-2023 宁晋
Ningjin
MF1 6771.0bc 25.1c 69.5b 225.7a
MF2 6619.8c 31.5b 73.6b 88.3c
MF3 7217.7a 34.4a 80.2a 96.2b
MF4 7139.7ab 34.0a 79.3a 95.2bc
MF5 7444.9a 35.5a 82.7a 99.3b
MF6 7385.8a 35.2a 82.1a 98.5b
曲周
Quzhou
MF1 6996.9cd 25.9d 77.7d 116.6cd
MF2 6901.2d 32.9c 76.7cd 115.0d
MF3 7417.4abc 35.3ab 85.4abc 123.6abc
MF4 7255.6bcd 34.6bc 80.6bcd 120.9bcd
MF5 7666.5ab 36.5a 85.2ab 127.8ab
MF6 7780.1.8a 37.1a 86.5a 129.7a
地点Location ** ** *** ***
施肥Fertilization *** *** *** ***
地点×施肥Location×Fertilization ns ns ns ***
2023-2024 宁晋
Ningjin
MF1 7067.5c 26.2d 78.5c 235.6a
MF2 6933.9c 33.0c 77.0c 92.5d
MF3 7732.6b 36.8b 85.9b 103.1bc
MF4 7690.1b 36.6b 85.4b 102.5c
MF5 8151.4a 38.8a 90.6a 108.7b
MF6 8136.1a 38.7a 90.4a 108.5b
曲周
Quzhou
MF1 7437.8c 27.5d 76.3d 124.0c
MF2 7317.4c 34.8c 81.3c 122.0c
MF3 7993.9b 38.1b 88.8b 133.2b
MF4 7963.1b 37.9b 88.5b 132.7b
MF5 8331.4ab 39.7ab 92.6ab 138.9ab
MF6 8485.4a 40.4a 94.3a 141.4a
地点Location *** *** * ***
施肥Fertilization *** *** *** ***
地点×施肥Location×Fertilization ns ns ns ***

Table 5

Comprehensive evaluation of soil nutrients, enzyme activity, wheat root systems, and grain yield"

地点
Location
施肥
Fertilization
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 得分
Score
排序
Order
宁晋
Ningjin
MF1 -0.554 0 0.034 0.002 0.010 0.020 0.008 -0.009 -0.488 5
MF2 -0.558 -0.034 -0.035 0.013 -0.012 -0.026 0 0 -0.652 6
MF3 0.144 0.072 -0.036 -0.025 0.012 0.024 -0.043 -0.009 0.139 4
MF4 0.139 0.083 0.012 -0.024 -0.020 -0.009 0.021 0.029 0.230 3
MF5 0.384 -0.080 0.024 0.021 -0.006 0.009 0 0 0.352 2
MF6 0.445 -0.040 0.001 0.013 0.016 -0.018 0.013 -0.011 0.419 1
曲周
Quzhou
MF1 -0.532 0 0.032 0.003 0.013 0.022 0.009 -0.009 -0.462 5
MF2 -0.537 -0.033 -0.033 0.015 -0.015 -0.028 0 0 -0.630 6
MF3 0.139 0.068 -0.035 -0.030 0.015 0.025 -0.048 -0.009 0.125 4
MF4 0.133 0.079 0.012 -0.028 -0.026 -0.010 0.024 0.028 0.212 3
MF5 0.369 -0.076 0.023 0.025 -0.007 0.010 0 0 0.344 2
MF6 0.428 -0.039 0.001 0.015 0.020 -0.019 0.015 -0.011 0.411 1

Fig. 13

Diagram of the action mechanism and transmission path model in intelligent mechanized layered fertilization In the figure, the direction of the arrows indicates a causal relationship. The dashed line indicates that the correlation between the two is not significant, while the solid line indicates a significant correlation. The numbers on the lines are standardized path coefficients. LPS represents the number of phosphorus fertilizer application layers, LKA represents the number of potassium fertilizer application layers, Yield represents the yield of wheat, SN represents the soil nitrogen content, SP represents the soil available phosphorus content, SK represents the soil available potassium content, CA represents catalase activity, UA represents urease activity, PA represents phosphatase activity, RT represents root characteristics"

