Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (17): 3516-3530.doi: 10.3864/j.issn.0578-1752.2025.17.012

• HORTICULTURE • Previous Articles     Next Articles

Identification of the FLA Gene Family and Functional Analysis of JsFLA2 in Jasminum sambac

QI XiangYu(), LI XinRu, CHEN ShuangShuang, FENG Jing, CHEN HuiJie, LIU XinTong, JIN YuYan, DENG YanMing*()   

  1. Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
  • Received:2025-04-13 Accepted:2025-06-09 Online:2025-09-02 Published:2025-09-02
  • Contact: DENG YanMing

Abstract:

【Objective】Jasmine (Jasminum sambac) exhibits significant sexual reproductive barriers, severely impeding germplasm innovation. Fasciclin-like arabinogalactan proteins (FLAs) play crucial roles in plant reproduction development. This study conducted a genome-wide identification and analysis of the FLA gene family in jasmine, then investigated their fundamental characteristics and expression patterns, thereby providing a theoretical foundation for understanding the biological functions of the JsFLAs in reproduction development.【Method】The HMMER 3.0 software was used to screen and identify members of the FLA gene family in the jasmine genome, with further validation through Smart and CD-Search. Websites such as ExPASy, SignalP 5.0, big-PI Plant Predictor, NetNGlyc-1.0, and Plant-mPLoc were used to analyze the physicochemical properties and subcellular location of JsFLAs. MEGA, TBtools, MEME, and PlantCARE were utilized for phylogenetic tree construction, chromosome location, gene structure analysis, protein conserved motif identification, and promoter cis-element prediction. Transcriptional data were analyzed to determine the expression characteristics of JsFLAs in stigmas at various time points after pollination and in flowers at different developmental stages. Quantitative real-time PCR (qRT-PCR) was used to detect the expression pattern of JsFLA2 in jasmine, and its subcellular location was analyzed through transient transformation of tobacco leaves. Finally, the biological function of JsFLA2 was verified through heterologous expression in Arabidopsis thaliana.【Result】A total of 24 JsFLAs were identified in the jasmine genome, named JsFLA1-JsFLA24. These proteins consisted of 159-515 amino acid residues, with molecular weight of 17.02-56.34 kDa and isoelectric point of 4.20-9.69. All members contained 1-2 fasciclin-like domain (FAS), 1-2 AGP glycosylation sites, and a glycosylphosphatidylinositol (GPI) anchored site, and 19 members contained signal peptide (SP). Except for JsFLA5 which was localized in the nucleus, all other members were located on the plasma membrane. The JsFLAs were divided into four subclasses, with conserved motifs within each group. The JsFLAs were unevenly distributed across 11 chromosomes. The JsFLAs contained 0-3 introns and 1-3 exons. 21 JsFLAs were expressed in stigmas at various time points after pollination, and 20 were expressed in flowers at different developmental stages. The JsFLAs promoters included elements responsive to growth and development, plant hormones, and abiotic stress. Further research revealed that the significantly differentially expressed JsFLA2 encodes 405 amino acids, is most similar to OeFLA1, exhibits the highest expression in flowers, and is localized on the plasma membrane. Heterologous expression of JsFLA2 in A. thaliana showed that the transgenic lines exhibited severe fertility defects, including reduced pollen viability, decreased seed number, and shorter siliques.【Conclusion】This study identified 24 FLA gene family members in jasmine. Functional validation confirmed that JsFLA2 is closely related to pollen fertility in jasmine.