[1]
高绪科, 汪德水. 土壤耕层紧实度在华北旱地农业生产中作用的研究. 土壤肥料, 1984(6): 21-24.
GAO X K, WANG D S. Study on the role of soil compactness in agricultural production in dry land of North China. Soils and Fertilizers, 1984(6): 21-24. (in Chinese)
[2]
陈智勇, 谢迎新, 张阳阳, 缑培欣, 马冬云, 康国章, 王晨阳, 郭天财. 小麦根长密度和根干重密度对氮肥的响应及其与产量的关系. 麦类作物学报, 2020, 40(10): 1223-1231.
CHEN Z Y, XIE Y X, ZHANG Y Y, GOU P X, MA D Y, KANG G Z, WANG C Y, GUO T C. Responses of root length density and root dry weight density to nitrogen fertilizer and their relationship with yield in wheat. Journal of Triticeae Crops, 2020, 40(10): 1223-1231. (in Chinese)
[3]
宋晓, 张珂珂, 黄晨晨, 黄绍敏, 岳克, 张志标, 郭斗斗, 郭腾飞. 不同氮效率小麦品种根系特征及根际土壤酶活性的分析. 核农学报, 2023, 37(3): 617-625.

doi: 10.11869/j.issn.1000-8551.2023.03.0617
SONG X, ZHANG K K, HUANG C C, HUANG S M, YUE K, ZHANG Z B, GUO D D, GUO T F. Analysis of root characteristics and rhizosphere soil enzyme activities of wheat varieties with different nitrogen efficiencies. Journal of Nuclear Agricultural Sciences, 2023, 37(3): 617-625. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2023.03.0617
[4]
王朝辉. 我国小麦施肥问题与化肥减施. 中国农业科学, 2020, 53(23): 4813-4815. doi: 10.3864/j.issn.0578-1752.2020.23.008.
WANG Z H. Problems in fertilization and fertilizer reduction in wheat production of China. Scientia Agricultura Sinica, 2020, 53(23): 4813-4815. doi: 10.3864/j.issn.0578-1752.2020.23.008. (in Chinese)
[5]
AHMADI H, HOSSEINI H M, MOSHIRI F, ALI ALIKHANI H, ETESAMI H. Impact of varied tillage practices and phosphorus fertilization regimes on wheat yield and grain quality parameters in a five-year corn-wheat rotation system. Scientific Reports, 2024, 14(1): 14717.

doi: 10.1038/s41598-024-65784-w pmid: 38926546
[6]
HUANG C, LIU X C, GAO Y, CHEN H Q, MA S T, QIN A Z, ZHANG Y Y, GAO Z L, SONG Y, SUN J K, LIU Z D. Response of Triticum vulgare growth and nitrogen allocation to irrigation methods and regimes under subsoiling tillage. Agronomy, 2024, 14(4): 858.

doi: 10.3390/agronomy14040858
[7]
YANG Y H, LIU H, WU J C, GAO C M, ZHANG S S, TANG D W S. Long-term combined subsoiling and straw mulching conserves water and improves agricultural soil properties. Land Degradation & Development, 2024, 35(3): 1050-1060.

doi: 10.1002/ldr.v35.3
[8]
WANG S B, LIU Z, OBALUM S E, LIANG C, HAN K, HAN H F. Effects of subsoiling depth on soil aggregate stability and carbon storage in a clay-loam soil. Journal of Soil Science and Plant Nutrition, 2023, 23(3): 3302-3312.

doi: 10.1007/s42729-023-01246-y
[9]
LIU Z, NIE L, ZHANG M, ZHANG S, YANG H, GUO L, XIA J, NING T, JIAO N, KUZYAKOV Y. Long-term subsoiling and straw return increase soil organic carbon fractions and crop yield. Journal of Soil and Water Conservation, 2023, 78(3): 234-244.

doi: 10.2489/jswc.2023.00094
[10]
QIANG X M, SUN J S, NING H F. Impact of subsoiling on cultivated horizon construction and grain yield of winter wheat in the North China Plain. Agriculture, 2022, 12(2): 236.

doi: 10.3390/agriculture12020236
[11]
JING J Y, GAO W, CHENG L Y, WANG X, DUAN F Y, YUAN L X, RENGEL Z, ZHANG F S, LI H G, CAHILL J F, SHEN J B. Harnessing root-foraging capacity to improve nutrient-use efficiency for sustainable maize production. Field Crops Research, 2022, 279: 108462.

doi: 10.1016/j.fcr.2022.108462
[12]
H F, ZHAO Y M, WANG Y F, WAN L, WANG J G, BUTTERBACH-BAHL K, LIN S. Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top but also in subsoil layers in solar greenhouse vegetable production systems. Geoderma, 2020, 363: 114156.

doi: 10.1016/j.geoderma.2019.114156
[13]
LIU C H, YAN H H, WANG W Y, HAN R F, LI Z Y, LIN X, WANG D. Layered application of phosphate fertilizer increased winter wheat yield by promoting root proliferation and phosphorus accumulation. Soil and Tillage Research, 2023, 225: 105546.

doi: 10.1016/j.still.2022.105546
[14]
LIU S J, PUBU C J, ZHU Y Z, HAO W P, ZHANG G X, HAN J. Optimizing nitrogen application depth can improve crop yield and nitrogen uptake-A global meta-analysis. Field Crops Research, 2023, 295: 108895.

doi: 10.1016/j.fcr.2023.108895
[15]
LI X L, WANG R, LOU F, JI P T, WANG J, DONG W X, TAO P J, ZHANG Y C. Subsoiling combine with layered nitrogen application optimizes root distribution and improve grain yield and N efficiency of summer maize. Agronomy, 2024, 14(6): 1228.

doi: 10.3390/agronomy14061228
[16]
HOU P F, YUAN W S, LI G H, PETROPOULOS E, XUE L X, FENG Y F, XUE L H, YANG L Z, DING Y F. Deep fertilization with controlled-release fertilizer for higher cereal yield and N utilization in paddies: The optimal fertilization depth. Agronomy Journal, 2021, 113(6): 5027-5039.

doi: 10.1002/agj2.v113.6
[17]
卜明娜, 杨习文, 滕政凯, 胡乃月, 张烁, 王春艳, 杨键, 梁文宪, 马文奇, 贺德先, 周苏玫. 不同灌水条件下分层施肥对土壤养分垂直分布与小麦根系生长和功能的影响. 中国农业科学, 2024, 57(11): 2125-2142. doi: 10.3864/j.issn.0578-1752.2024.11.007.
BU M N, YANG X W, TENG Z K, HU N Y, ZHANG S, WANG C Y, YANG J, LIANG W X, MA W Q, HE D X, ZHOU S M. Effects of layered fertilization under different irrigation conditions on vertical distribution of soil nutrients and root growth and function of wheat. Scientia Agricultura Sinica, 2024, 57(11): 2125-2142. doi: 10.3864/j.issn.0578-1752.2024.11.007. (in Chinese)
[18]
狄楠, 马娟娟, 孙西欢, 郭向红, 黄洁. 灌水深度对冬小麦根系形态的影响研究. 中国农村水利水电, 2016(10): 49-52, 55.
DI N, MA J J, SUN X H, GUO X H, HUANG J. Effects of irrigation depth on root morphology of winter wheat. China Rural Water and Hydropower, 2016(10): 49-52, 55. (in Chinese)
[19]
WU H L, WANG L M, LIU X P, LI Q, LU C G, DONG W X. Layered-strip fertilization improves nitrogen use efficiency by enhancing absorption and suppressing loss of urea nitrogen. Agronomy, 2023, 13(9): 2428.

doi: 10.3390/agronomy13092428
[20]
X K, HAN J, LIAO Y C, LIU Y. Effect of phosphorus and potassium foliage application post-anthesis on grain filling and hormonal changes of wheat. Field Crops Research, 2017, 214: 83-93.

doi: 10.1016/j.fcr.2017.09.001
[21]
LI G, BAI Y L, WANG L, LU Y L, ZHANG J J, ZHANG Y J. Effects of fertilizer under different dripline spacings on summer maize in northern China. Scientific Reports, 2021, 11(1): 18922.

doi: 10.1038/s41598-021-98016-6 pmid: 34556699
[22]
王泽鹏, 郭靖, 石佳玉, 吕旭东, 王艳群, 门杰, 彭正萍. 分层施磷对冬小麦光合特征、磷素利用及产量的影响. 河北农业大学学报, 2024, 47(2): 1-8.