Key words: Jasminum sambac, FLA gene family, expression analysis, JsFLA2, functional analysis

Table 1

The basic information of 24 JsFLAs genes in J. sambac"

基因
Gene
氨基酸数量
No. of amino acid (aa)
分子量
Molecular weight (kDa)
等电点Isoelectric point (pI) FAS结构域位置Location of FAS domain (aa) 糖基化位点N-glycosylation sites (aa) GPI锚定位点GPI anchor site (aa) 信号肽位点Signal peptide site (aa) 亚细胞定位
Subcellular location
JsFLA1 243 25.51 7.79 45—180 36, 140 218 22—23 细胞膜Plasma membrane
JsFLA2 405 42.91 5.46 23—128 23, 158 381 21—22 细胞膜Plasma membrane
JsFLA3 472 51.77 6.07 321—426 88 441 27—28 细胞膜Plasma membrane
JsFLA4 460 50.56 6.08 316—421 40, 83 431 26—27 细胞膜Plasma membrane
JsFLA5 451 48.65 4.20 50—148 125, 352 427 29—30 细胞核Nucleus
JsFLA6 429 44.12 5.14 200—331 30, 131 402 25—26 细胞膜Plasma membrane
JsFLA7 349 37.57 6.66 242—311 81 337 28—29 细胞膜Plasma membrane
JsFLA8 286 31.33 5.55 76—179 118 265 20—21 细胞膜Plasma membrane
JsFLA9 286 31.22 5.77 76—179 70, 118 265 20—21 细胞膜Plasma membrane
JsFLA10 204 22.44 5.70 79—185 97 167 细胞膜Plasma membrane
JsFLA11 245 25.54 6.81 45—180 36 219 22—23 细胞膜Plasma membrane
JsFLA12 425 45.45 5.58 207—343 169, 198 398 30—31 细胞膜Plasma membrane
JsFLA13 272 29.15 5.79 9—111 26 248 24—25 细胞膜Plasma membrane
JsFLA14 223 24.26 8.86 39—133 37 197 细胞膜Plasma membrane
JsFLA15 353 39.14 4.80 46—181, 232—321 165 331 24—25 细胞膜Plasma membrane
JsFLA16 255 27.10 9.69 48—183 39, 143 238 25—26 细胞膜Plasma membrane
JsFLA17 159 17.02 5.61 17—120 80 132 细胞膜Plasma membrane
JsFLA18 373 40.35 8.30 63—155 55 348 22—23 细胞膜Plasma membrane
JsFLA19 342 38.08 6.21 81—171, 242—331 50, 133 315 细胞膜Plasma membrane
JsFLA20 515 56.34 5.76 364—469 144, 345 480 细胞膜Plasma membrane
JsFLA21 408 43.36 5.81 227—331 30, 132 383 26—27 细胞膜Plasma membrane
JsFLA22 258 27.63 5.92 53—187 44, 103 230 23—24 细胞膜Plasma membrane
JsFLA23 292 32.29 8.99 115—211 3, 183 255 27—28 细胞膜Plasma membrane
JsFLA24 289 31.24 6.16 115—211 183 263 27—28 细胞膜Plasma membrane

Fig. 1

Phylogenetic tree of the FLAs between J. sambac and A. thaliana"

Fig. 2

The chromosome location of JsFLAs genes in J. sambac"

Fig. 3

The phylogenetic tree (A), gene structure (B) and protein conserve motifs (C) of FLAs genes in J. sambac"

Fig. 4

Expression pattern analysis of JsFLAs in pollen-stigma interactions (A) and flowers of different developmental stages (B) CK, T1, T2: Stigmas at 0 h, 1 h, 6 h after pollination; S1, S2, S3: Young floral bud, swollen floral bud, initial opening flower"

Fig. 5

Analysis of cis-acting elements of JsFLAs genes promoter in J. sambac"

Fig. 6

Phylogenetic tree of JsFLA2 Si: Sesamum indicum; Pf: Perilla frutescens; Sa: Striga asiatica; Js: Jasminum sambac; Oe: Olea europaea var. sylvestris; Ce: Coffea eugenioides; Ca: Coffea arabica; It: Ipomoea triloba; Na: Nicotiana attenuate; Sp: Solanum pennellii; Sl: Solanum lycopersicum; Cb: Capsicum baccatum; Cc: Capsicum chinense; Cm: Cinnamomum micranthum; Ac: Actinidia chinensis var. chinensis; Ar: Actinidia rufa; Aa: Artemisia annua; Ls: Lactuca sativa; Ha: Helianthus annuus; Zj: Ziziphus jujube; Pa: Prosopis alba; Ap: Abrus precatorius; At: Arabidopsis thaliana; Jc: Jatropha curcas; Hb: Hevea brasiliensis. The same as below. The values of bootstrap were shown at the nodes"

Fig. 7

Multiple sequence alignment (A), expression pattern analysis (B) and subcellular localization (C) of JsFLA2 Different lowercase letter indicated significantly differences (P<0.05). The same as below"

Fig. 8

Analysis of fertility in A. thaliana with ectopically expressed JsFLA2 A: RT-PCR identification of the transgenic lines; B: The phenotype of WT and OE plants, bar=1 cm; C: The phenotype of the fifth silique, bar=1 cm; D: Alexander staining of mature pollen in WT and OE plants, bar=200 μm; E: The siliques of WT and OE plants, bar=1 mm; F: Mature siliques length in WT and OE plants; G: Seeds number per silique in WT and OE plants"

[1]
齐香玉, 李新茹, 陈双双, 冯景, 陈慧杰, 金玉妍, 苗艳华, 邓衍明. 茉莉花TCP基因家族全基因组鉴定及其表达分析. 华北农学报, 2024, 39(1): 63-71.

doi: 10.7668/hbnxb.20194408
QI X Y, LI X R, CHEN S S, FENG J, CHEN H J, JIN Y Y, MIAO Y H, DENG Y M. Genome-wide identification of TCP gene family in Jasminum sambac and expression analysis involved in flower development and pollen-pistil interaction. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 63-71. (in Chinese)
[2]
LESZCZUK A, SZCZUKA E, ZDUNEK A. Arabinogalactan proteins: Distribution during the development of male and female gametophytes. Plant Physiology and Biochemistry, 2019, 135: 9-18.

doi: S0981-9428(18)30522-9 pmid: 30496891
[3]
ASHAGRE H A, ZALTZMAN D, IDAN-MOLAKANDOV A, ROMANO H, TZFADIA O, HARPAZ-SAAD S. FASCICLIN-LIKE 18 is a new player regulating root elongation in Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12: 645286.
[4]
ZHANG Y Y, ZHOU F W, WANG H, CHEN Y N, YIN T M, WU H T. Genome-wide comparative analysis of the fasciclin-like Arabinogalactan proteins (FLAs) in Salicacea and identification of secondary tissue development-related genes. International Journal of Molecular Sciences, 2023, 24(2): 1481.
[5]
MIAO Y J, CAO J S, HUANG L, YU Y J, LIN S E. FLA 14 is required for pollen development and preventing premature pollen germination under high humidity in Arabidopsis. BMC Plant Biology, 2021, 21(1): 254.
[6]
LU M Q, ZHOU J Q, JIANG S S, ZENG Y L, LI C, TAN X F. The fasciclin-like arabinogalactan proteins of Camellia oil tree are involved in pollen tube growth. Plant Science, 2023, 326: 111518.
[7]
FAIK A, ABOUZOUHAIR J, SARHAN F. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): Identification and bioinformatic analyses. Molecular Genetics and Genomics, 2006, 276(5): 478-494.