doi: 10.13320/j.cnki.jauh.2024.0016
WANG Z P, GUO J, SHI J Y, X D, WANG Y Q, MEN J, PENG Z P. Effects of layered phosphorus application on photosynthetic characteristics, phosphorus utilization and yield of winter wheat. Journal of Hebei Agricultural University, 2024, 47(2): 1-8. (in Chinese)
[23]
陈金成, 张惠, 汤智辉, 张景, 纪超. 分层施肥机作业监测系统的设计与田间试验. 江苏农业科学, 2021, 49(20): 205-210.
CHEN J C, ZHANG H, TANG Z H, ZHANG J, JI C. Design and field experiment of operation monitoring system of layered fertilization device. Jiangsu Agricultural Sciences, 2021, 49(20): 205-210. (in Chinese)
[24]
祝清震, 武广伟, 朱志豪, 张恒源, 高原源, 陈立平. 冬小麦精准分层施肥宽苗带播种联合作业机研究. 农业机械学报, 2022, 53(2): 25-35.
ZHU Q Z, WU G W, ZHU Z H, ZHANG H Y, GAO Y Y, CHEN L P. Design and test on winter wheat precision separated layer fertilization and wide-boundary sowing combined machine. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 25-35. (in Chinese)
[25]
于兴瑞, 耿端阳, 杜瑞成, 金诚谦, 杨善东, 鹿秀凤. 气力输送式小麦免耕施肥播种机设计与试验. 农业机械学报, 2018, 49(S1): 141-148.
YU X R, GENG D Y, DU R C, JIN C Q, YANG S D, LU X F. Design and experiment of wheat planter by pneumatic conveying with no-tillage. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 141-148. (in Chinese)
[26]
温樱, 王东. 底肥分层条施提高冬小麦干物质积累及产量. 植物营养与肥料学报, 2017, 23(5): 1387-1393.
WEN Y, WANG D. Basal fertilization in strips at different soil depths to increase dry matter accumulation and yield of winter wheat. Journal of Plant Nutrition and Fertilizers, 2017, 23(5): 1387-1393. (in Chinese)
[27]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[28]
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzyme and Its Research Method. Beijing: Agriculture Press, 1986. (in Chinese)
[29]
YU X F, QU J W, HU S P, XU P, CHEN Z X, GAO J L, MA D L. The effect of tillage methods on soil physical properties and maize yield in Eastern Inner Mongolia. European Journal of Agronomy, 2023, 147: 126852.

doi: 10.1016/j.eja.2023.126852
[30]
屈佳伟, 田磊, 于长生, 艾俊国, 刘玉龙, 于晓芳, 张悦忠. 耕作方式与秸秆还田对土壤物理性状及春玉米产量的影响. 玉米科学, 2024, 32(8): 55-62, 71.
QU J W, TIAN L, YU C S, AI J G, LIU Y L, YU X F, ZHANG Y Z. Effects of tillage methods and straw returning on soil physical properties and yield of spring maize. Journal of Maize Sciences, 2024, 32(8): 55-62, 71. (in Chinese)
[31]
黄炳林, 王孟雪, 金喜军, 张春宇, 张玉先, 胡国华. 不同中耕措施对土壤水分与大豆产量的影响. 大豆科学, 2020, 39(1): 68-75.
HUANG B L, WANG M X, JIN X J, ZHANG C Y, ZHANG Y X, HU G H. Effects of different intertillage methods on soil moisture and soybean yield. Soybean Science, 2020, 39(1): 68-75. (in Chinese)
[32]
ZHANG Q, WANG S L, ZHANG Y H, LI H Y, LIU P Z, WANG R, WANG X L, LI J. Effects of subsoiling rotational patterns with residue return systems on soil properties, water use and maize yield on the semiarid Loess Plateau. Soil and Tillage Research, 2021, 214: 105186.

doi: 10.1016/j.still.2021.105186
[33]
ZHANG Y J, TAN C J, WANG R, LI J, WANG X L. Conservation tillage rotation enhanced soil structure and soil nutrients in long-term dryland agriculture. European Journal of Agronomy, 2021, 131: 126379.

doi: 10.1016/j.eja.2021.126379
[34]
LIU P, YAN H H, XU S N, LIN X, WANG W Y, WANG D. Moderately deep banding of phosphorus enhanced winter wheat yield by improving phosphorus availability, root spatial distribution, and growth. Soil and Tillage Research, 2022, 220: 105388.

doi: 10.1016/j.still.2022.105388
[35]
WANG Y X, XU Y R, GUO Q, ZHANG P, CAI T, JIA Z K. Adopting nitrogen deep placement based on different simulated precipitation year types enhances wheat yield and resource utilization by promoting photosynthesis capacity. Field Crops Research, 2023, 294: 108862.