pmid: 16944204
[8]
GUERRIERO G, MANGEOT-PETER L, LEGAY S, BEHR M, LUTTS S, SIDDIQUI K S, HAUSMAN J F. Identification of fasciclin-like Arabinogalactan proteins in textile hemp (Cannabis sativa L.): In silico analyses and gene expression patterns in different tissues. BMC Genomics, 2017, 18(1): 741.
[9]
JOHNSON K L, JONES B J, BACIC A, SCHULTZ C J. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiology, 2003, 133(4): 1911-1925.
[10]
MA H L, ZHAO J. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). Journal of Experimental Botany, 2010, 61(10): 2647-2668.
[11]
唐丽媛, 蔡肖, 王海涛, 李兴河, 张素君, 刘存敬, 张建宏. 棉花FLA基因家族的全基因组鉴定及GhFLA05在棉纤维发育中的功能分析. 中国农业科学, 2023, 56(32): 4602-4620. doi: 10.3864/j.issn.0578-1752.2023.23.004.
TANG L Y, CAI X, WANG H T, LI X H, ZHANG S J, LIU C J, ZHANG J H. Genome-wide identification of cotton FLA gene family and functional analysis of GhFLA05 in cotton fiber development. Scientia Agricultura Sinica, 2023, 56(32): 4602-4620. doi: 10.3864/j.issn.0578-1752.2023.23.004. (in Chinese)
[12]
MENG J, HU B, YI G J, LI X Q, CHEN H B, WANG Y Y, YUAN W N, XING Y Q, SHENG Q M, SU Z X, XU C X. Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. Plant Cell Reports, 2020, 39(6): 693-708.

doi: 10.1007/s00299-020-02524-0 pmid: 32128627
[13]
LI X Q, CHENG M Y, TANG C, ZHU X X, QI K J, ZHANG S L, WU J Y, WANG P. Identification and function analysis of fasciclin-like Arabinogalactan protein family genes in pear (Pyrus bretschneideri). Plant Systematics and Evolution, 2021, 307(4): 48.
[14]
HOSSAIN M S, AHMED B, ULLAH M W, AKTAR N, HAQUE M S, ISLAM M S. Genome-wide identification of fasciclin-like arabinogalactan proteins in jute and their expression pattern during fiber formation. Molecular Biology Reports, 2020, 47(10): 7815-7829.

doi: 10.1007/s11033-020-05858-w pmid: 33011893
[15]
WU X Y, LAI Y C, LV L Q, JI M F, HAN K L, YAN D K, LU Y W, PENG J J, RAO S F, YAN F, ZHENG H Y, CHEN J P. Fasciclin-like arabinogalactan gene family in Nicotiana benthamiana: Genome-wide identification, classification and expression in response to pathogens. BMC Plant Biology, 2020, 20(1): 305.
[16]
卞坤, 邵佳蓉, 徐利伟, 沈子明, 陈伟, 杨震峰. 桃FLA家族基因的生物信息学及表达分析. 园艺学报, 2017, 44(4): 653-663.

doi: 10.16420/j.issn.0513-353x.2016-0604
BIAN K, SHAO J R, XU L W, SHEN Z M, CHEN W, YANG Z F. Bioinformatic and expression analysis of fasciclin-like arabinogalactan proteins (FLAs) gene family in peach. Acta Horticulturae Sinica, 2017, 44(4): 653-663. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2016-0604
[17]
MACMILLAN C P, MANSFIELD S D, STACHURSKI Z H, EVANS R, SOUTHERTON S G. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. The Plant Journal, 2010, 62(4): 689-703.
[18]
ZHEN C, HUA X G, JIANG X, TONG G M, LI C M, YANG C P, CHENG Y X. Cas9/gRNA-mediated mutations in PtrFLA40 and PtrFLA45 reveal redundant roles in modulating wood cell size and SCW synthesis in poplar. International Journal of Molecular Sciences, 2023, 24(1): 427.
[19]
HUANG G Q, GONG S Y, XU W L, LI W, LI P, ZHANG C J, LI D D, ZHENG Y, LI F G, LI X B. A fasciclin-like Arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiology, 2013, 161(3): 1278-1290.
[20]
MA Y X, MACMILLAN C P, DE VRIES L, MANSFIELD S D, HAO P F, RATCLIFFE J, BACIC A, JOHNSON K L. FLA11 and FLA12 glycoproteins fine-tune stem secondary wall properties in response to mechanical stresses. New Phytologist, 2022, 233(4): 1750-1767.
[21]
LI J, YU M, GENG L L, ZHAO J. The fasciclin-like arabinogalactan protein gene, FLA3 is involved in microspore development of Arabidopsis. The Plant Journal, 2010, 64(3): 482-497.
[22]
TAN H X, LIANG W Q, HU J P, ZHANG D B. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Developmental Cell, 2012, 22(6): 1127-1137.

doi: 10.1016/j.devcel.2012.04.011 pmid: 22698279
[23]
NIU Z M, BAI Q X, LV J J, TIAN W J, MAO K L, WEI Q Q, ZHENG Y M, YANG H H, GAO C Y, WAN D S. The fasciclin-like arabinogalactan protein FLA11 of Ostrya rehderiana impacts wood formation and salt stress in Populus. Environmental and Experimental Botany, 2024, 219: 105651.
[24]
王华娣, 齐香玉, 陈双双, 冯景, 陈慧杰, 秦紫艺, 邓衍明. 阿拉伯半乳糖蛋白在茉莉花粉萌发和花粉管生长中的作用研究. 河北师范大学学报(自然科学版), 2023, 47(1): 92-98.
WANG H D, QI X Y, CHEN S S, FENG J, CHEN H J, QIN Z Y, DENG Y M. Function of Arabinogalactan proteins on pollen germination and pollen tube growth in jasmine. Journal of Hebei Normal University (Natural Science), 2023, 47(1): 92-98. (in Chinese)
[25]
WANG H D, QI X Y, CHEN S S, FENG J, CHEN H J, QIN Z Y, DENG Y M. An integrated transcriptomic and proteomic approach to dynamically study the mechanism of pollen-pistil interactions during jasmine crossing. Journal of Proteomics, 2021, 249: 104380.
[26]
QI X Y, WANG H D, LI X R, AHMAD M Z, CHEN S S, FENG J, CHEN H J, DENG Y M. The fasciclin-like arabinogalactan protein FLA3 of Jasminum sambac causes defects in pollen wall development. Ornamental Plant Research, 2025, 5: e005.
[27]
XU S X, DING Y L, SUN J T, ZHANG Z Q, WU Z Y, YANG T Z, SHEN F, XUE G. A high-quality genome assembly of Jasminum sambac provides insight into floral trait formation and Oleaceae genome evolution. Molecular Ecology Resources, 2022, 22(2): 724-739.
[28]
QI X Y, WANG H D, CHEN S S, FENG J, CHEN H J, QIN Z Y, BLILOU I, DENG Y M. The genome of single-petal jasmine (Jasminum sambac) provides insights into heat stress tolerance and aroma compound biosynthesis. Frontiers in Plant Science, 2022, 13: 1045194.
[29]
WANG P J, FANG J P, LIN H Z, YANG W W, YU J X, HONG Y P, JIANG M W, GU M Y, CHEN Q C, ZHENG Y C, et al. Genomes of single- and double-petal jasmines (Jasminum sambac) provide insights into their divergence time and structural variations. Plant Biotechnology Journal, 2022, 20(7): 1232-1234.

doi: 10.1111/pbi.13820 pmid: 35373460
[30]
QI X Y, WANG H D, LIU S Y, CHEN S S, FENG J, CHEN H J, QIN Z Y, CHEN Q M, BLILOU I, DENG Y M. The chromosome-level genome of double-petal phenotype jasmine provides insights into the biosynthesis of floral scent. Horticultural Plant Journal, 2024, 10(1): 259-272.
[31]
ZHANG W, SUN Z R. Random local neighbor joining: A new method for reconstructing phylogenetic trees. Molecular Phylogenetics and Evolution, 2008, 47(1): 117-128.