doi: 10.1016/j.fcr.2023.108862
[36]
杨力剑, 宁露, 梁兆君, 张广彩, 李菁, 张甜, 司彤, 于晓娜, 张晓军, 邹晓霞. 分层施肥对花生田土壤养分动态变化的影响研究. 花生学报, 2024, 53(2): 20-30.
YANG L J, NING L, LIANG Z J, ZHANG G C, LI J, ZHANG T, SI T, YU X N, ZHANG X J, ZOU X X. Effects of layered fertilization on soil nutrients dynamic of peanut field. Journal of Peanut Science, 2024, 53(2): 20-30. (in Chinese)
[37]
赵萍, 徐国发, 李增玺, 王瑞丽, 于天阔. 秋季深耕分层施肥对辽北地区玉米产量及土壤理化特性的影响. 沈阳农业大学学报, 2021, 52(4): 500-505.
ZHAO P, XU G F, LI Z X, WANG R L, YU T K. Effects on maize yield and soil physical and chemical properties through deep tillage and layered fertilization in autumn in northern Liaoning Province. Journal of Shenyang Agricultural University, 2021, 52(4): 500-505. (in Chinese)
[38]
白岚方, 张向前, 张德健, 路战远, 王玉芬, 白云鹤. 不同施氮水平下青贮玉米农田土壤酶活性时空分布特征. 土壤通报, 2022, 53(5): 1088-1097.
BAI L F, ZHANG X Q, ZHANG D J, LU Z Y, WANG Y F, BAI Y H. Temporal and spatial distribution of soil enzyme activities in silage maize fields under different nitrogen application levels. Chinese Journal of Soil Science, 2022, 53(5): 1088-1097. (in Chinese)
[39]
王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响. 作物学报, 2025, 51(2): 534-547.

doi: 10.3724/SP.J.1006.2025.41030
WANG P B, ZHANG D X, QIAO C C, HUANG M, WANG H Z. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in dry land of western Henan, China. Acta Agronomica Sinica, 2025, 51(2): 534-547. (in Chinese)
[40]
窦航宇, 阮毅好, 张颖蕾, 宋苗苗, 张义涵, 杨留洋, 杨青华, 王浩. 磷肥施用方式对黄淮地区夏玉米土壤磷素有效性及产量的影响. 华北农学报, 2024, 39(1): 127-134.

doi: 10.7668/hbnxb.20194022
DOU H Y, RUAN Y H, ZHANG Y L, SONG M M, ZHANG Y H, YANG L Y, YANG Q H, WANG H. Effect of phosphorus fertilizer application method on soil phosphorus availability and yield of summer maize in Huang-Huai area. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 127-134. (in Chinese)

doi: 10.7668/hbnxb.20194022
[41]
邱丽丽, 张佳宝, 赵炳梓. 土壤干旱对两品种小麦根际土壤微生物群落组成和酶活性的影响. 干旱区资源与环境, 2022, 36(2): 116-122.
QIU L L, ZHANG J B, ZHAO B Z. Effect of soil drought on microbial community composition and enzyme activities in the rhizosphere soils growing two wheat cultivars. Journal of Arid Land Resources and Environment, 2022, 36(2): 116-122. (in Chinese)
[42]
张景云, 关峰, 石博, 万新建. 小麦根系分泌物对苦瓜幼苗生长及土壤生物学环境的影响. 中国农业科技导报, 2024, 26(2): 181-190.
ZHANG J Y, GUAN F, SHI B, WAN X J. Effects of wheat root exudates on bitter gourd seeding growth and soil environment. Journal of Agricultural Science and Technology, 2024, 26(2): 181-190. (in Chinese)
[43]
WU P, WU Q, HUANG H, LIU F, BANGURA K, CAI T, FU J, SUN M, XUE J F, ZHANG P, GAO Z Q, JIA Z K. Can deep fertilization in spring maize fields improve soil properties and their distribution in soil profile? Journal of Environmental Management, 2024, 352: 120059.