doi: 10.1016/j.ympev.2008.01.019 pmid: 18343690
[32]
尹雨钦, 徐欢欢, 唐丽萍, 王欣雅, 胡春梅, 侯喜林, 李英. 不结球白菜GST基因家族的全基因组鉴定及花青素相关基因BcGSTF6的功能分析. 中国农业科学, 2024, 57(16): 3234-3249. doi: 10.3864/j.issn.0578-1752.2024.16.011.
YIN Y Q, XU H H, TANG L P, WANG X Y, HU C M, HOU X L, LI Y. Genome-wide identification of GST gene family and functional analysis of the BcGSTF6 gene related to anthocyanin in pak choi. Scientia Agricultura Sinica, 2024, 57(16): 3234-3249. doi: 10.3864/j.issn.0578-1752.2024.16.011. (in Chinese)
[33]
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.

doi: S1674-2052(20)30187-8 pmid: 32585190
[34]
齐香玉, 陈双双, 冯景, 王华娣, 邓衍明. 茉莉花实时荧光定量PCR内参基因的筛选与验证. 华北农学报, 2020, 35(6): 22-30.

doi: 10.7668/hbnxb.20191401
QI X Y, CHEN S S, FENG J, WANG H D, DENG Y M. Selection and validation of candidate reference genes for quantitative real-time PCR in Jasminum sambac Aiton. Acta Agriculturae Boreali-Sinica, 2020, 35(6): 22-30. (in Chinese)
[35]
ALEXANDER M P. Differential staining of aborted and nonaborted pollen. Stain Technology, 1969, 44(3): 117-122.

doi: 10.3109/10520296909063335 pmid: 4181665
[36]
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360.

doi: 10.1038/nmeth.3317 pmid: 25751142
[37]
WANG H H, JIANG C M, WANG C T, YANG Y, YANG L, GAO X Y, ZHANG H X. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees. Journal of Experimental Botany, 2015, 66(5): 1291-1302.
[38]
JOHNSON K L, KIBBLE N A J, BACIC A, SCHULTZ C J. A fasciclin-like arabinogalactan-protein (FLA) mutant of Arabidopsis thaliana, fla1, shows defects in shoot regeneration. PLoS ONE, 2011, 6(9): e25154.
[39]
COSTA M, PEREIRA A M, PINTO S C, SILVA J, PEREIRA L G, COIMBRA S. In silico and expression analyses of fasciclin-like arabinogalactan proteins reveal functional conservation during embryo and seed development. Plant Reproduction, 2019, 32(4): 353-370.

doi: 10.1007/s00497-019-00376-7 pmid: 31501923
[40]
MACMILLAN C P, TAYLOR L, BI Y D, SOUTHERTON S G, EVANS R, SPOKEVICIUS A. The fasciclin-like arabinogalactan protein family of Eucalyptus grandis contains members that impact wood biology and biomechanics. New Phytologist, 2015, 206(4): 1314-1327.
[41]
SEIFERT G J, XUE H, ACET T. The Arabidopsis thaliana fasciclin like Arabinogalactan protein 4 gene acts synergistically with abscisic acid signalling to control root growth. Annals of Botany, 2014, 114(6): 1125-1133.
[42]
ZANG L N, ZHENG T C, CHU Y G, DING C J, ZHANG W X, HUANG Q J, SU X H. Genome-wide analysis of the fasciclin-like Arabinogalactan protein gene family reveals differential expression patterns, localization, and salt stress response in Populus. Frontiers in Plant Science, 2015, 6: 1140.
[43]
TAKAHASHI D, KAWAMURA Y, UEMURA M. Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. Journal of Experimental Botany, 2016, 67(17): 5203-5215.
[44]
DENG Y, WAN Y C, LIU W C, ZHANG L S, ZHOU K, FENG P, HE G H, WANG N. OsFLA 1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice. Theoretical and Applied Genetics, 2022, 135(4): 1247-1262.
[45]
ZHOU D, ZOU T, ZHANG K X, XIONG P P, ZHOU F X, CHEN H, LI G W, ZHENG K Y, HAN Y H, PENG K, et al. DEAP1 encodes a fasciclin-like arabinogalactan protein required for male fertility in rice. Journal of Integrative Plant Biology, 2022, 64(7): 1430-1447.
[46]
ZHANG M, WEI H L, LIU J, BIAN Y J, MA Q, MAO G Z, WANG H T, WU A M, ZHANG J J, CHEN P Y, et al. Non-functional GoFLA19s are responsible for the male sterility caused by hybrid breakdown in cotton (Gossypium spp.). The Plant Journal, 2021, 107(4): 1198-1212.
[1] YANG CaiLi, LI YongZhou, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU ZhaoXian, LI PengHui, LIU SanJun. Genome-Wide Identification and Analysis of TPS Gene Family and Functional Verification of VvTPS4 in the Formation of Monoterpenes in Grape [J]. Scientia Agricultura Sinica, 2025, 58(7): 1397-1417.
[2] TENG MengXin, XU Ya, HE Jing, WANG Qi, QIAO Fei, LI JingYang, LI XinGuo. Identification and Functional Analysis of Ca2+-ATPase Gene Family in Banana [J]. Scientia Agricultura Sinica, 2025, 58(7): 1418-1433.
[3] ZHANG LinLin, GONG Rui, CUI YanLing, ZHONG XiongHui, LI Ye, LI RanHong, QIAN ZongWei. Effect Analysis of SmWRKY30 in Eggplant Resistance to Ralstonia solanacearum by Virus Induced Gene Silencing (VIGS) [J]. Scientia Agricultura Sinica, 2025, 58(3): 548-563.
[4] WANG Wei, WU ChuanLei, HU XiaoYu, LI JiaJia, BAI PengYu, WANG GuoJi, MIAO Long, WANG XiaoBo. Genome-Wide Identification of Soybean LOX Gene Family and the Effect of GmLOX15A1 Gene Allele on 100-Seed Weight [J]. Scientia Agricultura Sinica, 2025, 58(1): 10-29.
[5] TAN FangDai, HE YingXia, LIU JiaYue, LI AiHua, TAO YongSheng. Multidimensional Characterization of Astringency Quality in Dry Red Wine and Its Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4342-4355.
[6] YIN JunLiang, LI JingYi, HAN Shuo, YANG PeiHua, MA JiaWei, LIU YiQing, HU HaiJun, ZHU YongXing. Identification of Ginger (Zingiber officinale Roscoe) NHX Gene Family Members and Characterization of Their Expression Patterns in Silicon Alleviating Salt Stress [J]. Scientia Agricultura Sinica, 2024, 57(19): 3848-3869.
[7] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[8] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[9] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
[10] WANG ZhuangZhuang, DONG ShaoYun, ZHOU Qi, MIAO Han, LIU XiaoPing, XU KuiPeng, GU XingFang, ZHANG ShengPing. Cloning and Analysis of Key Genes for Vitamin C Synthesis in Cucumber Fruit [J]. Scientia Agricultura Sinica, 2023, 56(3): 508-518.
[11] DANG YuanYue, MA JianJiang, YANG ShuXian, SONG JiKun, JIA Bing, FENG Pan, CHEN QuanJia, YU JiWen. Genome-Wide Identification and Expression Analysis of β-tubulin Family in Cotton Fiber Development [J]. Scientia Agricultura Sinica, 2023, 56(23): 4585-4601.
[12] TANG LiYuan, CAI Xiao, WANG HaiTao, LI XingHe, ZHANG SuJun, LIU CunJing, ZHANG JianHong. Genome-Wide Identification of Cotton FLA Gene Family and Functional Analysis of GhFLA05 in Cotton Fiber Development [J]. Scientia Agricultura Sinica, 2023, 56(23): 4602-4620.
[13] ZHANG Xin, YANG XingYu, ZHANG ChaoRan, ZHANG Chong, ZHENG HaiXia, ZHANG XianHong. Identification and Expression Analysis of Heat Shock Protein Superfamily Genes in Callosobruchus chinensis [J]. Scientia Agricultura Sinica, 2023, 56(19): 3814-3828.
[14] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[15] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!