doi: 10.1016/j.jenvman.2024.120059
[44]
孔洁, 庞茹月, 王铭伦, 赵红军, 邹晓霞. 分层减量施肥对花生根系生长的影响. 中国土壤与肥料, 2022(5): 77-83.
KONG J, PANG R Y, WANG M L, ZHAO H J, ZOU X X. Effects of layered and reduced fertilization on root growth of peanut. Soil and Fertilizer Sciences in China, 2022(5): 77-83. (in Chinese)
[45]
程文龙, 李敏, 王慧, 卜容燕, 韩上, 唐杉, 卢昌艾, 葛自兵, 武际. 深耕配合施用有机肥提高15—30cm土层小麦根长密度. 植物营养与肥料学报, 2023, 29(7): 1280-1289.
CHENG W L, LI M, WANG H, BU R Y, HAN S, TANG S, LU C A, GE Z B, WU J. Deep tillage combined with organic fertilizer improves the root length density of wheat in 15-30 cm soil layer. Journal of Plant Nutrition and Fertilizers, 2023, 29(7): 1280-1289. (in Chinese)
[46]
CHEN X Y, LIU P, ZHAO B, ZHANG J W, REN B Z, LI Z, WANG Z Q. Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L.)and their dependency on phosphorus placement depth. Field Crops Research, 2022, 276: 108378.

doi: 10.1016/j.fcr.2021.108378
[47]
薛云贵, 张绪成, 侯慧芝, 尹嘉德, 郭宏娟, 梁进宇, 王硕. 化肥深施对干旱条件下春小麦旗叶光合特征及产量形成的影响. 甘肃农业大学学报, 2024, 59(4): 62-70.
XUE Y G, ZHANG X C, HOU H Z, YIN J D, GUO H J, LIANG J Y, WANG S. Effect of deep fertilizer application on flag leaf’s photosynthetic characteristics and yield formation of spring wheat under drought conditions. Journal of Gansu Agricultural University, 2024, 59(4): 62-70. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[3] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[4] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[5] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[6] FANG KangRui, DING ShiJie, CHEN YuShan, YANG BingGeng, GUO TengFei, XU XinPeng, ZHAO ShiCheng, WANG XiuBin, HUANG ShaoMin, QIU ShaoJun, HE Ping, ZHOU Wei. In-Season Release Rate of Nitrogen and Phosphorus in Manure Fertilizers During the Wheat Season in Typical Fluvo-Aquic Soil Under the Combined Application of Chemical and Manure Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(24): 5234-5246.
[7] WU WenQi, JIAO Yang, XI JiaZhen, WANG XuFeng, GUO BoSen, SHEN YuFang. Effects of Different Organic Materials Combined with Chemical Fertilizer on Soil Fertility and Maize Grain Yield [J]. Scientia Agricultura Sinica, 2025, 58(23): 4966-4978.
[8] ZHANG Feng, XU JunFeng, GAO ZhiYuan, DANG HaiYan, GUO RongBo, SHE WenTing, LI WenHu, LIU JinShan, WANG ZhaoHui. Optimizing Wheat Nitrogen and Phosphorus Fertilizer Rates Based on Apparent Nitrogen and Phosphorus Balance in a Long-Term Location Fixed Field Experiment [J]. Scientia Agricultura Sinica, 2025, 58(22): 4688-4702.
[9] ZHANG HaiRui, JIA AngYuan, GAO QiQi, HAN ZheQun, NAN ShanShan, DUAN BiHua, WU XuePing. The Effects of Biochar Combined with Fulvic Acid on the Physical and Chemical Properties, Enzyme Activities and Multifunctionality of Soil in Coastal Saline-Alkali Land [J]. Scientia Agricultura Sinica, 2025, 58(20): 4178-4188.
[10] SHE YingJun, ZHOU ZiZhe, WU Ming, GUO Wei, SHI ChangJian, HU Chao, LI Ping. Effects of Groundwater Depth and Nitrogen Application on the Distribution of Soil Water and Salt and the Nutrient Absorption and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2025, 58(20): 4285-4304.
[11] XUAN ZePeng, FENG HuiYao, CHEN MeiQi, XU JiSheng, LIU MengXuan, ZHAO BingZi, ZHANG JiaBao. Effects of Straw Returning Combined with Chemical Fertilizer on Soil Ecosystem Multifunctionality [J]. Scientia Agricultura Sinica, 2025, 58(14): 2821-2837.
[12] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[13] GAO XingXiang, KONG Yuan, ZHANG YaoZhong, LI Mei, LI Jian, JIN Yan, ZHANG GuoFu, LIU ShuaiShuai, LIU MingPing, ZENG Yan, BAI LianYang. Analysis on Distribution and Change of Weed Community in Winter Wheat Field in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 91-100.
[14] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[15] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!